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Abstract 

Internet has developed into dynamic network where users use wired/wireless access 

technologies. The diversity of bandwidths, delays and error rates observed on Internet have 

increased. TCP is the common denominator for many services therefore by modifying TCP 

the need for applying solutions locally can be reduced. We focus on making TCP more 

efficient in a way to speed up its slow start phase. Different Slow Start algorithms will be 

analyzed and new variant will be proposed.  
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1. Introduction 

Internet provides best effort service, the network does it’s best to deliver the data as 

efficiency as possible. File downloading today could take twice the time it took yesterday. In 

the 90 ties more than 90% of the Internet traffic was TCP based. The base shape of TCP 

algorithm was presented by Van Jacobson [1-2]. Exponential increase of the sending rate was 

introduced; the initial window size was set at three packets. This protocol was offering fast 

data transfer, reliable connection, congestion control and flow control. The mechanism was 

efficient in time when 56K modem communication was a standard. Today the broadband 

links are defined as connections that provide speed faster than 1Mbps. With the time TCP was 

evolving, variety of protocols were announced, each of them designed to provide better 

network efficiency. Slow Start, congestion avoidance and flow control are the main phases in 

which they differ. TCP was developed to provide best wired network utilization. Limited 

Slow Start [3], Larger Initial Window, TCP Reno, New Reno, Vegas, Sack, Dual, Fast, Bic, 

Cubic, Highspeed, Hamilton, Hybla, Scalable, Westwood, Veno, Low priority, Illinois, 

Compound, Snoop, Abs, Fack, Linux, Full are some of the algorithms and TCP versions that 

were developed to improve the network utilization [4-18]. Most of the developed protocols 

were targeting wired network utilization; work was done in wireless traffic utilization too. 

Initial network conditions are changed; today we are dealing with broadband networks, the 

need of faster slow start phase is obvious if we want to provide better network utilization. 

This is the main driver of our research and motivates us to modify the slow start phase. The 

paper is organized as follows: Section 2 gives brief overview of the slow start phase, 

discusses some related work and motivates the need of our approach. Section 3 describes our 

simulation environment and section 4 presents the simulation results. Section 5 concludes the 

paper. 
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2. TCP Evolution 

Early TCP versions included a method for the receiver to control the rate at which the 

sender was transmitting but no algorithms for handling dynamic network congestion which 

was the main reason why the networks suffered from congestion collapses. Numbers of 

algorithms were proposed by Jacobson which were incorporated in the Tahoe version. The 

main idea was the TCP sender continuously to adapt its sending rate to the available network 

capacity. This TCP regulates its sending rate by maintaining a set of windows, sending 

window (swnd), congestion window (cwnd), and the receivers advertised window (rwnd) 

where swnd is the minimum of cwnd and rwnd and it determines the sending rate. To find an 

appropriate value for cwnd, TCP continuously probes for available bandwidth by increasing 

the sending rate. How fast TCP will increase the sending rate is predefined by the phase in 

which it is (slow start or congestion avoidance). In slow start, cwnd is doubled each rtt 

leading to an exponential increase of the sending rate. When the sender is close to the 

estimate of the network capacity it is usually in congestion avoidance phase and increases 

cwnd by one segment per rtt. Slow start threshold (ssthresh) determines in which phase the 

sender is in (slow start or congestion avoidance). In case of loss ssthresh is set to max 

(Flight_size/2,2*SMSS), this creates history of the network capacity. Flight_size is the 

amount of data that have been sent but not yet acknowledged and has similar value to cwnd. 

SMSS defines the size of the largest segment that the sender can transmit. Slow Start is used 

if cwnd is less than ssthresh and optionally if cwnd equals ssthresh. TCP variants vary in the 

way they approach to solve the losses and network congestion. TCP Reno for example 

reduces the sending rate to half the prior sending rate when a loss is detected through the 

receipt of dupthresh dupack. This is called fast recovery phase, this phase provides Reno to 

provide higher sending rate than Tahoe. Fast retransmission is common phase for the both 

protocols. TCP probing behavior is presented at Figure 1. At the beginning the sender is in the 

slow start. When cwnd exceeds ssthresh the sender enters the congestion avoidance phase. 

After detecting loss through the arrival of dupthresh dupacks, cwnd is set to one for Tahoe 

and to half the prior cwnd in case of TCP Reno. Cumulative acknowledgements can inform 

the sender of one missing segment at time. In networks with long delays and high bandwidths 

this is a problem, it means that the sender either has to retransmit all segments starting from 

the lowest unacknowledged byte or should wait an rtt after each retransmission to get an 

indication of any other missing segments. This causes frequent timeouts if more than one 

segment is lost during the same rtt. New Reno was introduced it was designed to avoid 

multiple fast retransmit periods. TCP SACK was introduced to provide retransmission 

optimization and timeout prevention. It uses the option field. The length of this field is 

variable, but is limited at 40 bytes. SACK option allows the boundaries of at most four 

