
Verification of Embedded Real-Time Systems Using
Symbolic Model Checking: A Case Study

Tao Pang, Zhenhua Duan∗ and Xiaofang Liu
ICTT and ISN Lab, Xidian University, Xi’an 710071, P.R. China

t pang@126.com, zhhduan@mail.xidian.edu.cn, liuxiaofang smile@163.com

Abstract

This paper presents a case study for symbolic model checking (SMC) with Propositional
Projection Temporal Logic (PPTL). First, PPTL is briefly introduced. Then an outline of
symbolic model checking algorithm for PPTL proposed in [21] is presented. As a case study,
a single-track railroad crossing control system (STRCCS) is employed to illustrate how SMC
for PPTL can be utilized in the specification and verification of embedded real-time systems.

Keywords : Propositional Projection Temporal Logic, Symbolic Model Checking, Veri-
fication, Embedded Real-Time Systems

1 Introduction

Embedded systems has found wide applications in almost every aspect of our daily life,
such as electro-communication, industrial control, traffic control, aerospace and so forth.
With the ever growing complexity of VLSI-circuits or programmable chips, it is of vital
importance to detect errors in early stages of the development process. Once an embedded
system is shipped, it becomes extremely expensive to fix bugs. Over the last three decades,
plenties of techniques have been put forward for the verification of embedded systems, such
as symbolic simulation [6], testing [7] and theorem proving [16]. These techniques, however,
are not only usually very time consuming but also easily missing important behaviors as
well as requiring a large amount of human intervention. Model checking [8, 9] offers an
alternative approach which performs an exhaustive search procedure to automatically ex-
amine behaviors of embedded systems and determine if the given specifications are satisfied
by that systems. With this technique, the system is modeled as a state-transition structure
while the specification is expressed in a temporal logic formula [1]. Since the system models
mostly rely on explicit manipulation of state space, the size of systems can be verified is
severely limited [11]. Nevertheless, in realistic designs the size of a system model may grow
exponentially with the number of concurrent components. To conquer this problem, several
approaches, such as symbolic model checking (SMC) [11, 14, 21], bounded model check-
ing (BMC) [12], abstract model checking (AMC) [15], and compositional model checking
(CMC) [10], have been proposed with success. In particular, in [21], we put forward a
symbolic model checking algorithm for Propositional Projection Temporal Logic (PPTL)
[2] which offers a polynomial representation of the system model based on Reduced Ordered

∗ Corresponding author.

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013), pp.203-216
 http://dx.doi.org/10.14257/ijhit.2013.6.6.18

ISSN: 1738-9968 IJHIT
Copyright ⓒ 2013 SERSC

Binary Decision Diagrams (ROBDDs) [5], and time duration or periodic specification of
desired properties written in PPTL formulas.

In embedded real-time systems, certain actions must accomplish within a limited time
bounds or start after some point of time. For instance, the specifications for a data bus
arbiter to be verified are: (1) the request signal oscillates with a minimum frequency of
4MHz 1; (2) a grant sinal is given between 15ns and 40ns after the request signal; (3)
a data bus never be occupied for more than 10ns. Though numbers of temporal logics
have been proposed to specify properties of embedded systems, such as Computation Tree
Logic (CTL) [17] and Linear Temporal Logic (LTL) [18], they are not powerful enough to
deal with the above real-time properties. Fortunately, all these time duration and periodic
properties can be conveniently expressed in PPTL formulas with chop and projection con-
structs: (1) (len(250))+ prj �request (2) request → len(15); len(25)∧⋄grant; true (3)
⋄(�bus isoccupied ∧

∨10
n=1 len(n)); true. Moreover, it has been proved that PPTL has

the expressiveness of full regular expressions [23].
In this paper, as a case study, we will perform symbolic model checking for PPTL on the

specification and verification of several real-time properties for an embedded single-track
railroad crossing control system (STRCCS).

The rest of the paper is organized as follows. The following section briefly introduces
the preliminaries, including the syntax, semantics of the underlying logic as well as some
useful concepts. Section 3 presents the outline of SMC algorithm for PPTL. In section 4, a
case of STRCCS is studied by means of the SMC for PPTL. Some related work is reviewed
in section 5. Finally, conclusions are drawn in section 6.

2 Preliminaries

2.1 Propositional Projection Temporal Logic

Our underlying logic is Propositional Projection Temporal Logic (PPTL) [2], which is
an extension of Propositional Interval Temporal Logic (PITL) [3]. Details of the logic can
be found in [2, 20, 24].

