
International Journal of Hybrid Information Technology

Vol.6, No.6 (2013), pp.51-64

http://dx.doi.org/10.14257/ijhit.2013.6.6.05

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2013 SERSC

An Adaptive Redundant Reservation Strategy in Distributed High-

performance Computing Environments

Peng Xiao
1*

, Peixin Qu
2
 and Xilong Qu

1

1
College of Computer and Information Science, Hunan Institute of Engineering

2
School of Information and Engineering, Henan Institute of Science and Technology

*
xpeng4623@gmail.com, quxilong@sina.com, qupeixin@163.com

Abstract

In distributed high-performance computing environments, resource reservation mechanism

is an effective approach to provide desirable quality of service for large-scale applications.

However, conventional reservation service might result in lower resource utilization and

higher rejection rate if it is excessively applied. Furthermore, redundant reservation policy

has been widely applied in many practical systems with aiming to improve the reliability of

application execution at runtime. In this paper, we proposed an adaptive redundant

reservation strategy, which uses overlapping technique to implement reservation admission

and enable resource providers dynamically determine the redundant degree at runtime. By

overlapping a new reservation with an existing one, a request whose reservation

requirements can not be satisfied in traditional way might be accepted. Also, by dynamically

determining the redundant degree, our strategy can obtain optimal tradeoff between

performance and reliability for distributed high-performance computing systems.

Experimental results show that the strategy can bring about remarkably higher resource

utilization and lower rejection rate when using redundant reservation service at the price of a

slightly increasing of reservation violations.

Keywords: Advance Reservation; Quality of service; Redundant Policy; Co-allocation

1. Introduction

In distributed high-performance computing environments, end-to-end QoS provision

is often required by high-end applications [1]. Resource reservation, as an effective

technique to support end-to-end QoS guarantees, has been incorporated into many

famous middleware [2, 3], which allows applications to gain concurrent access to

adequate resources, and guarantees the availability of resources to applications at the

required times. Although reservation has been proven effective in many situations, it

also brings several negative effects on resources sharing and scheduling. Studies in [4-

16, 22-25] have shown that fixed-capability reservation will result in low resource

utilization, and excessive reservation can lead to high rejection rate of requests. These

inevitably have significant influences on utility-based computing environment [10],

where systems wish to fully utilize their resources to obtain maximal profits with

constraints of users’ QoS requirements. Hence, how to mitigate the negative effects

brought about by advance reservation becomes an important issue needed to be solved.

Traditionally, advance reservation is defined as a promise from systems that a

subsequent resource allocation request will succeed [2]. Two key properties of a

reservation are start time and deadline. Resource management systems promise and

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

52 Copyright ⓒ 2013 SERSC

only promise that the reserved resources will be accessible between start time and

deadline. However, for many applications precisely prediction of these two parameters

is difficult to achieve, if not impossible. As a result, applications tend to overestimate

these parameters, especially the reservation deadline, to ensure their successful

completion. This behavior results in two consequences: first, resource capability is

underutilized; second, requests might be rejected due to their overestimation of deadline.

In addition, redundant reservation request has been widely applied in many real -world

systems for improving the reliability of resources. This mechanism tends to put extra

overload on distributed resources. In addition, when the system applies redundant

reservation policy for improving reliability, it will add more overloads on the target

systems.

Motivated by aforementioned facts, in this paper, we propose a more flexible

reservation strategy, namely Adaptive Redundant Reservation with Overlapping

Strategy (ARROS), which allowing two reservations overlapping each other under

certain conditions and enable systems can adaptively select the optimal redundant

degree based on the dynamic workload. The objective of ARROS is to increase resource

utilization and reduce rejection rate when using advance reservation. More importantly,

we provide an adaptive mechanism by which the system can dynamically determine the

redundant degree (often note as K) on per-application basis.

The rest of this paper is organized as follows. Section 2 presents the related work. In

Section 3, we describe the traditional reservation model and analyze its limitations. In

Section 4, we introduce our reservation strategy and analyze it using probability theory.

