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Abstract % .
Path planning for uninhabited combat air vehicle (U \i a class mplicated high

dimensional optimization problem, which mainly ce n path p g considering the
different kinds of constrains in the complex envi nt of order to solve this

problem, it is converted to a kind of constrained,function optimization problem, and a wolf
colony search algorithm based on the comp thod ﬁ@)osed, which combines the
complex method with a wolf colony searchral t m, and it sdlves the problem of UCAV path
planning successfully. The experiment r; shovy r proposed algorithm is feasible
and effective to solve the problem of ath p :

Keywords: Wolf colony seam@@hm; € method; UCAV path planning; constrained
optimization

1. Introduction . @ 5\\9

Path planning 'ka gerfe f low altitude penetration technology to achieve
the purpose ofste -following,%€rrain avoidance and flight with evading threat. While
the path pIa or U is an important part in the mission planning system. The
goal for path ptanning i calculate the optimal or sub-optimal flight route for UCAV
e so that the UCAV can break through the enemy threat
environments a re the mission to conduct smoothly. UCAV path planning
problem is a Ki ptimization problem which is related to the national defense and
security, se.d series of algorithms have been proposed to solve this complicated multi-
constrain timization problem, such as differential evolution (EA) [1, 13], genetic
algori A) [2], ant colony optimization algorithm (ACO) [3], particle swarm
opti on (PSO) [4] and artificial bee colony (ABC) [19] and so on. However, these
a%ms can hardly solve the contradiction between the global optimization and
excessive information.

The wolf colony algorithm (WCA) is proposed by C. G Yang et al., in 2007. The
algorithm is a swarm intelligence algorithm to simulate the intelligent predatory
behaviors of the wolf colony. The wolf is a very intelligent animal. They are not alone
when they catch and feed on food but by teams composed of several wolves. The wolf
colony sends a few wolves to search quarry by smell. When the searching wolves
discover the quarry, they notify the position of the quarry to the other wolves by howl.
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The other wolves get close to the quarry and besiege it. After they get the quarry, they
distribute the food according to the strength of the wolf. At last, the weak wolves will
be eliminated. WCA is proposed by this predatory behaviors of the wolf colony mixed
with ABC successfully and applied in the path planning for the mobile robot. WCA has
a good convergence rate, but solution accuracy is not high and easy to fall into local
optimization.

In this paper, on the basis of the basic wolves’ algorithm, we introduce a complex method
strategy, and propose a wolf colony search algorithm based on the complex method (CWCA),
and apply it in UCAV path planning problem successfully. Finally comparative experiments
are conducted with ACO, BBO [15, 18], DE, ES [16], GA [8-9], PBIL [14], PSO, SGA [12],
FA [5] and MFA [6] Experiment simulation results show that CWCA is more effective to
solve UCAV path planning problem than other algorithms.

2. UCAYV Path Planning Mathematical Model QQ

2.1 Problem description [20] \ﬁ %

Path planning for UCAV is formulated according to C mlW n and marks out
the optimal flight route meeting certain perfor qU| rg‘tz ccording to some
performance indicators, and needs to consider man gtors, su& e terrain, data, threat

information, and time and so on. In order to s CAVp lanning problem, this paper

builds a function optimization problem,

M s am tlcal model according to
constraints, and finds the optimal flight ro isfyin requirements. Shown as Figure 1,
the actual problem is transformed int é-dlm unction optimization problem by

converting coordinates.
In Figure 1, we transform glnal rd| ate system into the new coordinate
eEhX

whose abscissa is the conn line fro rtmg point to target point according to
transform expressions sh in Eq ) and (2), where, (X,Yy) is a point in the
original coordinate, SQQ the poi X',y") is a coordinate in the new rotating
coordinate Ole , tat@ of the coordinate system.

f=a y2 (1)

l cos 0 ' @)

'y

X

Figure 1. Coordinates Transformation Relation
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After the above conversion, we divide the abscissa of new coordinate Ox,y,, into D equal

partitions, and then get a vertical line and the coordinate of ordinate Y' for the corresponding
node, so we can obtain a two-dimensional coordinate points set formed by D points. The
abscissas of these points are divided into equal partitions, so it is easy to get their point
coordinate. We can get a path from start point to end point through connecting these points
together, so UCAV problem is transformed into a constrained function optimization problem
to let the problem become simplistic.

