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 Abstract 

Path planning for uninhabited combat air vehicle (UCAV) is a class of complicated high 

dimensional optimization problem, which mainly centralizes on path planning considering the 

different kinds of constrains in the complex environment of war. In order to solve this 

problem, it is converted to a kind of constrained function optimization problem, and a wolf 

colony search algorithm based on the complex method is proposed, which combines the 

complex method with a wolf colony search algorithm, and it solves the problem of UCAV path 

planning successfully. The experiment results show that our proposed algorithm is feasible 

and effective to solve the problem of UCAV path planning. 

 

Keywords: Wolf colony search algorithm; complex method; UCAV path planning; constrained 
optimization 

 

1. Introduction 

Path planning is a new generation of low altitude penetration technology to achieve 

the purpose of terrain-following, terrain avoidance and flight with evading threat . While 

the path planning for UCAV is an important part in the mission planning system. The 

goal for path planning is to calculate the optimal or sub-optimal flight route for UCAV 

within the appropriate time so that the UCAV can break through the enemy threat 

environments and ensure the mission to conduct smoothly. UCAV path planning 

problem is a kind optimization problem which is related to the national defense and 

security, so a series of algorithms have been proposed to solve this complicated multi -

constrained optimization problem, such as differential evolution (EA) [1, 13], genetic 

algorithm (GA) [2], ant colony optimization algorithm (ACO) [3], particle swarm 

optimization (PSO) [4]
 
and artificial bee colony (ABC) [19]

 
and so on. However, these 

algorithms can hardly solve the contradiction between the global optimization and 

excessive information. 

The wolf colony algorithm (WCA) is proposed by C. G Yang et al., in 2007. The 

algorithm is a swarm intelligence algorithm to simulate the intelligent predatory 

behaviors of the wolf colony. The wolf is a very intelligent animal . They are not alone 

when they catch and feed on food but by teams composed of several wolves . The wolf 

colony sends a few wolves to search quarry by smell. When the searching wolves 

discover the quarry, they notify the position of the quarry to the other wolves by howl. 
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The other wolves get close to the quarry and besiege it. After they get the quarry, they 

distribute the food according to the strength of the wolf. At last, the weak wolves will 

be eliminated. WCA is proposed by this predatory behaviors of the wolf colony mixed 

with ABC successfully and applied in the path planning for the mobile robot. WCA has 

a good convergence rate, but solution accuracy is not high and easy to fall into local 

optimization. 

In this paper, on the basis of the basic wolves’ algorithm, we introduce a complex method 

strategy, and propose a wolf colony search algorithm based on the complex method (CWCA), 

and apply it in UCAV path planning problem successfully. Finally comparative experiments 

are conducted with ACO, BBO [15, 18], DE, ES [16], GA [8-9], PBIL [14], PSO, SGA [12], 

FA [5]
 
and MFA [6]

. 
Experiment simulation results show that CWCA is more effective to 

solve UCAV path planning problem than other algorithms. 

 

2. UCAV Path Planning Mathematical Model 
 

2.1 Problem description [20]  

Path planning for UCAV is formulated according to the practical situation and marks out 

the optimal flight route meeting certain performance requirements according to some 

performance indicators, and needs to consider many factors, such as the terrain, data, threat 

information, and time and so on. In order to solve UCAV path planning problem, this paper 

builds a function optimization problem, creates a mathematical model according to 

constraints, and finds the optimal flight routes satisfying the requirements. Shown as Figure 1, 

the actual problem is transformed into a D -dimensional function optimization problem by 

converting coordinates. 

     In Figure 1, we transform the original coordinate system into the new coordinate 

whose abscissa is the connection line from starting point to target point according to 

transform expressions shown in Equation (1) and (2), where, ),( yx  is a point in the 

original coordinate system, the point ),( yx   is a coordinate in the new rotating 

coordinate yxO  ,  is the rotation angle of the coordinate system. 
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Figure 1. Coordinates Transformation Relation 
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    After the above conversion, we divide the abscissa of new coordinate yxO  , into D   equal 

partitions, and then get a vertical line and the coordinate of ordinate Y   for the corresponding 

node, so we can obtain a two-dimensional coordinate points set formed by D  points. The 

abscissas of these points are divided into equal partitions, so it is easy to get their point 

coordinate. We can get a path from start point to end point through connecting these points 

together, so UCAV problem is transformed into a constrained function optimization problem 

to let the problem become simplistic. 