In Section 5, massive experiments are conducted to verify the performance of this

strategy. Finally, Section 6 concludes the paper with a brief discussion of future work.

2. Related Work

Since advance reservation was introduced into distributed resource management and

scheduling, its effects on system performance have been widely studied. In [5], the

authors investigated the impacts of advance reservation on performance of Grid

scheduler. Three system metrics, including Mean Waiting Time (MWT), Mean Offset

Time (MOT), and Request Rejection Rate (RRR) were used to quantitatively evaluate

the impacts. Their experimental results showed: (1) using advance reservation will

increase MWT and RRR; (2) Moderate reservation can lower down MOT, but excessive

reservation will increase MOT too. In [7], the stimulation results also confirmed the

conclusions in [5]. In [9], the authors studied the effects of advance reservation on

remote jobs as well as local jobs in non-dedicated environment. A measure metric

relative slowdown (the ratio of the mean waiting time with reservation and that without

reservation) was introduced to quantify the impacts caused by reservation on local and

remote jobs. By modeling distributed resources as M/G/1 FCFS queuing system, they

formally proved that excessive reservation would prolong the waiting time of both local

and remote jobs. All the above studies have shown that inappropriate reservation might

result in low resource utilization and high rejection rate.

Besides above studies, many effective techniques have been proposed to overcome

the limitations of advance reservation. In [4], the authors proposed an extended

reservation architecture, which combining advance reservation and application

adaptation together, to overcome the limitations of fixed-capability reservation. In this

architecture, resources are enhanced with online control interfaces, sensors, decision

procedures, so as to provide more efficient resource usages and deliver more robust

application performance for high-end Grid applications. In [8], the authors incorporated

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 53

gang scheduling and adaptive resource allocation into SCOJO scheduler [11] to mitigate

the negative effects brought about by advance reservation. In [12], the authors

introduced several techniques, including re-arranging subtask, interweaving task

graphs, backfilling, into advance reservation based scheduling in cluster environment

with aiming to improve resource utilization. To lower reservation rejection rate and

increase resources utilization, a flexible reservation window scheme is proposed in

[18]. By conducting extensive simulations, the authors concluded that when the size of

reservation window equal to the average waiting time in on-demand queue, the

reservation blocking probability (rejection rate) can be minimized near to zero. In [19],

a flexible reservation framework is implemented, in which slacking reservation

mechanism is incorporated in a modular middleware. In [20], the authors developed an

algorithm that allows service consumers to execute business workflows of

interdependent services in a dependable manner within tight time-constraints. In [21],

the authors studied an extension of the EMLM in order to ensure QoS guarantee per

service-class in the heterogeneous environment of telecom networks.

3. Resource Reservation Model

At first, we describe the traditional reservation model, which conforms to GARA

specification [2]. In resource reservation model, heterogeneous Grid resources are

managed by Reservation Manager (RM), which performs admission control and tracks

the reservations on all resources that under its control. All reservation requests are sent

to RM. Each reservation request can be characterized by a 4–tuple: , , ,
l u l u

ts ts d d , where

l
ts and

u
ts are the lower and upper bound of reservation start time,

l
d and

u
d is the lower

and upper bound of relative deadline (the period between start time and absolute

deadline). A reservation request is valid if
l u

t ts ts and 0
l u

d d , where t is the

arrival time of the request.

On receiving a request, RM will try to find a time-slot, which is capable of meeting

the request’s requirement , , ,
l u l u

ts ts d d . If a feasible time-slot is found, RM will

respond the request with a 3-tuple: , ,
i i i

ts te d , where
i

ts is start time of the reservation,

i
te is the absolution deadline, and

i i i
d te ts is relative deadline. If the response is

confirmed by the request, we say that a reservation contract has been successfully

signed between the request and RM. Otherwise, we say that the reservation request is

rejected. Given a reservation contract , ,
i i i

ts te d between request
i

r and RM, if the

latter does not make the resource accessible for
i

r at time
i

ts , or fail to keep the

resource accessible for request
i

r until time
i

te , we say that a reservation violation

occurs. With the loss of generality, we make some assumptions of above reservation

model as follows.

