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Chaos has been @/ely studied over the past three decades after the pioneering work
of Edwards Lor& Chaos [1] who revealed that simple three dimensional differential
equations wit iny changes in its initial conditions and parameters can bring major
diﬁerences\%gir future states. This extreme sensitive dependence upon initial conditions is
known aQe “Butterfly Effect” [1]. Mathematically a Chaotic system is a nonlinear
deter system that displays unpredictable and extremely complex behavior.

nization is one of the most engrossing phenomenan of Chaos. Synchronization of
ch systems is a procedure where two chaotic systems (either equivalent or
nonequivalent) adjust a given property of their motion to a common behavior due to coupling
or forcing. This ranges from absolute agreement of trajectories to interlocking of phases. This
idea of synchronization was first introduced by Pacora and Carroll [2], and since then
synchronization of chaotic dynamical systems has received a great deal of interest among
scientists from almost all nonlinear sciences for more than the last two decades. Further
Chaos Synchronization has many potential applications in different fields such as Secret
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Communications, Laser Physics, Chemical Reactor and in many other biological and physical
systems [3-7].

A wide range of techniques have been introduced and are applied successfully to
synchronize identical (nearly identical) as well as nonidentical chaotic systems such as
Adaptive Control , Backsteeping Method , Active Control Algorithm, Lag Synchronization,
Linear Error State Feedback Algorithm, Sliding Mode Control and Nonlinear Active Control
Algorithm[8-14], etc.

Recently, the synchronization problem via Active Control and Nonlinear Control
Techniques have attracted great interest among the researchers and have been widely
accepted as the two powerful techniques used to synchronize two identical as well as
nonidentical chaotic systems [8-13].

Chaos Synchronization using Active Control was proposed by E. W. Bali, et al., [8hand has
recently been accepted and used as one of the most efficient techniques for SyN iZing
both identical and nonidentical chaotic systems because of its implementati practical
systems such as, Bonhoffer-van der Pol Oscillators, Windmi and Coullet Sys lipsoidal
Satellite and Nonlinear Gyros [7, 16-18], etc. If the nonli ity of the known, an
Active Controller can be easily designed according to % c nd| of the chaotic
system to achieve synchronization globally. There ar atives in ontroller

On the other hand, the Nonlinear Control A’\m is ctive technique for
synchronizing two identical as well as nonidentlfal otic sys':e%; ost of the real-world

control problems are nonlinear, so Nonlinear | Tech s take the advantage of the
given nonlinear system dynamics to pso igh-perfo ce designs. No Lyapunov
Exponents or Gain Matrix is required f imp tion [14]. These features free the
designer to focus on the synchronlzatl lem, iresome analytical calculations.

In reference [19], the author oposed tudied a new 3-Dimensional chaotic
system by replacing a constaﬁk ter. |th a switching function in Qi four-wing
attractor and generating an eight=wing c ctor The new eight-wing chaotic attractor
has more complex dynam|®1d topol&l different structures than the original Qi four-

wing chaotic attractor.

Motivated from 2 %e main of this research paper is to employ the Linear Active
and Nonlinear V8, “Contro ovithms to study and investigate the global chaos
synchronizati identical 3=D chaotic systems [19]. Based on the Lyapunov Stability
Theory [20] ‘6 sing t @oaohes in references [12, 14], a class of feedback control
schemes will be propo chieve the synchronization asymptotically globally. Numerical
ill be furnished to show the effectiveness of the two approaches,
e two techniques will be compared.
per is organized as follows: In Section 2, the Linear Active Control
been given and has solved the chaos synchronization problem of a new
using Linear Active Control Technique. In Section 3, the Nonlinear Control
has been derived and then applied to synchronize a new chaotic system, finally,
ding remarks are then given in Section 4.