2.2 Performance indicator

In the problem description, UCAV needs to consider many factors to complete
these factors are performance indicators of the problem including safet
indicator and performance indicator. UCAV needs to avoid some threats and{pi
UCAV’s threat minimum, and so does the fuel cost. We ca i%at cos

b

Minimum of performance indicator for threat is calcufa qu@%
. L
min J, :I w,dl O \\/ 3)
Minimum of performance indicator for fuel@lculated %quatlon (4).
min J, _[ o.dl

Then the total performance mdma@r ucC \u@are calculated by Equation (5).

min J =kJ, + (1—k) @ (5)
where J,,J;,J are the perform }@f threat, fuel and the total performance

(4)

indicators for UCAV specti e is the threat cost of each point on the route;
w; is fuel cost of\{bh oin path Lis the path length; k,k €[0] is balanced
coefficient n* safety., pefformance and fuel performance, whose value is
determined e act tion of the task UCAV performing, and depending on
whether the aircraft i mpha3|s on safety or on the time of task completion. The
part is paid more n; the share of the coefficient values will be greater.

2.3 Threatcbst

Wh§®UCAV is performing tasks, flying along the path L; ;, the total threat cost

g@

U_I"Z i (6)

(x— Xk) +(y yk)]

by N, threats is calculated by Equation (6).
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Threat Point k AN

Threat Point k+l

Figure 2. Calculation for Threat Cost

To simplify the calculations, we fetch a number of points of each segment to We
threat cost. Shown in Figure 2, each edge is divided into five equal partitions, an reat
cost on this edge is calculated by the five points. If the distance from the t nt to the
edge is less than the threat radius, we can calculate the respo dmg thre ording to
Equation (7). %

\
e L, 90

= ” t + +
5 &k (da‘lk 0., déw dsz

()

the distance from the 1/10 point on to the k -th threat; t, is threat

level of the k -th threat. AQ
<
\EJ

2.4 Fuel cost

In the practical pro&( ucC V’Q)Ianning, fuel cost depends on path length.

And the fuel cos poipf™id path @, identically equal to 1, so w; =L, for

simplicity, b@ost of each'edge can be expressed by @, L = =L ;

where L; ; is the length of the sub- seg nn% e i and node J; dg,is
—seg

problems to solye“the constrained optimization problems, and the formed complex
method fo%l g unconstrained optimization problems. In order to increase the
optlmlza apability of WCA, the most strong wolves were selected to build a
comp m complex centroid was made use of to produce a new point by reflecting,
@ and shrinking, and the new point replaced bad points to continuously close to

3. CWCA
In 1965,Box'$@.mplex method [11] for solving unconstrained optimization
%

imal point. This algorithm is called CWCA.

3.1 Initialize the wolf colony

At this phase, the purpose is to let every wolf uniformly distribute in the domain of
definition of the objective function. The scale of the wolf colony is N, the search space
dimension is D, the position of the i-th wolf is
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Xi :(Xilt""xid ,...,XiD), (1S i< N,lSd < D)

Xig = Xiin T rand * (Xmax - Xmin) (8)
where rand is a random number uniformly distributed in the range [0,1], x
are upper and lower limits of search space.

and X,

max

3.2 Search the quarry

In order to search the quarry, the optimal (that the fitness value is best) q wolves are
selected as the searching wolf, g wolves are searching in h directions around themselves, the

position of wolf is P;(p,y,..., Pigs--» Pip) - If the current position of the searching wolf is P :

P, is produced around the current position P,.If P, is better than P, then P, i
current position, and continue to search. When the searching number is Iar Qmax dh

or the current position is better than the searching position, the earchm
In the h positions produced around the searchlng I 1< j he position of
j -th point of the d -th dimension, it can be calculat
Yjg =XXjq +rand *stepa OQ \% 9)
Where, rand is a random number u ?1 in the region[-11], xx,, is the
position of the i -th searching wolf d\ th dm%%on stepa is the searching step.
3.3 Besiege the quarry

searching wolves d e quarr they notify the position of the quarry to the other
wolves by how. T Iose to the quarry and besiege it. Then the updated

position z;, c@ @ -th dimension is:
Zig =%ig TT zéepb * (%9~ %) (10)