 Resource offers service to requests in the order of reservation start time.

 No resource is capable of performing service for two or more requests in

parallel.

 If the job of a request has completed before its deadline, it will release the

resource immediately. RM will preempt the resource from a request if its

absolute deadline expires.

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

54 Copyright ⓒ 2013 SERSC

 Reservation violations caused by system crash, software fault, network

disconnection, etc. are not taken into account in this paper.

4. Adaptive Redundant Reservation with Overlapping Strategy

4.1. Overlapping Reservation Strategy

Given current time is
0

t , a time slot table of reservation for a resource is shown in

Figure 1. Every reservation contract is represented by a 3-tuple: , ,
l l l

ts te d , which is

illustrated by a rectangle with texture.

Figure 1. An example of time slot of reservation

As we can see that, the reservation split the entire time table into a lot of time slots,

which can be categories into two groups: reserved slots and free slots. With arrival of

new requests, some free slots may be allocated to those requests if the slot can meet

their reservation requirements. However, there are still many free slots would never be

allocated, which causing underutilization of resource. As mentioned before, requests

usually tend to overestimate their deadline to ensure their successful completion. Our

strategy takes this overestimation into account, and tries to insert some requests whose

reservation requirements can not be met in traditional way into free slots. Obviously,

this overlapped strategy will take some risks of violating those reservation contracts.

So, our work is to analyze the benefits and risks of this strategy.

Following the scenario depicted in Figure 1, we hypothesize that RM adopts

overlapping strategy. When request
i

r arrives, RM finds that no available free slot can

meet the requirements of
i

r strictly. However, RM notices that a free slot between

k
te and

1k
ts

seems to be a good candidate, except that this candidate slot overlaps with a

reserved slot of
k

r , which means that reservation start time of
i

r can not be guaranteed.

If request
k

r completes its job before
i

ts , then RM will not violate reservation contract

of
i

r . The time slot table is depicted in Figure 2.

Figure 2. The example of overlapping time slot of reservation

0t
t
 1kts

1ts

1te

2ts

2te

kts

1kte

kte

its

ite

id

t

1kts

1ts

1te

2ts

2te

kts

1kte

1d

2d

kd

1kd

0t
kte

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 55

Let random event
i

E denotes no reservation violation occurs for
i

r , so the probability

of
i

E can be expressed as

Pr{ } Pr{ }
i i i i

TS ts TE te
i

E (1)

where random variable
i

TS represents the time when the resource is accessible to
i

r ,
i

TE

is also a random variable representing the completion time of
i

r ,
i

ts and
i

te are start time

and absolute deadline of
i

r . From the Figure 2, it is obviously that

Pr{ } Pr{ }
i i k i

TS ts TE ts (2)

For reservation
k

r , its start time can be guaranteed, which means Pr{ } 1
k k

TS ts . By

using conditional probability theorem, we can obtain that

Pr{ } Pr{ | }i ik k k kTE ts TE ts TS ts (3)

So, applying conditional probability theorem on formula (1), it can be rewritten as

Pr{ } Pr{ | } Pr{ | }i i i i ik k kTE te TS ts TE ts TS ts iE (4)

Formula (4) gives the probability of no reservation violation occurring if
i

r is

accepted. Clearly, 1 Pr{ }
i

E is the risk of reservation violation. To evaluate (4), we only

need to know the distribution of service time (running time) of requests. In contrast

with predicting service time, obtaining their distribution is easier and more precisely.

After knowing the risk of accepting
i

r , we can also calculate the profits of doing that.