2.1.1 Syntax

Let Prop be a countable set of atomic propositions. The formula ϕ is given by the
following grammer:

ϕ ::= p | ⃝ϕ | ¬ϕ | ϕ1 ∨ ϕ2 | (ϕ1, . . . , ϕm) prj ϕ

where p ∈ Prop, ϕ1, . . . , ϕm and ϕ are all well-formed PPTL formulas. ⃝ (next) and prj
(projection) are basic temporal operators. A PPTL formula is called a state formula if it
contains no temporal operators, and a temporal formula otherwise.

The abbreviations true, false,∨,→ and ↔ are defined as usual. In particular, true
def
=

ϕ ∨ ¬ϕ and false
def
= ϕ ∧ ¬ϕ. Moreover, we have the following derived formulas:

1 4MHz = 1
250ns

, 1ns = 10−9s

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

204

Copyright ⓒ 2013 SERSC

A1 ε
def
= ¬⃝ true A7 more

def
= ¬ε

A2 ⃝0ϕ
def
= ϕ A8 ⃝nϕ

def
= ⃝(⃝n−1ϕ)

A3
⊙

ϕ
def
= ε ∨⃝ϕ A9 ϕ1;ϕ2

def
= (ϕ1, ϕ2) prj ε

A4 ⋄ϕ def
= true ; ϕ A10 �ϕ

def
= ¬⋄¬ ϕ

A5 len(n)
def
= ⃝n ε A11 halt(ϕ)

def
= �(ε ↔ ϕ)

A6 fin(ϕ)
def
= �(ε → ϕ) A12 keep(ϕ)

def
= �(true → ϕ)

where
⊙

(weak next), � (always), ⋄ (sometimes) and ; (chop) are derived temporal oper-
ators, ε (empty) means that the current state is the final state of an interval, and more
denotes the current state is a non-final state of an interval; halt(ϕ) is true over an interval
if and only if ϕ is true at the final state, fin(ϕ) is true as long as ϕ is true at the final state
and keep(ϕ) is true if ϕ is true at every state ignoring the final state.

2.1.2 Semantics

States: Let B = {true, false}. In accordance with the the definition of Kripke struc-
ture [4], a state s over Prop is defined as a mapping from Prop to B, s: Prop −→ B. We
will denote the valuation of p at the state s as s[p].

Intervals: An interval σ is a finite or infinite sequence of states. The length of σ,
|σ|, is the number of states minus 1 if σ is finite, and ω otherwise. We extend the set
of non-negative integers N0 to include ω, i.e. Nω = N0 ∪ {ω}, and extend the relational
operators, =, <, ≤, to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Furthermore,
we define ≼ as ≤ -{(ω, ω)}. For simplicity, we will denote σ as < s0, . . . , s|σ| >, where s|σ|
is undefined if σ is infinite. Let σ be an interval and r1, . . . , rh be integers (h ≥ 1) such
that 0 ≤ r1 ≤ · · · ≤ rh ≼ |σ|. The projection of σ onto r1, . . . , rh is the projected interval

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl >

where t1, . . . , tl is the longest strictly increasing subsequence obtained from r1, . . . , rh by
deleting all duplicates. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

Interpretations: An interpretation is a triple I = (σ, k, j), where σ is an interval, k is
an integer, and j an integer or ω such that k ≼ j ≤ |σ|. The notation (σ, k, j) |= ϕ means
that formula ϕ is interpreted and satisfied over the subinterval σ(k...j) with the current state
being sk. The satisfaction relation (|=) is inductively defined as follows:

1. I |= p ⇔ sk[p] = true, for any p ∈ Prop
2. I |= ¬ϕ ⇔ I |̸= ϕ
3. I |= ϕ1 ∨ ϕ2 ⇔ I |= ϕ1 or I |= ϕ2

4. I |= ⃝ϕ ⇔ k < j and (σ, k + 1, j) |= ϕ
5. I |= (ϕ1, . . . , ϕm) prj ϕ ⇔ there exist integers r0 ≤ r1 ≤ · · · ≤

rm ≤ j, such that (σ, r0, r1) |= ϕ1, (σ, rl−1, rl) |= ϕl, 1 < l ≤ m,
and (σ′, 0, |σ′|) |= ϕ, for one of the following σ′:
(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1...j) or

(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 205

2.2 Normal Form of PPTL

Normal forms are useful in constructing LNFGs [22, 25]. In the following, we briefly
present the definition of normal form as well as some relevant concepts.