2. Designing of a Linear Active Controller

Many synchronization algorithms belong to drive-response (master-slave) system
arrangement. The drive-response (master-slave) arrangement means that the two chaotic
systems are coupled in such a way that the performance of the second (response/slave) system
is influenced by the first (drive/master) system and the first system is not disturbed by the
exertion of the second (response/slave) system.
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Consider a drive system described from the following differential equation,
X = AX+h(x) (2.1.1)
A response system is defined as,

y=Ay+g(y)+n() (212)

where x )y € R" are the state vectors, A A, € R™ are constant system matrices and

h(x),g(y):R" — R" are the nonlinear functions of the corresponding drive- spo e
systems respectively and 7(t) is the control input. The error dynamics are defmed?\

A (</®

Thus the error dynamics for synchronization of syst nd (Q/ cribed as ,

eé=y—x=Be+F(X, @n(t) %\ (2.1.3)
N\

Where, B = A2 A& is the common par b@ sy te atrices in drive-response systems

and F(X,y)=0(y)-h(xX)+Ay- (t) c the nonlinear functions and non-
common terms and 77(t) = [ (t @)@ the control input injected to the response
system.

If h(x) = g(y) and A, = & the states of two identical chaotic systems and if
h(x) #g(y) or A, # A{Q Xa d he states of two non-identical chaotic systems.

An approprl‘ ller, n@that satisfies the error system converges to zero,

ie, lime, _Ilm @—xi(t)|:0 , VX, y,eeR"

t—w
Then th%y ems (2.1.1) and (2.1.2) are said to be synchronized.

Thu ential problem in synchronizing two chaotic systems is in the design of a proper
%ﬁ troller that eliminates nonlinear terms and non-common parts and contains other
p

ich achieve asymptotic stability [13] such as,
n(t) =—F(x, y)+v(t)

where v(t) = - ke is a linear controller and k € R™"is a feedback constant gain matrix.
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Thus the error dynamics (2.3) becomes,
é =Be+v(t)=Be—ke=(B—-k)=Me (2.1.4)
where, M =B—-Kk .

From equation (2.1.4), if the error system (2.1.4) is a linear system of the form, é = Me
and if the system matrix M is Hurwitz [21], i.e., all the eigenvalues of the system matrix M
are negative, then by the linear control theory [21], the error system will be asymptotically
stable, which intimate that the two chaotic systems are synchronized asymptotically globally.

L 4

2.1 Identical Synchronization of a New 3D Chaotic System [18] via Linv ive

i ntial e i6n for the new

Control
System Description: G. Qi, et al., [18] proposed and s dea ne t@mensional
autonomous chaotic systems. T b

chaotic systems is given as,

X=a(y—x)+ flt)yz
‘ (y—x)+ &)y . %
y =bx+cy \
z2=Xxy @ .
2.2.1) @K 5&
Where X,y,zeR™ are the’?& variable’a@ a,b,c and d are the system parameters
with, a=14,b=— 16 and@?and f (t) = M sgn(sin wt) +K is a parameter
function with '@" is th ing freguenty, M and k are the constant parameters and t is the
time. \
The authors in 8] repla?@e arameter ' e ' by sign-switch function and generated
an eight-wi ic attra e new eight-wing chaotic attractor has more complex
dynamics a ologic ferent structures than the original Qi four-wing chaotic
attractor. In ref [18], and their colleagues have investigated that in the absence of
switching paramete hen f(t) = 1), the system originally shows a four-wing attractor,

and when the er function switches between the ranges 1 and 19 with frequency

2 . . .
a):_g, m*kstem [18] shows an eight-wing chaotic attractor (mother butterfly) and the

5
new f Qg attractor (baby butterfly) is very close to the origin [18]. The analysis of
fr ebspectra shows that the new (eight-wing chaotic attractor) system has an exceptional
b@nd frequency bandwidth, which is most advisable for engineering applications such as
secréte communications, etc.