Given C as the resource price under condition that no reservation violation occurs, F

is compensation price if reservation violation occurs. If
i

r is accepted, the expected

profits
i

P of RM can be estimated as

E() Pr{ } (1 Pr{ })

() Pr{ }
i

P C F

C F F

i i

i

E E

E
 (5)

The relationship between Pr{ }
i

E and E()
i

P is described in Figure 3.

Figure 3. Relationship between Pr{ }
i

E and E()
i

P

()iE P

F

Pr{ }
i

E

C

1

1F

p

1p

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

56 Copyright ⓒ 2013 SERSC

As Shown in Figure 3, if Pr{ } p
i

E , then the expected profits ()
i

E P is positive with

maximal value C . Otherwise, ()
i

E P would be negative. Hence, p is an indicative

measure, above which the acceptance of
i

r may be profitable. It is noteworthy that

Pr{ } p
i

E only means that accepting
i

r is very risky. Consider that RM uses

* *
(0 1)p p as its criterion to decide whether or not to accept requests

i
r . For example,

if
*

Pr{ } p
i

E RM accepts
i

r , otherwise rejects it. A higher value of
*

p indicates that RM

is conservative; a lower
*

p shows that it is willing to take more risks to improve

utilization of its resources.

In another scenario, if RM can flexibly adjust its compensation price F , the

relationship between Pr{ }
i

E and E()
i

P will be changed correspondingly. In Figure 3, we

illustrate this case that RM chooses a lower compensation price
1

F .

Correspondingly, p changes into
1

p , and
1

p p . It means that to get the same E()
i

P , a

lower compensation price leads to lower risks. This is consistent with our common

sense.

It is noteworthy that our analysis does not assume that service time on different

resources follows an identical distribution. Nor do we assume that service time on a

resource follows certain distribution. We believe that those distributions should be

estimated based on historical information recorded by RM. For example, RM may find

that service time on a certain resource follows exponential distribution with a mean

value1/ , then its cumulative distribution function can be expressed as () 1 tF t e .

Only here, we can get follows expressions

Pr{ | } ()

Pr{ | } ()
i i i i i i

k i k k i k

TE te TS ts F te ts

TE ts TS ts F ts ts

 (6)

Then, Formula (4) can be rewritten as

() ()

Pr{ } () ()

(1) (1)
i i i k

te ts ts tsi i i k

F te ts F ts ts

e e

i

E
 (7)

In summary, with Pr{ }
i

E and E()
i

P , RM can take diverse policies. The optimal value

of C , F , and
*

p should be determined by system according to its own objectives, such

issues are out of the scope of this paper.

4.2. Adaptive Redundant Reservation Policy

Let J = {t1, t2, …, tn} represent the application’s subtask set, and each subtask is

noted as <ai, ci, vi>, where ai is the execution time, ci is the resource demands, vi is the

reservation quantity. The system’s resource site is noted as set R={r1, r2,…, rm}, and

each site’s time slot set is noted as Slot(ri)={si,1, si,2,…, si,k}. Based on the above

definitions, we can note the resource mapping scheme as S: J×R→{0, 1}, which means

that the co-reservation scheme is n×m matrix.

Let random event Ψi,j present that subtask ti has successfully reserved resource on rj,

and its probability is noted as Pr{Ψi,j}. Therefore, the probability that the reservation

scheme S can be accepted can be noted as Pr(Ψ,S), where Ψ is the random event matrix.

When using adaptive redundant policy, we hope that the redundant degree (noted as K)

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 57

can be dynamically adjusted according the runtime workload. So the problem can be

described as following:

1
1

min (,)

. . {0,1}

, Pr{ }Pr{ }
mn

i, ji
j=

K

s t

S

S = J R

S

 (8)

To solve the problem (8), we give the following theorems and conclusions.