Definition 1 Let ϕ be a PPTL formula and ϕp the set of atomic propositions appearing in
ϕ. The normal form of ϕ is defined as follows:

ϕ ≡
m∨
j=1

(ϕej ∧ ε) ∨
n∨

i=1

(ϕci ∧⃝ϕ′
i)

where ϕej ≡
∧m0

k=1 ˙φjk, ϕci ≡
∧n0

h=1 ˙φih, l = |ϕp|, 1 ≤ m (also n) ≤ 2l, 1 ≤ m0 (also n0) ≤
l, φjk, φih ∈ ϕp, for any r ∈ ϕp, ṙ denotes r or ¬r; ϕ′

i is a general PPTL formula.

To simplify the proof and expressiveness, we sometimes use ϕe∧ε instead of
∨m

j=1(ϕej∧ε)
and apply

∨r
i=1(ϕi ∧⃝ϕ′

i) to replace
∨n

i=1(ϕci ∧⃝ϕ′
i). Then, we have

ϕ ≡ ϕe ∧ ε ∨
r∨

i=1

(ϕi ∧⃝ϕ′
i)

where ϕe and ϕi are state formulas. An important conclusion is that any PPTL formula can
be transformed to its normal form. Details of the proofs and the algorithm for transforming
a PPTL formula into its normal form can be found in [25].

2.3 Labeled Normal Form Graph

Definition 2 For a PPTL formula ϕ, LNFG of ϕ is a tuple G = (V (ϕ), E(ϕ), V0, L =
{L1, . . . , Lm}), where V (ϕ) denotes the set of nodes, E(ϕ) the set of edges and V0 ⊆ V (ϕ)
the set of root nodes, while each Lk ⊆ V (ϕ), 1 ≤ k ≤ m, is the set of nodes with label lk,
where lk means the finiteness of some chop formulas has not been satisfied at this node.

In V (ϕ), each node is specified by a PPTL formula, while in E(ϕ), each edge is a directed
arc labeled with a state formula ϕe from node ϕ to ϕ1 and is denoted by (ϕ, ϕe, ϕ1). In
LNFG, a finite path, πf = (v0, e0, v1, e1, . . . , ε), is an alternative sequence of nodes and edges
from a root v0 to ε node, while an infinite path, πi = (v0, e0, v1, e1, . . . , (vi, ei, . . . , vj , ej)

ω)
contains no ε node and there must exist some nodes, e.g. vi, . . . , vj , occurring for infinitely
many times. Let Inf(π) denote the set of nodes which occur infinitely often in an infinite
path π of LNFG G = (V (ϕ), E(ϕ), V0, L = {L1, . . . , Lm}), an important conclusion is that:
In G, finite paths or infinite paths with Inf(π) * Lj (1 ≤ j ≤ m) precisely characterize
finite or infinite models of ϕ. The proof of this fact and the algorithm for constructing the
LNFG of a PPTL formula can be found in [22].

3 Symbolic Model Checking for PPTL

A symbolic model checking algorithm for PPTL is proposed in [21]. To check a PPTL
formula ϕ against the system modeled by a Kripke structure M = (S, I,R, L), Sat(ϕ),
namely, the set of state s ∈ S where ϕ holds, is defined. Then whether M |= ϕ or not can
be equivalently checked by determine the emptiness of state set Sat(¬ϕ) ∩ I:

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

206

Copyright ⓒ 2013 SERSC

Theorem 1 Let M = (S, I,R, L) be a system model and ϕ be a property formula in PPTL.
M |= ϕ iff the intersection of Sat(¬ϕ) and I is empty, i.e. Sat(¬ϕ) ∩ I = ∅.
Proof. The proof of this theorem can be found in [21]. �

function checkPPTL (φ : PPTL) : ROBDD

Sat(φ) = false

φNF = NF (φ); /∗ NF(φ) =
∨n

i=1
φi where φi can either be

the terminating part (φe ∧ ε) or the future part φi ∧©φ′
i
∗/

for i=1 to n

case φi of

φe ∧ ε : Sat(φi) = Sat(φe) · Sat(ε);

φi ∧©φ′
i
(φ′

i
is not marked) : mark φ′

i
,

Sat(φi) = Sat(φi) · PreStates(checkPPTL(φ
′
i
: PPTL))

φi ∧©φ′
i
(φ′

i
is marked):

Sat(φi) = Sat(φi) · PreStates(fixpoint(τ(Sat(φ
′
i
))));

end case

end for

return Sat(φ);

end function

for i=1 to n Sat(φi) = false; end for

Sat(φ) = Sat(φ1) + Sat(φ2) + . . .+ Sat(φn) ;