Where X, is th@ position of the i-th wolf of the d -th dimension, rand is a random
r

Suppose that the pos:t f the qu is the position of the searching wolf. When the

number uniform ibuted in the region [0,1], stepb is movement step, X,, is the position

of the d -th sion of the quarry.

e@he wolf colony to search the quarry based on complex method

e wolf colony, we select U strong wolves to build a complex, suppose the position of
the u -th wolf is sorted as (Z,,Z,,...,Z,) by fitness values. The complex steps are as follows:

Stepl: calculate the complex centroid Z,
72— 57, 11
=i_1 Izl (11)
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Step2: calculate the reflection point z,
Z,=Z.+a(Z.-2,) (12)
where « is reflection coefficient, generally taken o =1.3. If Z  is better than Z,, then
Z will replace Z  ; otherwise, turn to Step4.

Step3: extended operation
Ze=Z,+p(Z,-Z;) (13)

Where f is extension coefficient, taken #=0.5~0.8. If Z, is better thanZ , then Z will

replace Z,, ; otherwise, turn to Step4.
Step4: shrinked operation

Zy=Zy+x(Zc—-2y) W

Where y is shrinkage coefficient, taken y =0.7 . If Z, is better than Z _t will

replace Z,, ; otherwise, turn to Step1. 0
A complex is constructed by selecting the strong wolv an\cf)ndu e wolf colony to
search quarry so that the optimization capability of the algon S

and uneasy into
local optimization. O \"\'/\/

NS
Q |gure 3. Complex Method

Figure 3 is an actua of complex, the model is built by Z,,7,,Z,,Z,, and the centroid
Z is found by th@ ints, and then Z_, maps out reflection point Z, and shrinkage point Z,

of Z,. And t hat meets the conditions can get its extension point Z . This paper applies

the strate A to search the optimal solution. Every point is the position of the wolf in the
strateg

ate the wolf colony

he assignment rule of the wolf colony is to assign the food to the strong wolf at first and
then to the weak one. The rule makes that the strong wolf gets enough food while the weak
one gets little so that the weak wolf will starve to death. But the rule can ensure that the
strong wolves prey next time, so the adapt ability of the wolf colony can be enhanced. By
simulating the principle of survival of the fittest, the paper removes the worst m artificial
wolves in the colony and generates m wolves randomly. Therefore, the algorithm can avoid
the local optimum and the wolf colony becomes various.
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pseudo code of CWCA

Five iterations are processed to build complex in the experiment, in order to explain the

process of CWCA, the pseudo code of CWCA is given as follows:
1: BEGIN
2: Initialize: initialize the wolf colony randomly;
3: While (termination condition is not satisfied)
4: Select q searching wolves by calculating fitness value f (x) ;
5: The position of the strongest wolf is as the position of the quarry, other wolves
besiege it;
6: Select y better wolves after the colony sorted;
7 Number =0; \/
8 While (Number <5) Y~
9: The complex is built by the position of y wolves, the centroid of cor@
calculated;
1 u-1 \
10: Xe=—72 %> Q V
u-14=
11: Calculate reflection point, x, = x_ + e (X, — \/
12: If f(x,) is better than f(x) Q %
13: X, =X ’\O Q\
14: Extended operation, X, = X, t@— X; ’%
15: |If f(xe) is better tha&
17: Else Q %’Q
18: Shrinked opera =X (Xe—x,
19: If f(x ) |s\ han
20:
21: En@ @
22: End If
23: Else
24: Shrinke@non X, =X, + y(X. —X,)
250 If £( E ) is'better than f (x,)
26: @
If
d If
. End While
30: Assign the food and update the wolf colony, remove the worst m wolves and
generate m wolves randomly;
31: End While
32: Output the optimal individuals and fitness value of the populations;
33: End
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4. CWCA for Solving UCAYV Path Planning

CWCA can adapt to the demand for UCAV path planning, and has a good search
capability and improves the accuracy of the solution. Then we introduce the process of
CWCA to apply in UCAYV path planning.