Theorem 1. The probability that resource site rj can satisfy the start time of subtask ti

is

*

Pr{ }() =j,k i l i

l

TP s ,t ts

 (9)

where Tl is practical completing time of tl, set Ω
*
 must satisfy the following condition:

*

*
Pr{ }{ | (),max{ }}

l i

l

j i

i j,k l

l

T tst

v c + v

 (10)

Proof. According the descriptions in Section IV.1, it is clear that if the subtask in

αj(ti) can be finished before the start time of ti, the set Ψ must satisfy

i j,k l

l

v c + v

 (11)

Under this condition, we can use probability theory to calculate the total probability

as

Pr{ }() =
lj,k i i

l

TP s ,t ts

 (12)

Unfortunately, Ψ is not the only set that can satisfy condition (11). Therefore, we

must find an optimal set that can maximize the probability of (12). It is clear that

condition (10) is the requirements that such a set should be satisfied, and we note it as

Ω
*
.

■

Theorem 2. The probability that time slot sj,k can fully satisfy the ti’s reservation

requirement is

() = Pr{ }j,k i i lP s ,t T ts (13)

where Pr{Ti≤tsl} is the probability that ti is finished before tl∈βj(ti), and tl should satisfy

the following condition:

1

1 1

maxl l

j i jj j
v C v v

 (14)

Proof. Firstly, we sort the requests in βj(ti) by ascendant order of their start time.

Then, it is clear that if the practical finishing time of ti is earlier than ts1 then this

subtask will not interfere any request in βj(ti), and the probability calculating equation is

noted as (13). On the other side, we must make sure that the resource site has enough

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

58 Copyright ⓒ 2013 SERSC

available resources when ti’s start time is coming. So, the condition in (14) is used for

this cause, where C
max

 is the total resources quantity on ri.

■

Based on the conclusions of Theorem 1 and Theorem 2, we can calculate the

probability of successful reservation for the whole application by the following

equation:

1 1

1() 1 () ()
m

i, j
j=

k

j i j i
j=

P P s ,t P s ,t (15)

By (15), we can further draw the following conclusion.

Corollary 1. When using adaptive redundant reservation, if we want to make sure

that the probability of successful reservation is higher than W
*
, then the redundant

degree K should be bounded in:

min

max

ln

ln 1 min () ()}

ln

ln 1 max () ()}

(1)

({)

(1)

({)

*

*

j i j i

j i j i

P s ,t P s ,t

P s ,t P s ,t

W
K

W
K

 (16)

The above corollary can be applied in practical systems for calculating the runtime

redundant degree.

5. Experimental Results and Analysis

5.1. Experiment Settings

In this section, massive simulations are conducted to verify the efficiency of our

Adaptive Redundant Reservation with Overlapping Strategy (ARROS). We focus on the

effectiveness of ARROS comparing with traditional reservation mechanism, and what

price we should pay when applying ARROS. In simulations, we choose Lublin-

Feitelson Model [13], which is derived from existing workload logs, to generate

experimental workload (reservation requests). Each request in the workload is

characterized by its arrival time, number of nodes, and running time. As the model is

based on long-term jobs on supercomputer, we divided the arrival times and running

times by 60 to reduce the overall time to run the experiments. To reflect the

overestimation of relative reservation deadline, we multiply running time of each

request with a random factor (1)over overk k . The resource model consists of 16 resource

site and a RM. The RM is designed to capable of enforcing either traditional or

overlapped reservation strategies.

5.2. Comparison on Resource Utilization and Rejection Rate

In the first experiment, we investigate the resource utilization and rejection rate when

using ARROS. The basic workload used consists of 8000 requests, and it is modified

into four different workloads with 5%, 10%, 15%, 20% requests using reservation,

respectively. In this experiment, we set
*

0.8p , which means that RM will overlap a

reservation request only when the probability of reservation violation for this request is

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 59

less than 20%; and the factor overk is set to be uniformly distributed in the interval [1.2,

1.5], which means reservation requests tend to overestimate their relative deadline with

mean value 35%. The experimental results are shown in Figure 4 and Figure 5.