//initialization

//kernel

//result

Figure 1. Symbolic model checking of PPTL formulas

This idea is formalized in the Algorithm checkPPTL, which takes ϕ as its argument and
returns an ROBDD representation of Sat(ϕ). In the initialization, Sat(ϕ) and Sat(ϕi)
(1 ≤ i ≤ n) are initially assigned with false, denoting that Sat(ϕ) = Sat(ϕi) = ∅. The key
idea of the Algorithm checkPPTL is recursive. Given a PPTL formula ϕ, we firstly rewrite
ϕ into its normal form ϕNF ≡

∨n
i=1 ϕi, and then consider each disjunct ϕi of ϕNF by the

recursive invocation of checkPPTL. Finally, we can figure out Sat(ϕ) by exerting logic “OR”
operation on all the Sat(ϕi) (1 ≤ i ≤ n), i.e. Sat(ϕ) = Sat(ϕ1) + Sat(ϕ2) + . . .+ Sat(ϕn).

function PreStates (ST) : ROBDD

substituting each occurence of xi (or xi) in ST by x
′
i
(or x′i)

S1 = ST ·R;

return S1;

end function

deleteing all occurences of x
′
i
(or x′i) in S1;

Figure 2. Symbolic model checking of PPTL formulas

The definition of Algorithm PreStates is shown in Fig. 2. Note that in Algorithm
checkPPTL and PreStates, unless mentioned otherwise, state set and transition relation
are equated with their corresponding characteristic functions which can be obtained by the
symbolic manipulation method mentioned in [19] and all the operations are performed on
the ROBDD representation of these boolean functions.

With checkPPTL, the model checking procedure can be performed in the following way:
firstly, invoking checkPPTL to calculate the ROBDD representation of Sat(¬ϕ); secondly,

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 207

if Sat(¬ϕ)∩ I equals to false, namely there is no states s ∈ I in which ¬ϕ holds, then we
have M |= ϕ. Further, if Sat(¬ϕ)∩ I ̸= false, then starting from any state in set of states
Sat(¬ϕ) ∩ I, we can always find a path Πwn of M as a witness to the fact that the system
model M violates the desired property ϕ. Details of checkPPTL can be found in [21].

4 A Case Study

In this section, as a case study, we are concerned with how the following single-track
railroad crossing control system (STRCCS) [13] can be verified by means of SMC for PPTL.

Open

Gate

Gate

Train

Controller

Request Lowering Closed Raising

ZOC (Zone of Control)

Open

Outside Inside Outside

Figure 3. Single-Track Railroad Crossing Control System

In the STRCCS system shown in Fig. 3, a train tries to pass through a railroad crossing
in such a way that the gates must be “closed” before the train enters the crossing and will
never be “open” before the train has left. The controller is used to lower and raise the gates
to control the flow of traffic across the crossing. An electrical schematic of the controller
can be found in Fig. 4. The essential functions of this system are presented as follows:

Figure 4. Electrical schematic of the controller

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

208

Copyright ⓒ 2013 SERSC

(1) The train notifies the controller 2 minutes before entering the crossing, and will exit
after at most 5 minutes;

(2) After 1 minute, the controller will gradually lower the gates. The gates will be “closed”
in 1 minute;

(3)Within 1 minute after the train has exited the crossing, the controller will start raising
the gates. The gates will be “open” within 1-2 minutes;

(4) The train has 2 statuses: inside and outside while the gates have 4 statuses: lowering,
raising, open and closed.

0 1 2 3 5 6 7 8 9 10

Requset :

4

Lowering :

Raising :

Closed :

Inside :

mins

Figure 5. Simulation result of STRCCS

Accordingly, we achieve the simulation result of input signal “request”, “closed”, “inside”
and output signal “lowering”, “raising” to illustrate how STRCCS works. The key idea of
this system is to ensure that:

(a) : The gates are closed before the train enters the crossing;

(b) : The gates will never be closed for more than 6 minutes.

Though failed or cumbersome to be specified by CTL and LTL, these properties can be
conveniently expressed in PPTL as follows, where len(n); (gate status = closed) denotes
that after n minutes gate status = closed holds:

(a) ⋄(train request = true → (len(2); gate status = closed ∧ ε; true))

(b) ⋄(train request = true →(⋄(�gate status = closed ∧
∨6

n=1 len(n)); true))

To present them in a standard way, atomic propositions req, in, cld, lr and rs are
defined to denote train request = true, train status = inside, gate status = closed,
gate status = lowering and gate status = raising respectively. Successively, we have:

(a) ⋄(req → (len(2); cld ∧ ε; true)) (b) ⋄(req → (⋄(�cld ∧
6∨

n=1

len(n)); true))