4.1 The steps of UCAV path planning based on CWCA

Stepl: Initialization. Initial the wolves’ population size n, maximum number of
iterations maxt, searching step stepa , besieging step stepb and other parameters.

Step2: Transform coordinate system. A new coordinate is built in the «Qriginal
coordinate system. The abscissa is divided into equal D partitions, and ev iquot
ordinate is become the position of every dimension of wolves so the posi@ the i-th

WOIT is (Xip Xipsees Xip)-

*
Step3: Calculate the fitness value. Threat ¢ t@v y m&:alculated by
equation (5). 6 \\e/

t

Step4: Searching the quarry. g wolves are@cted, Qar@l
searching the quarry according to equatLor@. \

Step5: Besiege the quarry, the posi@ the w ny is updated by equation (10).

Step6: Build a complex. Sel wolves \h have better threat cost to build a
complex by 3.4. . 6

Step7: Update the Wolglony. Th endremoves the worst m wolves in the colony and

threat cost is optimal,

generates m wolves @nﬁ .

Step8: After \ap ting me tion, the algorithm enters the next iteration, and
determines whe Qmeets e cawditions or not. If it meets the conditions, it exits the loop,
and records t ition 0 s and indexes; otherwise go to Step2.

Step9: Inversel orm the coordinates. Transform the new coordinates into the
original coordinatgs record results.

-
@)
Q°
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4.2 The flow chart of UCAYV path planning based on CWCA

Initialization population and its parameters

»

.
Coordinates transformation by Equations (2) (3)
L J
Calculation for threat cost by Equation (5), that fitness value
v
Select q wolves to search the quarry by Equation (9)
¥ .
Besiege the quarry by Equation (10),update the location of the wolf colony
* VN
Select q wolves to build complf{ V8. 4o U
N v A\ X
Assign of food to eliminate 4 B’n wolves

V\'heth ermmatlo
co 1s satisfied

]nversel\&@rrmthe 1&&5, record the results
3t
Figure 4. The FlOV\@al’t of olving UCAV Path Planning Problem

5. Experlment

This wor w ulato hIQIS written by MATLAB 2010b and it is performed on the
] 7 (O]

PC with Wi hlon 640 Quad-core processors and 3GB memory.
In [10] an example_i ulated. UCAV flight starts at the point (10,10) and end at
point (55,100). T five threats in this example, and they have their own threat

grade and thr radius. Among, we set balanced coefficient between safety
performance End el performancek =0.5. Information about known threats is shown

Table 1.
O

O Table 1. Information about known threats
tion [45,50] [12,40] [32,68] [36,26] [58,80]
Threat radius 10 10 8 12 9
Threat grade 2 10 1 2 3
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5.1 Influence of control parameters

The choice of the control parameters has a great impact on different problems, the
choice of besieging step stepb, extension coefficient £, and searching step stepa have
different influences on route planning.

Order D=20,, iterations maxt=200,, population size n=30, the number of
searching wolves q =5, searching direction h =4, the maximum number of searching
max dh =15, searching step stepa=0.5, the number of worst wolves m=5. Each

algorithm runs 100 times independently, best and means normalized optimization
results on UCAYV path planning problem are shown in Table 2. In order to reprQKnt#he
total performance value conveniently in the table, the threat cost all subtra om
the actual value, i.e., if a value is 0.5762 in the foIIowing table, then itsfComesponding

value 50.5762 is its true value.

From the Table 2, when besieging step is stepb= Reg of extension
coefficient £ changing, the result exist only a Iltﬁbnce hereNspt' 7 = 0.8, because
its mean value is the smallest. \

Table 2. Best and mean normaljz mlzatl ults on UCAV path

planning probl dlff e epb and g

Stepb p @al s\\ Mean
0.1 05 “. 0.4191 ‘\¢Q 05136
03 05 P 04594 \* 0.6241
05 05 | U oade > 0.7402
0.1 065\ * 0\151 0.5044
03 066N N[ 4ps8 0.6297
05 Cl o ¥0.4666 0.8785
0.1 NGO o4 0.5038
0.3 08 L\ 0.4240 0.5788
05 0.8’\‘ 0.4367 0.6328

N
Before he egﬁmhe quarry, the wolf colony searches the quarry, so the convergence
speed of gorithm is improved. But if the convergence speed is too fast, the

algori asy to fall into local optimization. So we simulate with different searching
s% to find out the appropriate search step by comparing the total performance.