 

2.2 Performance indicator 

In the problem description, UCAV needs to consider many factors to complete the task; 

these factors are performance indicators of the problem including safety performance 

indicator and performance indicator. UCAV needs to avoid some threats and pitfalls to make 

UCAV’s threat minimum, and so does the fuel cost. We call it threat cost. 

Minimum of performance indicator for threat is calculated by Equation (3). 

            dlJ
L

tt  0
min                                                                                                      (3) 

Minimum of performance indicator for fuel is calculated by Equation (4). 

           dlJ
L

ff  0
min                                                                                                      (4) 

Then the total performance indicators for UCAV route are calculated by Equation (5). 

             ft JkkJJ )1(min                                                                                         (5) 

where JJJ ft ,, are the performance indicator of threat, fuel and the total performance 

indicators for UCAV route respectively; t  is the threat cost of each point on the route; 

f  is fuel cost of each point on the path; L is the path length; ]1,0[, kk  is balanced 

coefficient between safety performance and fuel performance, whose value is 

determined by the actual situation of the task UCAV performing, and depending on 

whether the aircraft is the emphasis on safety or on the time of task completion . The 

part is paid more attention; the share of the coefficient values will be greater. 

 

2.3 Threat cost 

When the UCAV is performing tasks, flying along the path jiL , , the total threat cost 

generated by tN  threats is calculated by Equation (6). 
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Figure 2. Calculation for Threat Cost 

 
To simplify the calculations, we fetch a number of points of each segment to calculate 

threat cost. Shown in Figure 2, each edge is divided into five equal partitions, and the threat 

cost on this edge is calculated by the five points. If the distance from the threat point to the 

edge is less than the threat radius, we can calculate the responding threat cost according to 

Equation (7). 
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where jiL ,   is the length of the sub-segment connecting node  i  and node J ; kd ,1,0 is 

the distance from the 1/10 point on the sub-segment 
jiL ,
  to the k -th threat; kt  is threat 

level of the k -th  threat. 

 

2.4 Fuel cost 

In the practical problem of UCAV path planning, fuel cost depends on path length. 

And the fuel cost of each point in path f  identically equal to 1, so Lf  , for 

simplicity, and fuel cost of each edge can be expressed by jiLf L
ij ,,  . 

 

3. CWCA 

In 1965,Box used simplex method [11] for solving unconstrained optimization 

problems to solve the constrained optimization problems, and the formed complex 

method for solving unconstrained optimization problems. In order to increase the 

optimization capability of WCA, the most strong wolves were selected to build a 

complex, the complex centroid was made use of to produce a new point by reflecting, 

extension and shrinking, and the new point replaced bad points to continuously close to 

the optimal point. This algorithm is called CWCA. 

 

3.1 Initialize the wolf colony 

At this phase, the purpose is to let every wolf uniformly distribute in the domain of 

definition of the objective function. The scale of the wolf colony is  N , the search space 

dimension is D , the position of the i -th wolf is 
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  )1,1(   ,,...,,...,1 DdNixxxX iDidii   

     )( minmaxmin xxrandxxid                                                                                    (8) 

where rand  is a random number uniformly distributed in the range ]1,0[ , maxx  and minx  

are upper and lower limits of search space. 

 

3.2 Search the quarry 

In order to search the quarry, the optimal (that the fitness value is best) q  wolves are 

selected as the searching wolf, q wolves are searching in h  directions around themselves, the 

position of wolf is ),...,,...,( 1 iDidii pppP . If the current position of the searching wolf is 0P , 

1P  is produced around the current position 0P .If 1P  is better than 0P , then 1P  is set as the 

current position, and continue to search. When the searching number is larger than dhmax  

or the current position is better than the searching position, the searching behavior ends. 

 In the  h  positions produced around the searching wolf, )1( hjy jd  is the position of 

j -th point of the d -th dimension, it can be calculated as follows: 

 

    steparandxxy
idjd

*                                                                                                 (9) 

 

Where, rand  is a random number uniformly distributed in the region ]1,1[ , idxx  is the 

position of the i -th searching wolf of the d -th dimension.  stepa  is the searching step. 