To synchronize chaotic system (2.2.1) via Linear Active Control, let us consider the drive-
response systems arrangement, which is described as,
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% =a(y,—x)+ f )y
y, =bx +cy, —xz, (drive system) (2.2.2)
2, =Xy, —dz

and

X, = a(yz - Xz) +f (t)yzzz +6,
y, =bx, +cy, —x,z, + 6, (response system) (2.2.3)
z,=XY,—0dz,+86,

where x;, yi, z; € R" for i =1,2 are the state variables of the corresponding dri Ere sponse

systems, a,b,c and d are the system parameters and B(t [4 (), Q!: " are the

feedback controllers which are yet to be designed. The er ics of and (2.2.3) is
defined as,

€ =%X—X, ezé ;1193 é\L
Thus from (2.2.2) and (2.2.3) the error d s can @ sCribed as;

6 =a(e @& (y,2 \\leow(t)
e1 = X,28 \%w () (2.2.4)

de +x L+ 0,(t)

The aim of ctlo de3|gn such a feedback Active Controller
o) =[6.), jf )] rror system (2.2.4) convergence to the origin

asymptotical
e lim @to for all (0) € R" .

For this We et us re-define the controller 9(t) =[6,(t), 8, (t), &, )] as,
@O G (t)=—ae, + f (t)(ylzl — Y22, ) +V;(t)

6, (t) = —be, —2ce, + X,2, — Xz, +V,(t) (2.2.5)
Ha(t) = (X1Y1 —x2y2)+v3(t)
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Substituting equation (2.2.5) in equation (2.2.4), we have,
e =—ae +V,(t)
e, =—ce, +V,(t) (2.2.6)
&, =—de; +V,(t)

Vl kll kl?_ k12 el
Where, V, |=—| K,y Ky, Kyll&, (2.2.7)
V3 k31 k32 k33 eS

The error system (2.2.6) to be controlled is a linear system with a control input
v;,V, and vjare functions of e,,e, and e;respectively where the k;; are const nW’re
known as feedback gains. As long as these feedbacks stabilize the err then

e,e, and e;converge to zero as time ’t " tends to infinity [13]. This i S  that the two
identical chaotic systems (2.2.2) and (2.2.3) are synchro sympt%. Substituting
(2.2.7) in (2.2.6), we have

&) (-a 0 0 l&\\K{ 3

&, |=l0 -c O —| Ky % Ky || &

é, 0 00 e, k$ S G

{% x\ €
—C— k22 Kys (2.2.8)

*
€ _k31 \ —d - k33 ea
There are a number of c@es availa che controller coefficient k;;. and the choosing

of the matrix Q We such that the closed loop system (2.2.6) must have

all the eigenvalues wi tive real parts so that the error dynamics converges to zero as

time t tends to infing
For the specifi&:e of feedback gains;

\jr k, k, k;) (<11 0 0

Ky, Ky kyl|=| O -13 0

ie.,

Kyp Ko Ky 0 0 -40
V&IS particular choice, the error system (2.2.8) becomes,
& -3 0 0)(¢g
&= 0 -3 0]le (2.2.9
€, 0 0 -3)lg
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From equation (2.2.9), It can be seen that the error system (2.2.9) is a linear system of the
form, € =Me. Thus by Linear Control Theory, the system matrix M is Hurwitz [21], and so
all the eigenvalues of the system matrix M are negative (-3, -3, -3). Hence the above system
(2.2.9) is asymptotically stable, which implies that the two identical systems (2.2.2) and
(2.2.3) are synchronized asymptotically globally.

2.2 Numerical Simulations

Numerical simulations are furnished to validate the advantages and potency of our
proposed method. The parameters for new chaotic system [18] are taken as,

a=14, b = -1, ¢c = 16 d=43 and f(t) = 7, with initial conditions ar th,
l%e Ki, Kz

(x,(0), %1(0), 2,(0)) = (8, -12,13) and (x,(0), ,(0), 2,(0)) = (-20,-30, 45

and ks are chosen as (-11, -13, 40). .

p

150 B o Q\‘ w
_ ts
10 — o witho comfral \
< N XS

A 13 Ia
1 & Xy (Tdeical  spateer [12]]