Figure 4. Comparison of resource utilization rate

Figure 5. Comparison of reservation rejection rate

As we can see from Figure 4, for traditional reservation, as the percentage of

reservation requests increases from 5% to 20%, resource utilization drops from 71% to

about 30%. While applying ARROS, resource utilization keeps relatively steady and do

not drop dramatically like traditional reservation. On the contrary, we notice that when

the reservation percentage increases from 5% to 10%, resource utilization increases

about 7%. The reason is that more free time slots can be allocated as reservation

requests increases. However, such increasing can not be sustained when the percentage

of reservation requests increases to 15% and more. Reservation rejection rates are

depicted in Figure 5. Like the resources utilization, when using traditional reservation,

the rejection rate increases sharply with the increasing of reservation requests. By

applying ARROS, the rejection rate is only about 50% of traditional reservation.

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

60 Copyright ⓒ 2013 SERSC

Combing the experimental results of resource utilization and rejection rate, we

conclude that, in addition to improve resource utilization and lower down rejection rate,

overlapped reservation strategy is more robust in presence of higher percentage of

reservation requests.

5.3. Comparison on Reservation Violation Rate

In this section, we focus on reservation violation, which is caused by using ARROS.

As our experiments are conducted on simulator, violations cased by network

disconnection, system crash and etc. are all ignored. So, we assume that the violation

rate is zero when using conventional reservation policy, and only investigate the

violation when ARROS is used. In this experiment, the effects of *v and overk on the

performance of ARROS is extensively investigated. In Figure 6 reservation violations

for four reservation rates are shown respectively.

(a) Reservation Rate = 5%

(b) Reservation Rate = 10%

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 61

(c) Reservation Rate = 15%

(d) Reservation Rate = 20%

Figure 6. Comparison of Reservation Violation Rate with different *v and overk

As mentioned before, we multiply the deadline of each reservation with a

factor (1)over overk k to reflect the overestimation of deadline. In this experiment, we have

conducted simulations with different level of overk . More specifically, we set overk

uniformly distributed in the different intervals, such as [1.0, 1.2], [1.2, 1.5], and [1.5,

1.8] respectively. We denote them as 1k , 2k , 3k for the sake of simplifying representation.

When overk is set in level 1k , it means requests in workload tend to overestimate their

deadlines with mean value 10%. So, 2k means 35% overestimation, and 3k means 65%

overestimation. As shown in Figure 6, it is clearly that more overestimation of deadline

leads to lower reservation violation rate. That is because many overlapped reservations

do not overlap actually in run time, which makes ARROS more effective.

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

62 Copyright ⓒ 2013 SERSC

Parameter
*

v is the threshold, by which RM decides whether a free time slot can be

allocated to an overlapped reservation or not. So,
*

v is a strategic parameter of RM, a

higher value of
*

v indicates that RM is conservative. In this experiment, we increase
*

v

from 0.6 to 0.95 gradually. The results show that for
1

k and
2

k the violation rate drops

quickly when
*

v is increased from 0.6 to 0.8, then the decline becomes stable. In all

cases tested, we found that, the reservation violation rate can be limited below 10%

when
*

0.8v . If we set
*

0.9v , the violation can be controlled below 5%. In Figure

6(c) and Figure 6(d), the experimental results indicate that low value of *v is not a good

idea when system is in presence of high reservation rate (>15%).

The increasing of reservation violation is the price we have to pay while using

ARROS, experimental results indicate that we can limit the violation rate in a relative

low level by adjusting parameter
*

v . Currently, many systems have support reservation

re-negotiation mechanism, such as Maui, EASY, COSY. Combining ARROS and

reservation re-negotiation, the RM can take the advantages of ARROS as well as

avoiding the risk of reservation violation. It is noteworthy that different resource

providers may prefer different *v in practical systems, and RM may dynamically set *v

for different type of resources based on its resource reservation policies. In our

simulations, we set an identical *v for all resources only for simplicity.