 

3.3 Besiege the quarry  

Suppose that the position of the quarry is the position of the searching wolf. When the 

searching wolves discover the quarry, they notify the position of the quarry to the other 

wolves by how. The other wolves get close to the quarry and besiege it. Then the updated 

position idz  of the i -th wolf of the d -th dimension is: 

           )(**
idldidid

xxstepbrandxz                                                                        (10) 

Where  idx  is the current position of the i -th wolf of the d -th dimension, rand is a random 

number uniformly distributed in the region ]1,0[ , stepb  is movement step, idx  is the position 

of the d -th dimension of the quarry. 

 
3.4 Lead the wolf colony to search the quarry based on complex method 

In the wolf colony, we select u strong wolves to build a complex, suppose the position of 

the u -th wolf is sorted as ),...,,( 21 uZZZ by fitness values. The complex steps are as follows: 

Step1: calculate the complex centroid cZ  

              







1
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1 u

i
ic Z

u
Z                                                                                                      (11) 
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Step2: calculate the reflection point rZ  

         )( uccr ZZZZ                                                                                                    (12) 

where is reflection coefficient, generally taken 3.1 . If rZ  is better than uZ , then 

rZ will replace uZ ; otherwise, turn to Step4. 

Step3: extended operation 

        )( crre ZZZZ                                                                                                     (13) 

Where   is extension coefficient, taken 8.0~5.0 . If  eZ  is better than uZ , then eZ will 

replace uZ ; otherwise, turn to Step4. 

Step4: shrinked operation 

         )( ucus ZZZZ                                                                                                     (14) 

Where  is shrinkage coefficient, taken 7.0 . If  sZ  is better than uZ , then sZ will 

replace uZ ; otherwise, turn to Step1. 

A complex is constructed by selecting the strong wolves and conducts the wolf colony to 

search quarry so that the optimization capability of the algorithm is improved and uneasy into 

local optimization. 
 

 

Figure 3. Complex Method 
 

Figure 3 is an actual model of complex, the model is built by 4321 ,,, ZZZZ , and the centroid 

cZ is found by the four points, and then cZ  maps out reflection point rZ  and shrinkage point sZ  

of 5Z . And the rZ  that meets the conditions can get its extension point eZ . This paper applies 

the strategy to WCA to search the optimal solution. Every point is the position of the wolf in the 

strategy. 

 

3.5 Update the wolf colony 

The assignment rule of the wolf colony is to assign the food to the strong wolf at first and 

then to the weak one. The rule makes that the strong wolf gets enough food while the weak 

one gets little so that the weak wolf will starve to death. But the rule can ensure that the 

strong wolves prey next time, so the adapt ability of the wolf colony can be enhanced. By 

simulating the principle of survival of the fittest, the paper removes the worst m  artificial 

wolves in the colony and generates m  wolves randomly. Therefore, the algorithm can avoid 

the local optimum and the wolf colony becomes various. 
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3.6 The pseudo code of CWCA  

Five iterations are processed to build complex in the experiment, in order to explain the 

process of CWCA, the pseudo code of CWCA is given as follows: 

1: BEGIN 

2:   Initialize: initialize the wolf colony randomly; 

3:   While (termination condition is not satisfied) 

4:   Select q  searching wolves by calculating fitness value )(xf ; 

5:  The position of the strongest wolf is as the position of the quarry, other wolves 

              besiege it; 

6:   Select u  better wolves after the colony sorted; 

7:  0Number  ; 

8    While ( 5Number  ) 

9:   The complex is built by the position of u  wolves, the centroid of complex are 

calculated; 

10:  





1

11

1 u

i

ic x
u

x ; 

11:   Calculate reflection point, )( uccr xxxx   ； 

12:   If )( rxf  is better than )( uxf  

13:  
ru xx  ； 

14:   Extended operation, )( crre xxxx   ; 

15:   If )( exf  is better than )( uxf  

16:  
eu xx   

17:   Else 

18:  Shrinked operation, )( ucus xxxx    

19:  If )( sxf  is better than )( uxf  

20: 
su xx   

21:  End If 

22:  End If 

23:  Else 

24:  Shrinked operation, )( ucus xxxx   ； 

25:  If )( sxf is better than )( uxf  

26: 
su xx   

27:  End If 

28:  End If 

29:  End While 

30:  Assign the food and update the wolf colony, remove the worst m wolves and 

generate m wolves randomly; 

31:  End While 

32:  Output the optimal individuals and fitness value of the populations; 

33:  End  
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4. CWCA for Solving UCAV Path Planning 

CWCA can adapt to the demand for UCAV path planning, and has a good search 

capability and improves the accuracy of the solution. Then we introduce the process of 

CWCA to apply in UCAV path planning. 

