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Abstract 

Compressive sensing (CS) is a novel framework which exploits both the sparsity and the 

intra-correlation of the signal in structural health monitoring (SHM) based on wireless 

sensor networks (WSNs). It contains sparse signal representation, the measurement matrix 

selection and the reconstruction algorithm. The SHM signal is recovered by M measurements 

following the restricted isometry constant (RIC). However, the signal should be denoised 

before reconstruction. This paper discusses two wavelet noise reduction methods, soft 

threshold and hard threshold method, and verifies the performance of different methods for 

SHM signal reconstruction. Experimental results show that wavelet hard threshold method 

has much better effect on SHM sparse signal reconstruction than soft threshold method. 

Meanwhile, we can get a more accurate corresponding relation of RIC that 

is *log( / ) 33M CK N K  . 
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1. Introduction 

Compressive sensing (CS) provides an alternative to Shannon/Nyquist sampling when 

signal under acquisition is known to be sparse or compressible [1, 2]. It combines sampling 

and compression parts together to realize sampling below Nyquist rate. Using this technology, 

we can reconstruct a sparse signal with much fewer measurements than traditional means. 

With the development of CS theory, it has been applied to wireless sensor networks (WSNs), 

medical imaging, remote sensing [3], structural health monitoring (SHM) [4, 5] and so on.  

However, in SHM based on WSN, the signal data with noise is not suitable for CS process. 

Before the CS compression, the original data should be de-noising. The wavelet threshold 

method is simple but effective for one-dimensional signal de-noising process. The threshold 

quantization process of wavelet threshold method has soft threshold and hard threshold which 

have different effect on CS compression and reconstruction. In this paper, we first introduced 

the CS theory, and proposed the wavelet noise reduction method in the SHM sparse signal 

based on WSN. At the same time, we analyzed the signal reconstruction effects between soft 

threshold and hard threshold. Experimental results verify the restricted isometry constant 

(RIC) accuracy and give a more accurate corresponding relation of RIC. And these results 

also indicate that the SHM sparse signal reconstruction effect on wavelet hard threshold is 

better than that on wavelet soft threshold.  
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The rest of the paper is structured as follows. In Section 2 we provide a description of CS 

theory. In Section 3 the process of noise reduction in CS is introduced. In Section 4 

experimental verification steps are described in detail which also substantiates our scheme. 

Section 5 concludes the paper. 

 

2. Compressive Sensing Theory 

The essence of CS [6] is using an irrelevant measurement ( ,M N M N  ) with a matrix 

transform base (dimension) to put the original high-dimensional sparse signal or approximate 

sparse signal sequence 1N   project in a low dimensional space ( M dimension) to achieve 

signal compression. Mainly, CS theory includes three parts: 

 the sparse representation of the signal; 

 the measurement matrix ensuring the data minimal information loss which should be 

satisfied the Restricted Isometry Property (RIP) ; 

 The reconstruction algorithm using the no-distortion observed value to reconstruct 

signals. 

Assuming that ( )x n  ( ( ) Nx n R ) is an N-dimension signal which could be also regarded as 

a NR column vector and there are K-nonzero elements among it that is 0
x K , then this kind 

of signal is K sparse. Another situation is that ( )x n is an approximate sparse signal or it is K 

sparse in the transform domain Ψ if there is an orthogonal sparse basis Ψ which can denote 

x    and 0
K  .And for any N-dimension discrete-time signal Nx R , introducing the 

N N orthonormal basis matrix Ψ, the signal Nx R can be expressed as:                        

1

N

i i

i

x or x 


    . Suppose that a measurement matrix ( )M NR M N  is 

introduced to produce compressed sensing coefficients y, then for a sparse signal Nx R , the 

linear measuring values in the measurement matrix My R  could be defined 

as = = =y x     where  is a M N sensing matrix,  represents a 

M N measurement matrix and  is a N N transformation matrix. If y and meet 

with the RIP [7], K-sparse decomposition coefficients  can be reconstructed by solving the 

0l norm [8] from y, 
0

ˆ=argmin . . =s t y   where ̂ is the only exact solution of 

decomposition coefficients . Finally, the exact solution x̂  can be obtained by reconstructing 

̂ under the orthogonal transform basis  shown as ˆx̂   . 