- Y1
- ]
- y2 without  control

40 L n L
00 05 10 15 20
Fg 2: Time Series of yq & yo _ldentical systerrs 18 .
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3. Designing of No @&r Co t?&

Nonlinear Contro rithm,i ective approach for synchronization of two identical

chaotic systems. l@a matrix apunov exponents are required for its execution. These
characteristic@ he es@r from monotonous model manipulations to focus on the
I 'b

synchronizat oblem
Let us consider a d% onse (master-slave) systems configuration as,

®x+ g(x) ( Drive system ) (3.1.1)

and N\ k
O y=Ay+h(y)+(t) ( Response system ) (3.1.2)

v@ X=[X, X, X, Y =Yy Yireer ¥, JT €R™ are the corresponding state

vectors, A, A, € R™ are the system matrices, g,h:R" — R"are the nonlinear continuous

functions of the drive and response systems respectively and £(t) =[g,,&,,....&,]" € R™"
is an injected additive nonlinear controller to the controlled system.
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Ifg()=h() and/or A =A,, then x and y are the states of two identical (nearly
identical) chaotic systems.
Ifg()=h() and/or A #A,,, then x and y are the states of two nonidentical chaotic

systems.
The error dynamics for the synchronization of (3.1) and (3.2) can be described as,

et)=H(x, y,e)+e&(t) (3.1.3)

where H (X, y,€) the contains linear terms and nonlinear terms of the drive and response
systems, where synchronization errors are be defined as;

e (t) = y; (t) —x (t)
For the two ( identical or non-identical ) chaotic systemsv\u%)ut co ; e(t)=0),if

the initial conditions are (X4 (0), X,q (0), ..., X, (0) 24 (8); ¥, ( ynr (0)) , then the
trajectories of the two chaotic systems will quickly @ from\x er in all future time
and will become uncorrelated. Hence the role of g feedBback controlter for the synchronization
problem is to restrict the error dynamics converges te zero @nitial conditions,

. limle,t)] = I@) )&(iﬂk@ for all &(0) € R"
then the two systems (3.1.1) a.% are sal%be synchronized.

Theorem 1. The trajectori the two b\’ ic (|dent|callnon|dent|cal) systems for any initial

conditions(x1d (0, %@ X +(0),Y,,(0),..., Y, (O)) will synchronize

asymptotical@ Iywith®'tab nonlinear controller, £(t) =[gl,gz,....,gn]T eR™,

O

Proof: h@jefine a candidate Lyapunov Error Function as,

\& V(t)=e"Pe

ik
v&he matrix P =diag(p,, P,,....... , P,) is a positive definite matrix [14]. Further it is
assumed that all the variables and parameters of the systems are available and measureable.

It may be noticed that, V : R" — R" is a positive definite function by construction. It may
achieve the synchronization by selecting suitable non-linear controller ' £(t) ' to make

V(e) =—e'Ne to be a positive definite matrix (i.e., the matrix N is also a positive definite
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matrix), then by the Lyapunov Stability Theory [20], the states of both drive and response
systems will be asymptotically globally synchronized.

3.1 Identical Synchronization of a New 3D Chaotic System [18] via Nonlinear Active
Control

To synchronize chaotic system (2.2.1) using Nonlinear Control, let us consider the
drive-response systems configuration which is described as,

X =a(y,—x)+ f()y,z
y, =bx +cy, — %2 (Drive system) (3

o 0?‘
&\\ <&

X, =a(y, —x,)+ f(t)y,z, +&

Yy, =bx, +cy, —x,2, + ¢, O nse system) (3.2.1)

2, =X,Y,—dz, +¢&, \%
where x;, yi, z; € R" for i =1,2 are the rlab corresponding drive and response
systems, a,b,c and d are the ﬁ\oaramete e(t) =[g,t), &, (1), &M are the
non-linear controllers WhICh

desi @The error dynamics of (3.2.1) and (3.2.2)
are defined as,

\Q %§§ =Y, V& =2,-2
Thus from (3@(3 2. 1)éﬁr dynamics can be described as;