 

4.1 The steps of UCAV path planning based on CWCA 

Step1: Initialization. Initial the wolves’ population size n , maximum number of 

iterations tmax , searching step stepa , besieging step stepb  and other parameters. 

Step2: Transform coordinate system. A new coordinate is built in the original 

coordinate system. The abscissa is divided into equal D  partitions, and every aliquot 

ordinate is become the position of every dimension of wolves so the position of the i -th 

wolf is ).,...,( 2,1 iDii xxx  

Step3: Calculate the fitness value. Threat cost of every wolf is calculated by 

equation (5). 

Step4: Searching the quarry. q wolves are selected, namely the threat cost is optimal, 

searching the quarry according to equation (9). 

Step5: Besiege the quarry, the position of the wolf colony is updated by equation (10). 

Step6: Build a complex. Select u  wolves which have better threat cost to build a 

complex by 3.4.  

Step7: Update the wolf colony. The paper removes the worst m wolves in the colony and 

generates m  wolves randomly. 

Step8: After completing an iteration, the algorithm enters the next iteration, and 

determines whether it meets the conditions or not. If it meets the conditions, it exits the loop, 

and records the position of wolves and indexes; otherwise go to Step2. 

Step9: Inversely transform the coordinates. Transform the new coordinates into the 

original coordinates, and record results. 
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4.2 The flow chart of UCAV path planning based on CWCA 

 

 

     Figure 4. The Flow Chart of CWCA Solving UCAV Path Planning Problem 
 

5. Experiment Simulations 

This work use the emulator which is written by MATLAB 2010b and it is performed on the 

PC with Windows 7 OS, AMD athlon 640 Quad-core processors and 3GB memory. 

In [10] an example is simulated. UCAV flight starts at the point )10,10(   and end at 

point )100,55( . There are five threats in this example, and they have their own threat 

grade and threat radius. Among, we set balanced coefficient between safety 

performance and fuel performance 5.0k . Information about known threats is shown 

Table 1. 

 

Table 1. Information about known threats 

Location [45,50] [12,40] [32,68] [36,26] [58,80] 

Threat radius 10 10 8 12 9 

Threat grade 2 10 1 2 3 
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5.1 Influence of control parameters 

The choice of the control parameters has a great impact on different problems, the 

choice of besieging step stepb , extension coefficient  , and searching step stepa  have 

different influences on route planning. 

Order ,20D , iterations ,200max t , population size 30n , the number of 

searching wolves 5q , searching direction 4h , the maximum number of searching 

15max dh , searching step 5.0stepa , the number of worst wolves 5m . Each 

algorithm runs 100 times independently, best and means normalized optimization 

results on UCAV path planning problem are shown in Table 2. In order to represent the 

total performance value conveniently in the table, the threat cost all subtract 50 from 

the actual value, i.e., if a value is 0.5762 in the following table, then its corresponding 

value 50.5762 is its true value. 

From the Table 2, when besieging step is 1.0stepb . Regardless of extension 

coefficient   changing, the result exist only a little difference, here set 8.0 , because 

its mean value is the smallest. 

 

Table 2. Best and mean normalized optimization results on UCAV path 

planning problem on different stepb and   

Stepb    Optimal Mean 

0.1 0.5 0.4191 0.5136 

0.3 0.5 0.4594 0.6241 

0.5 0.5 0.4467 0.7402 

0.1 0.65 0.4151 0.5044 

0.3 0.65 0.4558 0.6297 

0.5 0.65 0.4666 0.8785 

0.1 0.8 0.4173 0.5038 

0.3 0.8 0.4240 0.5788 

0.5 0.8 0.4367 0.6328 

 

Before besieging the quarry, the wolf colony searches the quarry, so the convergence 

speed of the algorithm is improved. But if the convergence speed is too fast, the 

algorithm is easy to fall into local optimization. So we simulate with different searching 

step stepa to find out the appropriate search step by comparing the total performance. 