Fr Table 2, we can know that the appropriate value for CWCA
isstepb= 0.1, =0.8. Best and mean normalized optimization results on UCAV path

planning problem on different searching step are shown in Table 3.
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Table 3. Best and mean normalized optimization results on UCAV path
planning problem on different stepa

Stepa Optimal Mean
0.05 0.3895 0.4344
0.08 0.3901 0.4344

0.1 0.3926 0.4468
0.3 0.4005 0.4550
0.5 0.4173 0.5038
1.0 0.4276 0.6208
1.5 0.4517 0.6052

L 4

From Table 3, when the searching step is stepa =0.05, the value is opti Mhe

running time is too long, and convergence speed is too slow. While the ing step

meets an equation stepa=0.1, the result is worse than step , SO set

stepa = 0.08, as the most appropriate, regardless of the\&rgenc@ the running
time, and the accuracy of the solution are approprl

5.2 Effect of Dimensionality D

In order to investigate the influence of %ensmﬁq@e performance of CWCA,
this paper sets d =5,10,15,20,25,30,35; ght different dimensions run 100 times
independently, and compare with ot of . Table 4, Table 5 and Table 6
show the best minima, the worst and th minima found by each algorithm
respectively. In the simulatio use t same population size and the maximum
number of iterations (n= 3(%’&

From Table 4 we can s at CWC b ter than other algorithms no matter how large
Dis. For example, D e res y CWCA is 0.6518, but the solution of other
algorithms is more the accur: of CWCA is higher than several other algorithms.

on differentD

Table 4. B@%allze@ptlelzatlon results on UCAYV path planning problem

D % Algorithm
ACO BBOa E ES FA GA MFA | PBIL PSO | SGA | CWCA
5 113724 | 108%2 B 43568 | 95895 | 43585 | 52471 | 43573 | 97627 | 51667 | 56538 | 33791
10 | 10228 292 | 13950 | 74272 | 13990 | 16068 | 13966 | 331123 | 22073 | 15489 | 0.6518
15 852 5569 | 06114 | 82547 | 06172 | 08711 | 06115 | 57.2225 | 2.0969 | 08071 | 0.4230
20 | 10faash P 47230 | 05102 | 102320 | 04626 | 08252 | 04552 | 80521 | 24643 | 08460 | 0.3901
25 55286 | 05512 | 133685 | 04908 | 12421 | 04571 | 1007418 | 37378 | 12394 | 0.3881
0 2200 | 66071 | 08987 | 157251 | 06828 | 19218 | 05160 | 180.1498 | 3.2993 | 16165 | 0.3913
169509 | 130206 | 25372 | 167445 | 10820 | 23100 | 04709 | 2203331 | 55025 | 16326 | 0.3793
40 | 107046 | 135504 | 45490 | 182314 | 15225 | 22084 | 04506 | 3406174 | 57367 | 2.6180 | 0.3638

Table 5 shows the worst normalized optimization results on different D . From it, we can
see that PBIL gets the worst results compared with other algorithms, its results increase with
D rising. When D increases from 25 to 30, the results increase in a nearly four-fold. While
the result obtained by CWCA decreases by 0.3. With the rise of the dimension, results
obtained by most of algorithms are in a rising trend, but some parts of algorithms decline
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when D increases from 20 to35. The worst result of CWCA is better than several other
algorithms.