6. Conclusion

In this paper, we studied the negative effects brought about by advance reservation in

distributed computing. To mitigate those effects, we proposed a novel reservation

strategy based on the fact that applications tend to overestimate their running time to

ensure their completion. Extensive simulations based on real workload were conducted

to verify the effectiveness of our overlapped reservation strategy. Experimental results

show that the strategy can bring about remarkably higher resource utilization and lower

rejection rate at the price of a slightly increasing of reservation violations. Furthermore,

the overlapped strategy shows robustness in presence of higher percentage of

reservation requests. For the future work, we plan to provide an adaptive mechanism for

RM to dynamically set parameter
*

p , which have significant influences on the

performance of ARROS. Furthermore, as parameter
*

v have significant influences on

the performance of ARROS, we plan to provide an adaptive mechanism for RM to

dynamically set optimal
*

v based on resource’s runtime load.

Acknowledgements

This work is supported by the Provincial Science & Technology plan project of

Hunan (No.2012GK3075). Also, it is a project supported by Hunan Provincial Natural

Science Foundation of China (No. 13JJ9022).

References

[1] K. Kurowski, A. Oleksiak and J. Weglarz, “Multicriteria, multi-user scheduling in grids with advance

reservation”, Journal of Scheduling, vol. 13, no. 5, (2010), pp. 493-508.

[2] R. Prodan and M. Wieczorek, “Negotiation-Based Scheduling of Scientific Grid Workflows Through

Advance Reservations”, Journal of Grid Computing, vol. 8, no. 4, (2010), pp. 493-510.

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 63

[3] A. Roy and V. Sander, “Advance Reservation API”, GFD-E.5, Scheduling Working Group, Global Grid

Forum (GGF), (2002) May.

[4] K. Vanmechelen, W. Depoorter and J. Broeckhove, “Market-based grid resource co-allocation and

reservation for applications with hard deadlines”, Concurrency and Computation-Practice & Experience, vol.

21, no. 18, (2009), pp. 2270-2297.

[5] W. Smith, I. Foster and V. Taylor, “Scheduling with Advanced Reservations”, In Proc. of the 14th IEEE

International Symposium on Parallel and Distributed Processing (IPDPS’00), (2000), pp. 127-132.

[6] R. Prodan and M. Wieczorek, “Negotiation-Based Scheduling of Scientific Grid Workflows Through

Advance Reservations”, Journal of Grid Computing, vol. 8, no. 4, (2010), pp. 493-510.

[7] S. Naiksatam and S. Figueira, “Elastic reservations for efficient bandwidth utilization in LambdaGrids”,

Future Generation Computer Systems, vol. 23, no. 1, (2007), pp. 1-22.

[8] A. C. Sodan, C. Doshi, L. Barsanti and D. Taylor, “Gang Scheduling and Adaptive Resource Allocation to

Mitigate Advance Reservation Impact”, Proc. of the 6th International Symposium on Cluster Computing and

the Grid, (2006).

[9] E. Elmroth and J. Tordsson, “Grid resource brokering algorithms enabling advance reservations and resource

selection based on performance predictions”, Future Generation Computer Systems, vol. 24, no. 6, (2008), pp.

585-593.

[10] E. Elmroth and J. Tordsson, “A standards-based Grid resource brokering service supporting advance

reservations, coallocation, and cross-Grid interoperability”, Concurrency and Computation-Practice &

Experience, vol. 21, no. 18, (2009), pp. 2298-2335.

[11] A. Sodan and X. Huang, “Adaptive Time/Space Scheduling with SCOJO”, In Proc. of International

Symposium on High Performance Computing Systems, (2004), pp. 165-176.

[12] A. Sulistio, W. Schiffmann and R. Buyya, “Advanced Reservation-based Scheduling of Task Graphs on

Clusters”, In Proc. of the 13th Annual IEEE International Conference on High Performance Computing

(HIPC’06) , (2006), pp. 18-21.