From Table 2, we can know that the appropriate value for CWCA 

is 8.0,1.0  stepb . Best and mean normalized optimization results on UCAV path 

planning problem on different searching step are shown in Table 3. 
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Table 3. Best and mean normalized optimization results on UCAV path 
planning problem on different stepa  

Stepa  Optimal Mean 

0.05 0.3895 0.4344 

0.08 0.3901 0.4344 

0.1 0.3926 0.4468 

0.3 0.4005 0.4550 

0.5 0.4173 0.5038 

1.0 0.4276 0.6208 

1.5 0.4517 0.6052 

 

From Table 3, when the searching step is ,05.0stepa  the value is optimal, but the 

running time is too long, and convergence speed is too slow. While the searching step  

meets an equation 1.0stepa , the result is worse than ,05.0stepa , so set 

,08.0stepa  as the most appropriate, regardless of the convergence speed, the running 

time, and the accuracy of the solution are appropriate. 

 

5.2 Effect of Dimensionality D  

In order to investigate the influence of the dimension on the performance of CWCA, 

this paper sets .40,35,30,25,20,15,10,5d Eight different dimensions run 100 times 

independently, and compare with other tens of algorithm. Table 4, Table 5 and Table 6 

show the best minima, the worst minima and the mean minima found by each algorithm 

respectively. In the simulations, we use the same population size and the maximum 

number of iterations ( )200max,30  tn . 

From Table 4 we can see that CWCA is better than other algorithms no matter how large 

D is. For example, 10D , the result got by CWCA is 0.6518, but the solution of other 

algorithms is more than 1, the accuracy of CWCA is higher than several other algorithms. 

 

Table 4. Best normalized optimization results on UCAV path planning problem 

on different D  

D Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

5 11.3724 10.3302 4.3568 9.5895 4.3585 5.2471 4.3573 9.7627 5.1667 5.6538 3.3791 

10 10.2281 2.9472 1.3950 7.4272 1.3990 1.6068 1.3966 33.1123 2.2073 1.5489 0.6518 

15 8.5298 2.5569 0.6114 8.2547 0.6172 0.8711 0.6115 57.2225 2.0969 0.8071 0.4230 

20 10.4451 4.7230 0.5102 10.2329 0.4626 0.8252 0.4552 80.1521 2.4643 0.8460 0.3901 

25 11.5490 5.5286 0.5512 13.3685 0.4908 1.2421 0.4571 109.7418 3.7378 1.2394 0.3881 

30 13.2299 6.6071 0.8987 15.7251 0.6828 1.9218 0.5160 180.1498 3.2993 1.6165 0.3913 

35 16.9599 13.0206 2.5372 16.7445 1.0829 2.3109 0.4709 220.3331 5.5025 1.6326 0.3793 

40 19.7946 13.5504 4.5490 18.2314 1.5225 2.2084 0.4506 340.6174 5.7367 2.6180 0.3638 

 

Table 5 shows the worst normalized optimization results on different D . From it, we can 

see that PBIL gets the worst results compared with other algorithms, its results increase with 

D  rising. When D  increases from 25 to 30, the results increase in a nearly four-fold. While 

the result obtained by CWCA decreases by 0.3. With the rise of the dimension, results 

obtained by most of algorithms are in a rising trend, but some parts of algorithms decline 
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when D  increases from 20 to35. The worst result of CWCA is better than several other 

algorithms. 
 

Table 5. Worst normalized optimization results on UCAV path planning 

problem on different D  

D Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

5 13.3199 121.5724 12.2083 62.2665 15.7395 11.6013 12.4186 22.2463 16.0713 11.2006 3.5307 

10 18.1911 26.8270 6.7358 73.4605 6.7095 10.1096 3.7858 69.2468 18.6221 6.1652 0.7092 

15 11.0084 40.3705 12.5808 53.8683 44.2763 7.4472 3.8319 139.2557 37.3201 11.7962 0.4479 

20 17.1887 28.2063 14.5783 31.4587 28.9142 9.1795 2.0279 287.3709 28.1596 18.9518 0.5511 

25 12.0733 30.3315 19.6664 33.9148 16.4518 10.3977 3.7043 649.6845 28.1399 15.6967 0.5221 

30 14.7139 28.5885 24.1279 41.3024 15.9757 12.7183 8.3364 2364.08 43.6950 14.7140 0.5400 

35 18.7271 43.8512 34.4447 38.7646 33.8871 24.4790 5.8830 6312.96 32.8328 17.6058 0.5540 

40 27.0641 40.7087 43.2604 46.4224 36.6626 22.0688 7.7236 7053.50 34.7302 17.8669 0.6821 

 

Table 6 is the mean normalized optimization results on different D , when CWCA sets 

different D , the result of CWCA is better than other algorithms. For instance, when D  meets 

the equation 40D , the mean of CWCA is 0.5099, while the mean of ACO is 24.5754. It 

can be seen clearly that CWCA is better than ACO, and the results of other algorithms are 

worse than CWCA. 