(ez _el) +f (t)(yzzz - ylzl) + &
Q= ce, +be, —X,2, + Xz, + ¢, (3.2.3)
@ &, =—de; + XY, = XY, + &

The aim (@ synchronization problem is to design a feedback controller
£ 1), &,(t), & (t)]" such as,

lim|let)|=0, forall e(0)eR".

t—o

The main objective of this section is to investigate and study the synchronization of two
identical chaotic systems (3.2.1) and (3.2.2) by designing such a feedback controller that the
error dynamics of the two identical chaotic systems convergence to the origin asymptotical
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globally with less control effort and sufficient transient speed. For these motivations, we
assume the following theorem.

Theorem 2. The trajectories of the two chaotic Systems (3.2.1) and (3.2.2) will achieve
asymptotically globally synchronization for initial conditions,

(%4(0), y,(0),2,(0)) # (x,(0), y,(0), z,(0)) with following control law:

& =-ae, — F(t)(y,z, - %12)
&, =—2Ce, —be, +X,2, - x 2,

& =XY = XY, V
Proof: Let us construct a Lyapunov error function candidate as; QE
V(e)=e"Pe Q\* &
05 0 O

where P= 0 05 O |[isa positivék@te func @
0 0 05 5&
Now the time derivative of th%unov em:\ tion is,

v'(e)_—aez\\;Q QD\\ 0 16 0 [e<D0
0 0 43
o~

14 0 O
Therefore, V (e) Qe andQ=| 0 16 O |,apositive definite matrix.

,l 0 0 43

He ed on Lyapunov Stability Theory [20], the origin of the error dynamics of two
i haotic systems converge to the origin asymptotically. Thus the two chaotic systems
(3. and (3.2.2) are asymptotically globally synchronized.
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"o 05 10 15 20 \,
Hg . 9: Derivative of Lyapunove Function _ldentical systems _18.. v
3.2 Numerical Results 0
Numerical simulations are presented to verify the eff s of tf%osed method.
The parameters for the new chaotic system [18] ar as a =-1,c=16
d =43and f(t) = 7, with initial conditions are taken 0), z40)) = (10,-10,-15)

and (x,(0), Y,(0), ,(0)) = (~25,-50, —40)
S e

4. Conclusion

In this paper, chaos synchronlzatl %he un aotlc system has been investigated
using Linear Active Control an ear tive ontrol Based on Lyapunov Stability
Theory and Ruth-Hurwitz Crﬂ%n suitabl %back controllers are designed to achieve
synchronization asymptotically globallys x een noticed that the two controllers have
exceptional transient perf@nces R are presented in graphical forms with time
history. .

The states of thehxe ified ystems synchronized are shown in Figures 1-3 and 5-
7 and the stabilit@ errors its are shown in Figure 4 and 8 while figure 9 shows
the derivativi Q yapun rror Function for identical chaotic systems.

Q es of designing Linear Active Controllers (2.2.5), we can see
re required to synchronize two identical chaotic systems. The
efficients may increase the transient speed but on the other hand,
occur which may create large vibrations within the system that in
turn can excite the system resulting in the synchronization being disregarded completely.
Hence the %ﬁcations of choosing the proper gain matrix using Linear Active Controller is
still unso

other hand, using the Nonlinear Control Technique, there is no need to find
&

However, Twapa'the co
that major control eff
choice of the high
internal resonan

exponent or to construct a gain matrix. These characteristics, freeing the designer

odel manipulations, and allowing him to focus on the synchronization problem would

be helpful in practical applications. Numerical simulations showed that using the Nonlinear

Control, the error dynamics converges to the equilibrium point smoothly with a faster rate
(Figure 4 and 8) than using Active Controller.

It is worthwhile mentioning that Nonlinear Control Techniques can under certain

conditions have the priority over the Active Control technique from both the stability and

analytically problems standpoint.
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