[13] U. Lublin and D. G. Feitelson, “The Workload on Parallel Supercomputers: Modeling the Characteristics of

Rigid Jobs”, Journal of Parallel and Distributed Computing, vol. 63, no. 11, (2003), pp. 1105-1122.

[14] J. Luo, Z. Wu, J. Cao, et al., “Dynamic multi-resource advance reservation in grid environment”, Journal of

Supercomputing, vol. 60, no. 3, (2012), pp. 420-436.

[15] A. D Stefano, M. Fargetta, G. Pappalardo, et al., “Supporting resource reservation and allocation for unaware

applications in Grid systems”, Concurrency and Computation-Practice & Experience, vol. 18, no. 8, (2006),

pp. 851-863, 2006.

[16] A. W. Mu'alem and D. G. Feitelson, “Utilization, Predictability, Workloads, and User Runtime Estimates in

Scheduling the IBM SP2 with Backfilling”, IEEE Trans. on Parallel and Distributed Systems, vol. 12, no. 6,

(2001), pp. 529-543.

[17] R. Yang, S. Bhulai, R. Mei, et al., “Optimal resource allocation for time-reservation systems”, Performance

Evaluation, vol. 68, no. 5, (2011), pp. 414-428.

[18] N. R. Kaushik, S. M. Figueira and S. A. Chiappari, “Flexible Time-Windows for Advance Reservation

Scheduling”, In Proc. of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS’06), (2006), pp. 218-225.

[19] M. Sojka, P. Píša, D. Faggioli, et al., “Modular software architecture for flexible reservation mechanisms on

heterogeneous resources”, Journal of Systems Architecture, vol. 57, no. 4, (2011), pp. 366-382.

[20] S. Stein, T. R. Payne and N. R. Jennings, “Robust Execution of Service Workflows Using Redundancy and

Advance Reservations”, Ieee Transactions on Services Computing, vol. 4, no. 2, (2011), pp. 125-139.

[21] L. D. Moscholios and M. D. Logothetis, “The Erlang multirate loss model with Batched Poisson arrival

processes under the bandwidth reservation policy”, Computer Communications, vol. 33, (2010), pp. S167-

S179.

[22] A. Kovacs, I. Godor, S. Racz, et al., “Cross-layer quality-based resource reservation for scalable multimedia”,

Computer Communications, vol. 33, no. 3, (2010), pp. 283-292.

[23] C. L. Yu, C. S. Chang and D. -S. Lee, “CR Switch: A Load-Balanced Switch With Contention and

Reservation”, Ieee-Acm Transactions on Networking, vol. 17, no. 5, (2009), pp. 1659-1671.

[24] C. Castillo, G. N. Rouskas and K. Harfoush, “Online algorithms for advance resource reservations”, Journal

of Parallel and Distributed Computing, vol. 71, no. 7, (2011), pp. 963-973.

[25] J. S. Lin and K. T. Feng, “QoS-Based Adaptive Contention/Reservation Medium Access Control Protocols

for Wireless Local Area Networks”, IEEE Transactions on Mobile Computing, vol. 10, no. 12, (2011), pp.

1785-1803.

International Journal of Hybrid Information Technology

Vol.6, No.6 (2013)

64 Copyright ⓒ 2013 SERSC

Authors

 Peng Xiao received the Ph.D degree in computer science from the

Central South University in 2009. Currently, he is an associate professor

in the Hunan Institute of Engineering. Also, he is the advanced network

engineer in HP High-performance Network Centre in Hunan. His

research interests include, distributed resource management. He is a

member of ACM and IEEE.

PeiXin Qu received his Master degree in Henan University. Currently,

he works as lecturer in Henan Institute of Science and Technology. His

research interests include complex networking deployment, distributed

computing, information security technology, fault-tolerance in distributed

systems.

Xilong Qu received his master degree in University of Electronic

Science and Technology of China, and doctor degree in Southwest

Jiaotong University. Currently, he is an associate professor in Hunan

Institute of Engineering. His research interests include web service,

distributed computing, information security technology.