 

Table 6. Mean normalized optimization results on UCAV path planning problem 

on different D  

D Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

5 11.5151 22.7318 8.5962 30.7228 8.7499 10.4747 9.1673 16.1391 9.9061 
10.501

3 
3.4072 

10 11.9485 7.9650 3.1045 26.2868 2.1801 2.5422 1.5740 51.4355 7.0411 2.2790 0.6819 

15 10.2554 9.5257 2.2783 21.8618 2.8217 2.1880 0.8967 78.2477 8.3395 1.8910 0.4344 

20 16.2205 11.8761 2.7221 20.1892 3.7327 3.0900 0.7004 135.4365 8.2483 3.1670 0.4344 

25 11.5674 14.7800 4.4081 22.7794 3.9039 3.7814 0.9987 207.7272 10.2627 4.1567 0.4458 

30 13.9593 17.8746 9.9884 24.7757 4.9621 5.0079 1.3568 345.5447 12.3847 4.5211 0.4339 

35 18.3108 21.5615 17.9027 26.5217 5.9955 5.9599 1.6009 634.6550 14.1354 5.8260 0.4379 

40 24.5754 24.8531 27.6201 30.2595 7.8558 7.4927 2.1978 1119.72 14.8845 7.1100 0.5099 

 

From Figure 4, Figure 5, and Figure 6, it can be seen that the optimal value, the worst 

value and the average value obtained by CWCA are better than other algorithms. Though 

with the increase of dimension, the results of CWCA also increase, yet in some cases, it is in 

a downward trend and the accuracy of the solution is improved indeed. With the increasing of 

dimensions, the complexity and running time of the algorithm grow, and the accuracy is not 

improved too much. In summary from these tables above, setting  20D  or 25 is more 

appropriate, the accuracy of the two solutions have some difference. Considering the 

complexity of the algorithm, if 20D , its complexity is )(no , that when we set 25D , its 

complexity is )(25.1 nO , so we set 20D . 

Figures 5~12 show that When D  is set different values; we can get the position of fight at 

every moment. In Figure 5, D =5, it can be seen that the fight route is consist of seven points, 

and after removing the start point and the end point, the route is just matched up to D =5. We 

can see the flight route and the threat center form the figure. We can also see how the airplane 
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escapes from the threat center to make the threat cost become smallest. UCAV path planning 

is to find an appropriate path which the threat is smallest. 
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Figure 5. D=5 the result of Path Planning    Figure 6. D=10 the result of Path Planning 
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Figure 7. D=15 the result of Path Planning      Figure 8. D=20 the result of Path Planning 
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Figure 9. D=25 the result of Path Planning    Figure 10. D=30 the result of Path Planning 
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Figure 11. D=35 the result of Path Planning  Figure 12. D=40 the result of Path Planning 
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5.3 Effect of maximum iterations tmax  

The choice of the maximum number of iterations is of vital importance to solve the 

algorithm. The choice of the maximum number of iterations has a directly effect on the 

solution accuracy of different problems, so we set the maximum number of iterations as 50, 

100, 150, 200, 250 respectively, and each algorithm runs 100 times independently 

( 20,30  dN ). Table 7, Table 8 and Table 9 are the best, worst and mean results 

respectively on different maximum number of iterations for every algorithm. 
 

Table 7. Best normalized optimization results on UCAV path planning 
problem on different maxt 

maxt Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

50 9.6276 4.8658 3.6814 7.7983 1.4713 1.6118 0.7030 66.0274 3.6012 1.7041 0.4232 

100 11.5242 4.2616 0.9439 40.2329 0.6577 4.5294 0.5382 48.9269 2.3357 1.3520 0.3986 

150 5.6381 5.6105 0.7015 9.8027 0.5459 1.2042 0.4857 47.4630 2.6165 0.9498 0.3956 

200 11.2445 2.9424 0.5188 10.7960 0.4931 1.0695 0.4661 18.6980 2.3469 0.8392 0.3901 

250 9.7607 3.5209 0.4829 10.2540 0.4753 0.8781 0.4508 20.8802 2.9229 0.7839 0.3878 

 

Table 8. Worst normalized optimization results on UCAV path planning 
problem on different maxt 

maxt Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

50 18.7099 28.6806 31.3392 33.1927 28.0425 10.9773 4.6726 312.9370 33.1539 17.6318 0.6800 