Moreover, we assume that ¬in and ¬lr ∧ ¬cld ∧ ¬rs respectively represent train status
= outside and gate status = open. Then, we can model the target system as a Kripke
structure M = (S, I,R, L) defined on AP = {req, in, cld, lr, rs} as in Fig. 6, where S =
{s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}, I={s0}, R={(s0, s0), (s0, s1), (s1, s2), (s2, s3), (s3, s4),
(s3, s8), (s4, s5), (s4, s8), (s5, s6), (s5, s8), (s6, s7), (s6, s8), (s7, s8), (s8, s9), (s9, s10), (s9, s0),
(s10, s0)}, L(s0) = ∅, L(s1) = {req}, L(s2) = {req, lr}, L(s3) = L(s4) = L(s5) = L(s6) =
L(s7) = {in, cld}, L(s8) = {cld}, L(s9) = L(s10) = {rs}.

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 209

req,lr in,cld

in,cld in,cld in,cld in,cld

cld rs,a,c rs,a,b

s1 s2 s3

s4 s5
s6 s7

s8
s9

s10

b,c

reqs0

c b a

Figure 6. Model of STRCCS system

Note that a system model specified by a Kripke structure M = (S, I,R, L) has the
property that for two states s1, s2 ∈ S, L(s1) = L(s2) implies s1 = s2, i.e. a state is
determined entirely by the atomic propositions true in it. Hence, in the system model
above, s3 = s4 = s5 = s6 = s7 and s8 = s9. To assign each state s ∈ S a unique encoding,
three extra atomic propositions a, b and c are added to AP for distinguishing s3 ∼ s7
between each other. Moreover, a, b, c can also be utilized to differentiate s8 and s9. For
instance, {in, cld, b, c} indicates that the gates are closed and the train has stayed inside
the crossing for 3 minutes. Implications for those labels relevant to the new added atomic
propositions can be found in Table 1.

Table 1. Implication of labels
AT ⊆ AP Implication of labels AT

{in, cld, c} the train has stayed inside the railroad crossing for 1 min
{in, cld, b} the train has stayed inside the railroad crossing for 2 mins
{in, cld, b, c} the train has stayed inside the railroad crossing for 3 mins
{in, cld, a} the train has stayed inside the railroad crossing for 4 mins
{rs, a, c} the gates have stayed in raising state for 1 min
{rs, a, b} the gate have stayed in raising state for 2 mins

With the frame work proposed in [19] for boolean representation of finite domains, sets,
and k-ary relations, we assume a fixed order on atomic propositions in AP as req < in <
lr < cld < rs < a < b < c, and assign each atomic proposition a corresponding boolean
value bi ∈ {0, 1} (0 ≤ i ≤ 7). Then each state s ∈ S can be represented with the boolean
vector by B : S −→ {0, 1}8, where

B(s) = (b0, b1, . . . , b7)

for each i, 0 ≤ i ≤ 7, bi = 1 if its corresponding atomic proposition holds at state s
and bi = 0 otherwise. For instance, the boolean encoding for state s6 ∈ S is B(s6) =
(0, 1, 0, 1, 0, 0, 1, 1). Accordingly, transition relation can be symbolically represented by its
characteristic function:

CR(x, x
′) =

17∑
i=1

CRj (x, x
′) = CR1(x, x

′) + CR2(x, x
′) + . . .+ CR17(x, x

′)

where for every 1 ≤ j ≤ 17, CRj (x, x
′) can be found in Table 2, while “+” and “·” are

logical “OR” and “AND” respectively.

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

210

Copyright ⓒ 2013 SERSC

Table 2. Symbolic representation of partial transition Rj

Ri ⊆ R CRi(x, x
′)

{(s0, s0)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s0, s1)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s1, s2)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s2, s3)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s3, s4)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s3, s8)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s4, s5)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5· x′
6·x′

7

{(s4, s8)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s5, s6)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s5, s8)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s6, s7)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s6, s8)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s7, s8)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s8, s9)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s9, s10)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s9, s0)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

{(s10, s0)} x0·x1·x2·x3·x4·x5·x6·x7 · x′
0·x′

1·x′
2·x′

3·x′
4·x′

5·x′
6·x′

7

We focus on formula ϕ ≡ ⋄(req → (⋄(�cld ∧
∨6

n=1 len(n)); true)). First, ¬ϕ is trans-
formed to its normal form:

¬ϕ ≡ req ∧ ¬cld ∧⃝ϕ1

∨
req ∧ cld ∧⃝ϕ2

∨
req ∧ ε

Then, LNFG of ¬ϕ can be constructed accordingly as depicted in Fig. 7. Successively, with
reference to the Algorithm checkPPTL, we have Sat(¬ϕ) =

Sat(req ∧¬cld) · PreStates(Sat(ϕ1)) + Sat(req ∧ cld) · PreStates(Sat(ϕ2)) + Sat(req ∧ ε)

where ϕ1 ≡ �¬(�cld ∧
∨6

n=1 len(n); true) ∧ ¬ϕ and ϕ2 ≡
∧5

n=0 ¬(cld ∧ len(n); true) ∧
�¬(�cld ∧

∨6
n=1 len(n); true) ∧ ¬(⋄(req → (⋄(�cld ∧

∨6
n=1 len(n)); true))).

req ∧ ¬cld

req ∧ ¬cld

req ∧ cld

req

¬φ

φ1φ2 φ3: ε

req ∧ ¬cld
req ∧ cld

req

req ∧ ¬cld

¬φ ≡ ¬((req → (cld ∧
∨6
n=1 len(n)); true))

φ1 ≡ ¬(cld ∧
∨6
n=1 len(n); true) ∧ ¬φ

φ2 ≡
∧5
n=0¬(cld ∧ len(n); true) ∧ φ1

Figure 7. LNFG of formula ¬ϕ ≡ ¬(⋄(req → (⋄(�cld ∧
∨6

n=1 len(n)); true)))

Therefore, the first step toward calculating Sat(¬ϕ) is to determine Sat(ϕ1) and Sat(ϕ2).
Intuitively, we have Sat(req ∧ ε) = Sat(req ∧¬cld∧ ε) = false, i.e. there is no state s ∈ S
such that state formula req (or req∧¬cld) holds at s and s has no successors via transition

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 211

relation R. Since the normal form of ϕ1 and ϕ2 is:

ϕ1 ≡ req ∧ ¬cld ∧⃝ϕ1

∨
req ∧ cld ∧⃝ϕ2

∨
req ∧ ε

ϕ2 ≡ req ∧ ¬cld ∧⃝ϕ1

∨
req ∧ ¬cld ∧ ε

with checkPPTL, we can obtain the following equations:

Sat(ϕ1) = Sat(req∧¬cld) ·PreStates(Sat(ϕ1))+Sat(req∧ cld) ·PreStates(Sat(ϕ2)) (1)

Sat(ϕ2) = Sat(req ∧ ¬cld) · PreStates(Sat(ϕ1)) (2)

Let P(S) be the power set of S, by substituting for the occurrences of equation (2) in
(1), we can infer that Sat(ϕ1) is the fixpoint of the function τ : P(S) −→ P(S), where
Sat(req ∧ ¬cld) = x0 · x1 · x3 · x4 · x5 · x6 · x7 2, Sat(req ∧ cld) = false and τ(B) =

Sat(req∧¬cld) ·PreStates(B)+Sat(req∧cld) ·PreStates(Sat(req∧¬cld) ·PreStates(B))

The computation of Sat(ϕ1) can be done in the following way: B is initially assigned with
Sat(req ∧ ¬cld) and intermediate variable B

′
with τ(B). Then B := B

′
and B

′
:= τ(B),

where τ(B) is computed with the updated value of B. This iteration will not terminate
until B equals to τ(B). Actually, Sat(ϕ1) is the final value of B when B = τ(B) occurs.
Consequently, we can figure out that Sat(ϕ1) = false : ROBDD.

Similarly, we can figure out each Sat(ϕi) (1 ≤ i ≤ 2) in a way backtracking the paths in
LNFG of ¬ϕ depicted in Fig. 7. As a consequence, we have Sat(¬ϕ) =

Sat(req ∧¬cld) · PreStates(Sat(ϕ1)) + Sat(req ∧ cld) · PreStates(Sat(ϕ2)) + Sat(req ∧ ε)

= (x0 ·x1 ·x3 ·x4 ·x5 ·x6 ·x7)·PreStates(false)+false·PreStates(false)+false = false

Furthermore, since Sat(¬ϕ) = false, we can infer that Sat(¬ϕ) ∩ I = false. Hence,
there is no state s ∈ I ⊆ S where ¬ϕ holds. On the other side, formula ϕ ≡ ⋄(req →
(⋄(�cld ∧

∨6
n=1 len(n)); true)) holds along all paths of M = (S, I,R, L) stemming from

s0 ∈ I, namely M |= ⋄(req → (⋄(�cld ∧
∨6

n=1 len(n)); true)).