Table 5. Worst normalized optimization results on UCAV path planning
problem on different D

Algorithm
ACO BBO DE ES FA GA MFA PBIL PSO SGA | CWCA
5 13.3199 121.5724 12.2083 62.2665 15.7395 11.6013 12.4186 22.2463 16.0713 11.2006 3.5307

10 18.1911 26.8270 6.7358 73.4605 6.7095 10.1096 3.7858 69.2468 18.6221 6.1652 0.7092

15 11.0084 40.3705 12.5808 53.8683 44.2763 7.4472 3.8319 139.2557 37.3201 11.7962 0.4479

20 17.1887 28.2063 14.5783 31.4587 28.9142 9.1795 2.0279 287.3709 28.1596 18.9518 0.5511

25 12.0733 30.3315 19.6664 33.9148 16.4518 10.3977 3.7043 649.6845 28.1399 15.696N 0.533

30 14.7139 28.5885 24.1279 41.3024 15.9757 12.7183 8.3364 2364.08 43.6950 14. w400

35 18.7271 43.8512 34.4447 38.7646 33.8871 24.4790 5.8830 6312.96 32. 8328,ﬂm¥ 0.5540

40 27.0641 40.7087 43.2604 46.4224 36.6626 22.0688 7.7236 7053 50 34902 ﬁ}ﬁg 0.6821

Table 6 is the mean normalized optimization results \ﬁre %(en CWCA sets
mM

different D, the result of CWCA is better than other ms. FQr e, when D meets
the equation D =40, the mean of CWCA is 0.509 le the hx ACO is 24.5754. It
can be seen clearly that CWCA is better than A€QO, and the ults of other algorithms are
worse than CWCA. O
Table 6. Mean normalized optimi resul\ CAV path planning problem

ffere

4 04
D \ < A@"thm

ACO BBO DE FA ﬁ MFA PBIL PSO SGA CWCA

10.501

5 | 115151 | 227318 | 85962= 307228 WQO.MM 91673 | 161391 | 9.9061 P 3.4072
A z.&

2.5422 1.5740 51.4355 7.0411 2.2790 0.6819

10 | 11.9485 | 7.9650 7 26.2868
15 10.2554 9.525“ \Q& 21.86 2.8217 2.1880 0.8967 78.2477 8.3395 1.8910 0.4344

20 16.2205 | 11.8 ‘\)7521 W 7327 3.0900 0.7004 | 1354365 | 8.2483 | 3.1670 0.4344

25 | 115674 b 44081 | 2277%% | 39039 3.7814 09987 | 207.7272 | 10.2627 | 4.1567 0.4458

30 | 13.9503\] 17.6

9.9884 )4.7757 4.9621 5.0079 1.3568 345.5447 12.3847 4.5211 0.4339

35 18.3108 .5615 17902 26.5217 5.9955 5.9599 1.6009 634.6550 14.1354 5.8260 0.4379
40 245754 | 24.8531 {N 1 30.2595 7.8558 7.4927 2.1978 1119.72 14.8845 7.1100 0.5099
\"4
From Figure igure 5, and Figure 6, it can be seen that the optimal value, the worst

value and !@erage value obtained by CWCA are better than other algorithms. Though
with the i e of dimension, the results of CWCA also increase, yet in some cases, it is in
a dow end and the accuracy of the solution is improved indeed. With the increasing of
d & , the complexity and running time of the algorithm grow, and the accuracy is not
J@ d too much. In summary from these tables above, setting D =20 or 25 is more
appropriate, the accuracy of the two solutions have some difference. Considering the
complexity of the algorithm, if D = 20, its complexity is o(n), that when we set D = 25, its
complexity is 1.250(n) , so we set D = 20.
Figures 5~12 show that When D is set different values; we can get the position of fight at
every moment. In Figure 5, D =5, it can be seen that the fight route is consist of seven points,

and after removing the start point and the end point, the route is just matched up to D =5. We
can see the flight route and the threat center form the figure. We can also see how the airplane
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escapes from the threat center to make the threat cost become smallest. UCAV path planning
is to find an appropriate path which the threat is smallest.
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5.3 Effect of maximum iterations maxt

The choice of the maximum number of iterations is of vital importance to solve the
algorithm. The choice of the maximum number of iterations has a directly effect on the
solution accuracy of different problems, so we set the maximum number of iterations as 50,
100, 150, 200, 250 respectively, and each algorithm runs 100 times independently
(N =30,d =20). Table 7, Table 8 and Table 9 are the best, worst and mean results

respectively on different maximum number of iterations for every algorithm.