100 17.7404 28.2427 19.4058 33.1979 29.3022 11.1678 4.5749 373.8334 27.8806 11.6446 0.5710 

150 17.4223 40.1797 14.5560 35.7277 27.8480 17.5637 4.9631 210.6140 28.3542 15.2145 0.5691 

200 17.0679 32.1981 16.6736 52.4090 26.5768 11.9124 9.1502 183.9630 28.2524 6.7380 0.5511 

250 17.0679 27.6544 8.5122 46.0828 26.3005 7.4338 3.6783 169.1446 29.6341 16.2672 0.5714 

 

Table 9. Mean normalized optimization results on UCAV path planning problem 
on different maxt  

maxt Algorithm 

ACO BBO DE ES FA GA MFA PBIL PSO SGA CWCA 

50 16.2648 14.2076 13.2645 20.3152 6.2034 4.1142 1.9576 151.9844 9.9671 5.2389 0.5407 

100 16.3500 13.4074 7.3195 20.4387 4.3526 3.7731 1.3048 113.6434 8.9057 3.7475 0.4713 

150 16.1722 12.6978 3.5255 19.9485 4.1809 3.4671 0.9933 90.8722 8.5509 3.1680 0.4563 

200 16.2154 11.8556 2.3975 20.7501 2.2791 2.9711 0.8984 74.1964 8.9892 2.3792 0.4344 

250 16.0444 11.9654 2.4849 20.1739 2.2064 2.6605 0.7025 65.4942 9.2143 2.5929 0.4347 

 

From Table 7, Table 8, and Table 9, it can be seen that the CWCA can get better results 

than other algorithms. With the rising of the number of iterations, the accuracy of the solution 

of every algorithm grows high. But the complexity of the algorithm is getting higher as the 

number of iterations increasing, and the accuracy of the algorithm is not improved greatly. 

Such as in Table 7, when the maximum number of iterations is 250, the solution of MFA 

increases about 0.01 compared in 200 iterations, while the algorithm iterates more for 50 

times. But the accuracy of the solution of CWCA has little change, the maximum number of 

iterations is set 200, and CWCA is better than other algorithms when solving the UCAV path 

planning problem. 
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Figure. 13 Convergence curve of maxt=50    Figure. 14 Convergence curve of maxt=100 
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Figure. 15 Convergence curve of maxt=150  Figure. 16 Convergence curve of maxt=200 
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Figure. 17 Convergence curve of maxt=250 
 

Figure 13 to Figure 17 is convergence curve figures of CWCA on different maximum 

number of iterations. From the figures, we can see that the convergence speed of CWCA is 

fast, and it is not easy to fall into local optimization. Such as Figure 15, it is converged from 

20-th iteration to 80-th iteration; the algorithm jump out of local optimization at last, the 

accuracy of the solution is improved. It is uneasy to precocious and is effective for solving 

UCAV path planning problem. 
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6. Conclusions 

For UCAV path planning problem, this paper proposes a wolf colony search 

algorithm based on the complex method, which let WCA mix with the complex method 

and the complex method as the wolf colony’s leading strategy. The UCAV can find the 

safe path by connecting the chosen nodes while avoiding the threat areas and costing 

minimum fuel. Compared with other algorithms, experiment results show that CWCA is 

a more feasible and effective way in UCAV path planning. 
 

Acknowledgements  

This work is supported by National Science Foundation of China under Grant No. 61165015. Key 

Project of Guangxi Science Foundation under Grant No. 2012GXNSFDA053028, Key Project of 

Guangxi High School Science Foundation under Grant No. 20121ZD008, and the Innovation Project of 

Guangxi Graduate Education under Grant No. YCSZ2012063. 
 

References 
 
[1] R. Storn and K. Price, “Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over 

Continuous Space”, Journal of Global Optimization, vol. 11, (1997), pp. 341-359. 

[2] J. H. Holland, “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, 

Mich, USA, (1975). 

[3] W. Ye, D. W. Ma and H. D. Fan, “Algorithm for Low Altitude Penetration Aircraft Path Planning with 

Improved Ant Colony Algorithm”, Chinese Journal of Aeronautics, vol. 18, no. 4, (2005), pp. 304-309. 

[4] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Neural Network, Proceedings, IEEE 

International Conference on IEEE, vol. 4, (1995), pp. 1942-1948. 