Candes and Tao [7] have also given Restricted isometry constant (RIC) concept denoted 

as
m , which is the infimum of RIP established for all parameters. The relationship between 

the M-dimensional measurement matrix and K can be obtained based on RIC conditions. 

Studies show that if   adopts a random matrix, we can ensure that can be able to meet 

with the incoherence and constraint conditions by the great probability where M is fulfill with 

the equalization (1).  

*log( / )M CK N K                            (1) 

Where ‘C’ is a constant related with the recovery accuracy. In this experiment，we intends to 

adopt *log( / )M K N K as the measuring number condition to get the signal reconstruction 

and verify the accuracy of the formula (1). 
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3. Noise Reduction in CS 

In CS application，there are a variety of choices for the orthonormal basis  such as the 

Fourier transform and the wavelet basis of the Wavelet transform. Haar wavelet basis is the 

first choice as the preferred orthogonal transform base in our experiments with higher sparsity. 

But the practical analysis found that both sparse effects didn’t reach our paper goal. Most the 

minimum value of the sampling points is very close to zero. However, due to the sparseness 

of statistical is determined by the number of non-zero values in the sparse signals, it is 

necessary to make appropriate process on the signal after thinning. In addition, the noise 

signal has a great impact on the signal sparse representation, so that the denoising process 

must be executed. Study found that the wavelet threshold process just handles the above two 

problems simultaneously to denoise signal, retain the larger value and remove the minimum 

value. Moreover, the threshold algorithm has low computational complexity, so that it is an 

easy but very effective method. The following is a brief introduction for wavelet threshold 

process. 

 

3.1 Wavelet threshold noise reduction 

After the signal sparse decomposition in CS, it is necessary to eliminate noise and process 

threshold value to get better sparsity, and to improve the data compression ratio and obtain 

precise reconstruction. The wavelet threshold method is simple but effective for 

one-dimensional signal denoising process. 

A mathematical model of one-dimensional signal contained noise is usually defined as 

follows (2): 

( ) ( ) * ( ) ( 0,1,2,... 1)s n x n e n n N                  (2) 

Where ( )x n donates the original signal, ( )s n represents a signal with noise, ( )e n is a noise 

signal, and  means noise intensity. In the simplest case, amusing ( )e n is Gaussian white 

noise and 1  . The purpose of the wavelet threshold noise reduction is to try to suppress the 

noise signal ( )e n in order to reconstruct the original signal ( )x n . 

(1) Wavelet threshold denoising steps 

As we all know that the signal denoising process essentially inhibits the unwanted part of 

the signal and restore the useful part. The main steps of wavelet threshold denoising for 

one-dimensional signal are consists of noise signal decomposition, threshold quantization and 

signal reconstruction from it. Since there have been some wavelet decomposition and signal 

reconstruction mature algorithms, then how to select the threshold and threshold quantization 

approach became the core of the wavelet threshold method which directly determine the 

quality of the noise signal reduction in a considerable degree. 

(2) The threshold Value Selection 

There are basically two types of obtained thresholds for the wavelet threshold method as 

shown on the Table 1.  
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Table 1. Two kinds of thresholds selection methods 

Threshold selection method Classification 

Based on the original signal 

Donoho-Johnstone threshold 

Birge-Masart penalty function and 

Penaltythreshold 

Nonlinear wavelet transform threshold 

selection 

Minimaxi variance threshold 

sqtwolog 

unbiased risk estimation threshold (rigrsure) 

heursure 

 

(3) The threshold quantization process method 

After getting the threshold, the important step is to quantify it which has two kinds’ process 

methods as shown in the Table 2. 

Analyzed the Table 2, we found that Compulsory denoising process is simple and the signal 

denoising is smooth but it is easy to lose a useful component in the signal, however the 

threshold value process has taken the low-frequency and high-frequency part of the signal 

into account, especially the soft threshold is the smoother way as well as the Hard threshold 

could retain more of the characteristics of real signal spikes. 

 

Table 2. The threshold quantization process method 

Threshold process classification Approach 

Compulsory denoising process 

All high frequency coefficients of the wavelet 

decomposition structure is set to 0，and filter 

out all the high frequency part 

The threshold value 

process 

Soft threshold 

Compared the signal absolute value with the 

threshold value, set the point value to 0 

which is not greater than the threshold, and 

make the point value which is larger than the 

threshold with the difference between them.  