Table 7. Best normalized optimization results on UCAV path planning
problem on different maxt

maxt Algorithm
ACO | BBO DE ES FA GA MFA PBIL PSO
50 96276 | 48658 | 36814 | 77983 | 14713 | 16118 | 07030 | 660274 | 36012 |1 7 0.4232
100 | 115242 | a2616 | 09439 | 402320 | o577 | 4520 | osase | asozo | 23357(| A% 0.3986
150 | se3s1 | sews | o7oms | 987 [ osase | 120e2 | o4gs7_[\arag30 | affes %98 0.3956
200 | 112445 | 290424 | 05188 | 107960 | 04931 | 10695 | 0466 6980 | 2%bo 4 08392 | 03001
250 9.7607 | 35209 | 04820 | 102540 | 04753 | 08781 c&s& 2’0.8802\\2.92! 07839 | 03878
- A4
Table 8. Worst normalized optimizatioanlts on path planning
problem on d@nt maxc)
maxt +_ { Agorithm
ACO BBO DE ES G EA PBIL PSO SGA | CWCA
50 187099 | 28.6806 | 313392 | 33.1027 < Q25 873 26 | 3129370 | 331530 | 176318 | 0.6800
100 17.7404 | 282427 | 194058 | 33.1979) \,29.3022 &R 45749 | 373.8334 | 27.8806 | 11.6446 0.5710
150 17.4223 | 40.1797 14.5560 ¥ 27.8480 (" 75637 | 4.9631 | 210.6140 | 28.3542 15.2145 0.5691
200 | 170679 | 3219081 | 16 673N090 2657 9124 | 91502 | 183.9630 | 282524 | 67380 | 05511
250 | 170679 | 27.6544 46.0828 @o 74338 | 36783 | 160.1446 | 29.6341 | 162672 | 0.5714
N

ifferent maxt

Table 9. Mean nc@d optun%ﬁion results on UCAV path planning problem

maxt ( \\ . Algorithm
ACO ES FA GA | MFA | PBIL | PSO | SGA | CWCA
50 16.2648 14.2076 18,264 20.3152 6.2034 4.1142 1.9576 151.9844 9.9671 5.2389 0.5407
100 16.3500 13.4074 95 20.4387 4.3526 3.7731 1.3048 113.6434 8.9057 3.7475 0.4713

150 16.1722 1 8 %, 3.5255 19.9485 4.1809 3.4671 0.9933 90.8722 8.5509 3.1680 0.4563

200 16.2154 110 5} 2.3975 20.7501 2.2791 29711 0.8984 74.1964 8.9892 2.3792 0.4344

250 16.0 11.9654 2.4849 20.1739 2.2064 2.6605 0.7025 65.4942 9.2143 2.5929 0.4347

Fr le 7, Table 8, and Table 9, it can be seen that the CWCA can get better results
algorithms. With the rising of the number of iterations, the accuracy of the solution
algorithm grows high. But the complexity of the algorithm is getting higher as the
number of iterations increasing, and the accuracy of the algorithm is not improved greatly.
Such as in Table 7, when the maximum number of iterations is 250, the solution of MFA
increases about 0.01 compared in 200 iterations, while the algorithm iterates more for 50
times. But the accuracy of the solution of CWCA has little change, the maximum number of
iterations is set 200, and CWCA is better than other algorithms when solving the UCAV path
planning problem.
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Figure. 17 Convergence curve of maxt=250

13 to Figure 17 is convergence curve figures of CWCA on different maximum
nu of iterations. From the figures, we can see that the convergence speed of CWCA is
fast, and it is not easy to fall into local optimization. Such as Figure 15, it is converged from
20-th iteration to 80-th iteration; the algorithm jump out of local optimization at last, the
accuracy of the solution is improved. It is uneasy to precocious and is effective for solving
UCAV path planning problem.
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6. Conclusions

For UCAV path planning problem, this paper proposes a wolf colony search
algorithm based on the complex method, which let WCA mix with the complex method
and the complex method as the wolf colony’s leading strategy. The UCAV can find the
safe path by connecting the chosen nodes while avoiding the threat areas and costing
minimum fuel. Compared with other algorithms, experiment results show that CWCA is
a more feasible and effective way in UCAYV path planning.
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