[5]  X. S. Yang, “Nature-Inspired Metaheuristic Algorithms”, Luniver Press, Frome, (2008). 

[6]  G. Wang, L. Guo, H. Duan, L. Liu and H. Wang, “A Modified Firefly Algorithm for UCAV Path Planning”, 

International Journal of Hybird information Technology, vol. 5, no. 3, (2012), pp. 123-143. 

[7] C. Yang, X. Tu and J. Chen, “Algorithm of Marriage in Honey Bees Optimization Based on the Wolf Pack 

Search”, International Conference on Intelligent Pervasive Computing, (2007), pp. 462-467. 

[8]  Y. V. Pehlivanoglu, “A new vibrational genetic algorithm enhanced with a Voronoi Diagram for Path 

Planning of Autonomous UAV”,  Aerospace Science and Technology, vol. 16, no. 1, (2012), pp.47-55. 

[9]  J. L. Yan, “Evolutionary Algorithm Based Route Planer for Unmanned Air Vehicles”, A Thesis in Control        

Science and Engineering, Nanjing University of Aeronautics and Astronautics Press, (2008). 

[10]  H. B. Duan, X. Y. Zhang and C. F. Xu, “Bio-Inspired Computing”, Science Press, Beijing, China, (2011). 

[11]  M. J. Box, “A New Method of Constrained Optimization and A Comparison with Other Method”, Computer 

Journal, vol. 8, no. 1, (1965), pp. 42-52. 

[12]  W. Khatib and P. J. Fleming, “The stud GA: A Mini Revolution? Parallel Problem Solving from Nature-

PPSN V”, Springer Berlin Heidelberg, (1998), pp. 683-691. 

[13]  Y. Zhou, Q. Lou, H. Chen and J. Wu, “Using Differential Evolution Invasive Weed Optimization for Solving 

Circle Packing Problem”, Advanced Science Letters, vol. 19, no. 6, (2013), pp. 1807-1810. 

[14]  S. Baluja, “Population-based Incremental Learning”, A Method for Integrating Genetic Search Based 

Function Optimization and Competitive Learning, Carnegie-Mellon Univ Pittsburgh Pa Dept. of Computer 

Science, (1994). 

[15] D. Simon, “Biogeography-based Optimization”, Evolutionary Computation, IEEE Transactions on, vol. 12,      

          no. 6, (2008), pp. 702-713. 

[16] E. Mayr, “Behavior Programs and Evolutionary Strategies”, Natural Selection Sometimes Favors a 

Genetically "closed" Behavior Program, Sometimes An "open" one, American Scientist, vol. 62, no. 6, (1974), 

pp. 650-659. 

[17]  C. Liu, X. Yan, C. Liu and H. Wu, “The Wolf Colony Algorithm and Its Application”, Chinese Journal of 

Electronics, vol. 20, no. 2, (2011), pp. 212-216. 

[18]  D. Simon, “The Matlab Code of Biogeography-based Optimization”, 

http://academic.csuohio.edu/simond/bbo/, (2012). 

[19]  C. Xu, H. Duan and F. Liu, “Chaotic Artificial Bee Colony Approach to Uninhabited Combat Air Vehicle 

(UCAV) Path Planning”, Aerospace Science and Technology, vol. 14, no. 8, (2010), pp. 535-541. 

[20]  H. Duan, X. Zhang and C. Xu, “Bio-inspired Computing”, Science Press, (2011), pp. 121-126. 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.1 (2014) 

 

 

Copyright ⓒ 2013 SERSC   199 
 

Authors 

 
     Qiang Zhou M.S. He is currently research interest is in computation intelligence, swarm 

intelligence algorithm.  

 

     Yongquan Zhou, Ph.D & Prof. He received the MS degree in computer science 

from Lanzhou University, Lanzhou, China, in 1993 and the Ph.D degree in computation 

intelligence from the Xiandian University, Xi’an, China, in 2006. He is currently a 

professor in Guangxi University for Nationalities. His research interests include 

computation intelligence, neural networks, and intelligence information processing et al. 

He has published 1 book, and more than 150 research papers in journals. 

 

     Xin Chen M.S. He is currently research interest is in computation intelligence, swarm 

intelligence algorithm. 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Hybrid Information Technology 

Vol.7, No.1 (2014) 

 

 

200   Copyright ⓒ 2014 SERSC 
 

 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.