Hard threshold 

Compared the signal absolute value with the 

threshold value, set the point value to 0 

which is not greater than the threshold, and 

keep the original value when the point value 

is larger than the threshold.  
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Soft threshold and hard threshold mathematical models are described as follows (3) and (4). 

In order to facilitate the description, amusing that SORH=’s’ denotes the soft threshold and 

the SORH=’h’ represents the hardware one. 

 
  

' ' : ,
0

S
w Tsign w w T

SORH s w T
w T


 

  


               (3) 

 ' ' : ,
0

H
w Tw

SORH h w T
w T




  


                    (4) 

 

4. Simulation and Performance Evaluation 

In order to get the effective and real data of the experiments, we designed a data acquisition 

experimental system which sensor node is a common node without compression function. The 

whole size of the original data about 208M is used to simulate the CS processing. In the 

simulation, we take Gaussian random matrix as the measurement matrix; use OMP as the 

reconstruction algorithm. During the process of noise reduction, the threshold selection 

criteria (TPTR) choose unbiased risk estimation threshold (rigrsure), the data length N is 1024. 

In this paper, we Use the matlab to achieve signal compression and reconstruction. Such a 

process is repetitive, so as to observe convergence of CS. 

 

4.1 The evaluation standards for CS applications in SHM 

(1) Compression ratio (CR) 

The compression ratio is one of the indicators to measure the degree of data compression 

whose definition is the compression ratio between the original signal data quantity and the 

compressed data amount written as the follows (5), where ,o coN N  denote the signal data 

quantity and compressed data amount. The larger the CR is, the better the performance of the 

compression is, and the smaller the traffic load on the network is. 

/o coCR N N                 
              (5) 

(2) Reconstruction error ξ 

Reconstruction error is on behalf of the similarity degree of the reconstructed signal and the 

original one. It is an import indicator to measure the effects of data decompression after 

refactoring which formula is (6), where ˆ,x x  separately indicated the reconstructed signal 

and the original one. The smaller the reconstruction error is, the higher the data recovery 

accuracy of the compressed sensing reconstruction algorithm is. 

2

2

x̂ x

x



               (6) 

4.2 The soft and hard threshold selection in CS 

Make M_stand=K*log(N/K), and control the number of measurements in 

M_stand-98<=M<=M_stand+98. From Figure 1 and Figure 2, we can see that under the 
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situation TPTR ‘rigrsure’, taking the soft and hardware threshold methods on the signal which 

length is N=1024, the sparisity generated by both is K=99 and CR is 90.33%. 

As we all know that the theoretical number of measurements is M_stand=231, actually, the 

number of measurements can be less than its theoretical times under the situation of that the 

signal length is larger. Figure 1 and Figure 2 have indicated that the minimum number of 

measurements for both hardware and soft thresholds could not be less than M_stand-33, 

otherwise, reconstructing the signal will fail. In order to further analyze the comparison of 

reconstruction error for the soft and hardware threshold methods, we control the measurement 

times in [M_stand-33, M_stand+98] showing on the Figure 3. On the Figure 3, within the 

valid reconstruction measuring number ranged [M_stand-33, M_stand+98], the reconstruction 

error for the hardware threshold method is less than the soft threshold one.  
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Figure 1. The soft threshold reconstruction error 
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Figure 2. The hard threshold reconstruction error. 
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Figure 3. reconstruction error comparison within the effective measurement 
between soft and hard threshold  

 

5. Conclusions and the Future Works 

In this paper, two kind of method of wavelet threshold quantization were discussed. One is 

soft threshold method, another is hard threshold method. The threshold value process has 

taken the low-frequency and high-frequency part of the signal into account, especially the soft 

threshold is the smoother way as well as the hard threshold could retain more of the 

characteristics of real signal spikes. Experiments show that the RIC theory is also suitable for 

SHM based on WSN, which is proposed by Candes and Tao [7]. In SHM, we can draw more 

accurate conclusion *log( / ) 33M CK N K  . Meanwhile, we can find that the effect of hard 

threshold is to surpass soft threshold. In the future, we will extend our scheme to improve a 

new threshold to combine the two different methods’ advantages to improve the approach. 
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