¬φ′ ≡ ¬((req → (len(2); cld ∧ ε; true)))φ3: ε

φ2φ1¬φ′

req

req

req

req
req ∧ ¬cld

req ∧ ¬cld
φ1 ≡ ¬(len(1); (cld ∧ ε); true)) ∧ ¬φ′

φ2 ≡ ¬(cld ∧ ε; true) ∧ φ1

Figure 8. LNFG of formula ¬ϕ′ ≡ ¬(⋄(req → (len(2); cld ∧ ε; true)))

With the Algorithm checkPPTL and LNFG of formula ¬ϕ′ ≡ ¬(⋄(req → (len(2); cld ∧
ε; true))) shown in Fig. 8. We can prove that M |= ⋄(req → (len(2); cld∧ ε; true)) in the
same way. Finally, by proving that the gates are closed before the train enters the crossing
and the gates will never be closed for more than 6 minutes by means of SMC for PPTL,
we confirm the correctness of this STRCCS system.

2 x0 · x1 · x3 · x4 · x5 · x6 · x7 is the characteristic function of set {s1, s2} where req ∧ ¬cld holds.

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

212

Copyright ⓒ 2013 SERSC

5 Related Work

Symbolic model checking [11, 14] has found successful use in the verification of qualitative
properties of embedded systems. However, when it comes to the specification of quantitative
properties, especially the real-time properties, SMC for CTL and LTL becomes inefficient.
In [26], authors talk about the limitations of applying CTL into the verification of real-time
systems and present a new model checking algorithm for quantitative temporal structures
and quantitative computation tree logic (QCTL). Compared with [26], authors of [27] also
extend CTL to include bounded until constructs and merely take the interpretations of
timed transition graphs with intermediate information into consideration. However, both
QCTL and CTL with bounded until constructs are not powerful enough to specify the
full regular properties, namely the periodic properties of real-time systems. Therefore, we
show how the SMC for PPTL can be used in the specification and verification of embedded
systems and give a paradigm as an application in this paper.

6 Conclusion

In this paper, we briefly introduce propositional projection temporal logic and its corre-
sponding symbolic model checking algorithm. This enables us to specify and verify time
duration and periodic properties of embedded real-time systems with PPTL, which are
failed or cumbersome to be verified by CTL and LTL, and to alleviate the state space ex-
plosion problems. Then, a case of a single-track railroad crossing control system is studied
to show the feasibility of SMC for PPTL.

However, it should be noted that this paradigm just considers simple real-time proper-
ties. In the future, we will further explore the specification and verification of quantitative
properties for embedded systems with PPTL in a systematic fashion. Moreover, as sym-
bolic model checking is well suited to the verification of embedded systems, we are also
motivated to develop a practical tool to ensure the correctness of a system specified by
the Hardware Description Language (HDL), such as Verilog, VHDL and SystemC, before
behavior synthesis in system on programmable chip (SOPC) design flow.

7 ACKNOWLEDGEMENTS

This paper is supported by the NSFC Grant Nos. 61003078, 61133001, 60910004,
61272117, 61272118, 61202038 and 973 Program Grant No. 2010CB328102.

References

[1] E. M. Clarke, J. O. Grumberg, D. A. Peled: Model Checking. MIT Press, (1999)

[2] Z. Duan: Temporal Logic and Temporal Logic Programming. Science Press, (2006)

[3] B. C. Moszkowski: Reasoning about digital circuits. PhD Thesis, Department of Com-
puter Science, Stanford University. TRSTAN-CS-83-970 (1983)

[4] S. A. Kripke: Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9 (1963), pp. 67-96.

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 213

[5] R. E. Bryant: Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers C-35, Aug. 6 (1986), pp. 677-691.

[6] R. E. Bryant, M. N. Velev: Verification of Pipelined Microprocessors by Comparing
Memory Execution Sequences in Symbolic Simulation. In: Proceedings of Asian Com-
puter Science Conference (1997), LNCS 1345, Springer-Verlag, pp. 18-31.

[7] G. J. Myers: The Art of Software Testing. Wiley, (1979)

[8] E. M. Clarke, E. Emerson: Synthesis of synchronization skeletons for branching time
temporal logic. In Logic of Programs (1981), LNCS 131, pp. 52-71.

[9] J. Queille, J. Sifakis: Specification and verification of concurrent systems in CESAR.
In Fifth International Symposium on Programming (1981), LNCS 137. Springer-Verlag,
pp. 337-351.

[10] E. M. Clarke, D, E. Long, K. L. McMillian: Compositional model checking. In pro-
ceedings of the 4th Annual Symposium on Logic in Computer Science (1989). IEEE
Computer Society Press, Los Alamitos, Calif, pp. 46-51.

[11] J. R. Burch, E. M. Clarke, K. L. McMillian: Symbolic Model Checking: 1020 States
and Beyond. Fifth Annual IEEE Symposium on Logic in Computer Science (1990), pp.
428-439.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman and Y. Zue: Bounded Model Check-
ing, volume 58 of Advances in computers. Academic Press, (2003)

[13] J. B. Møller: Symbolic Model Checking of Real-Time Systems using Difference Decision
Diagrams. PhD thesis, IT University of Copenhagen, April (2002)

[14] K. L. McMillan: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht
(1993)

[15] E. M. Clarke, O. Grumberg, D. E. Long: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (1994), 16(5) 1512-1542.

[16] C. A. R. Hoare: An axiomatic basis for computer programming. Communications of
ACM (1969), 12 (10) 576-583.

[17] M. Ben-Ari, Z. Manna, A. Pnueli: The temporal logic of branching time. In ACM
Symp. Principles of Programming Languages (1981), pp. 164-176.

[18] A. Pnueli: The temporal logic of programs. In: Proceedings of 18th IEEE symposium
on foundations of computer science (1977), pp. 46-57.

[19] R. E. Bryant: Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys (CSUR) (1992), vol.24, pp. 293-318.

[20] Z. Duan: An Extended Interval Temporal Logic and A Framing Technique for Tem-
poral Logic Programming. PhD thesis, University of Newcastle Upon Tyne (1996)

[21] T. Pang, Z. Duan, C. Tian: Symbolic Model Checking for Propositional Projection
Temporal Logic. In: Proceedings of 6th International Symposium on Theoretical As-
pects of Software Engineering Conference (2012), pp. 9-16.

[22] Z. Duan, C. Tian: An Improved Decision Procedure for Propositional Projection Tem-
poral Logic. ICFEM (2010), pp. 90-105.

[23] C. Tian, Z. Duan: Propositional Projection Temporal Logic, Büchi Automata and
ω-Regular Expressions. In proceedings of TAMC (2008), pp. 47-48.

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

214

Copyright ⓒ 2013 SERSC

[24] Z. Duan, M. Koutny, C. Holt: Projection in temporal programming. In: Proceed-
ings of logic programming and automatic reasoning (1994), Lecture Notes in Artificila
Intelligence, vol. 822, pp. 333-344. Springer, Heidelberg.

[25] Z. Duan, C. Tian, L. Zhang: A Decision Procedure for Propositional Projection Tem-
poral Logic with Infinite Models. Acta Informatica (2008), 45(1), pp. 43-78.

[26] J. Fröβl, J. Gerlach, T. Kropf: An Efficient Algorithm for Real-Time Model Checking.
In European Design and Test Conference (1996), pp 15-21.

[27] S. Campos, E. Clarke: Real-Time Symbolic Model Checking for Discrete Time Models.
In T. Rus and C. Rattray, editors, Theories and Experiences for Real-Time System
Development (1994), AMAST Series in Computing. World Scientific Press, AMAST
Series in Computing.

Authors

Tao Pang received his B.Sc. degree from School of In-
formation Science and Engineering at Shandong University
of Science and Technology, China in 2007. Currently, he
is working toward the Ph.D. degree at Xidian University,
China. His research interests include modeling and verifi-
cation of embedded real-time computing systems, model
checking algorithms and support software for system on
programmable chips design. He is a member of China Com-
puter Federation and a member of ACM.

Zhenhua Duan is a professor in Computer Science at Xi-
dian University, Xian China. He obtained his B.Sc. and
M.Sc. degrees from Northwest University of China in 1982
and 1987, and Ph.D. degree from University of Newcas-
tle upon Tyne in 1996. He worked as a research associate
in three universities including University of Ulster, Univer-
sity of Newcastle upon Tyne and University of Sheffield.
His research interests concentrate on concurrent, real-time,
and hybrid systems, including modeling, simulation, and
verification of such systems. In addition, he is interested
in temporal logic programming, formal languages and au-
tomata, and formal semantics. He is also interested in the
multi-core programming. He is a senior member of China
Computer Federation, a senior member of the IEEE, IEEE
Computer Society, and a senior member of ACM.

International Journal of Hybrid Information Technology
 Vol. 6, No. 6 (2013)

Copyright ⓒ 2013 SERSC 215

International Journal of Hybrid Information Technology
Vol. 6, No. 6 (2013)

216

Copyright ⓒ 2013 SERSC