contiguous and isolated blocks of received segments to be specified. This option was quickly 

implemented in the systems and was used to estimate the amount of data that is currently in 

the network, which determines when the segments can be sent. The mentioned algorithms fall 

into the AIMD (Adaptive Increase, Multiplicative Decrease) family of algorithms. TCP 

addresses three major issues: reliability, flow control and congestion control. Congestion 

control is achieved by adapting of the sending rate. TCP feedback for successfully delivery of 

a packet is embodied by returning acknowledgement (ACK). Competing TCP senders with 

different end to end propagation delays will typically receive feedbacks at different rates and 

adapt their sending rate at a different price. A number of protocols were designed to limit the 

effects of the RTT unfairness and to improve the scalability over gigabit links. Most of them 

adopt a proactive approach based on monitoring packet’s RTT and reacting to its increase in 

an attempt to avoid network congestion. This behavior is justified by the assumption of a 

strong correlation between packet loss and RTT increase prior to the loss event. Examples of 
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algorithms that fit into this category are TCP Vegas, TCP Dual, Fast TCP. TCP Hybla 

implements a constant increase algorithm and provides RTT fairness under a certain stability 

bound. TCP Cubic tries to decouple the window growth from the returning ACK’s that is 

similar with the approach proposed by H-TCP. With Cubic the window size is a function of 

the time elapsed since the last packet loss, thus allowing higher efficiency in terms of total 

bandwidth utilization in case of long RTTs and reducing the throughput dependency from the 

RTT. In our scope of observation will be the AIMD based algorithms. In the previous work 

[19] we have found that best throughput performances were achieved when TCP Sack was 

used as transport protocol this is the main reason why we will use it in the simulation. If we 

modify the TCP Slow start phase in a way to achieve faster bandwidth utilization than TCP 

will be optimized to provide better throughput in broadband networks. If we take in 

consideration the time and conditions under which the protocol was born than from this point 

of view the improvement of the Slow start phase is important. 
 

2.1 Slow Start 

TCP uses a window-based congestion control. In the beginning nothing is known about the 

network. To get a good starting value for the congestion control, TCP uses an algorithm 

called Slow-Start [1]. Slow-Start starts with a congestion window (cwnd) of 1 (or something 

larger, when using larger initial window). As soon as the first TCP packet is ACK ed (the 

corresponding ACK packet has arrived) cwnd will be increased by 1. Now 2 packets will be 

sent. For each ACKed packet cwnd will be increased by 1. This behavior doubles cwnd for 

each RTT. The size of cwnd can be expressed by the following formula (t is the time since the 

beginning of the connection, it is a multiple of RTT): 

 

 cwnd = 2
t/RTT    

                                                             

 

The formula shows that cwnd increases exponentially. It is a good approximation as long 

as the network is able to transmit the whole traffic burst before the first packet of the next 

burst reaches the first queue that contains segments of the previous burst. We can conclude 

that Slow start uses an exponential function which increases slowly for small values and 

quickly for larger values. This means that several RTTs will be needed to achieve the 

bandwidth but two time’s overshoot of the network capacity is also possible. In order to 

combine the Slow Start and the AIMD algorithm Slow start threshold variable was 

introduced. Limited Slow start was proposed [3] because of the aggressive behavior of the 

standard Slow Start for large congestion windows. New parameter was introduced with 

predefined value of 100 MSS. If cwnd has value smaller than 100 MSS than standard Slow 

Start algorithm is used otherwise LSS is activated. LSS increases the cwnd value slower, this 

increases the time needed to reach the bandwidth but on the other hand in case of 

overshooting the network the losses will be smaller. 
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Figure 1. TCP behavior (Slow start and Congestion avoidance phase) 
 

Other method to speed up the Slow Start phase is to use larger initial window, this 

mechanism will speed up the beginning of the connection but the worst case will be overshoot 

of twice the available bandwidth. In our simulation scenario we are going to use TCP Sack as 

a transport protocol with slow start that uses faster increasing function. Like we state before 

faster increasing function adapts faster at the available bandwidth but it can overshoot the 

available bandwidth several times. In the basic Slow start it is twice the available bandwidth. 

LSS will be incorporated because of its function to limit the number of dropped packets for a 

large cwnd. 
 

2.2 Proposal of Advanced Slow Start mechanism (ASS) 

The advanced version of Slow start is proposed in the following algorithm: 

Algorithm 2 

if cwnd < 25: cwnd+=3; 

if cwnd >=25 && cwnd<50: cwnd+=2 

if cwnd >=50 && cwnd<75: cwnd+=1 

if cwnd >=75 && cwnd<100: cwnd+=0.5 

if cwnd >=100 use LLS 

The decrease parameters of cwnd in case of loss are chosen in a way to minimize the 

network overshooting. Algorithm 3 and 4 are more aggressive versions of the second 

algorithm. They will be used as guideline and comparative mechanisms that will provide 

results to indicate if we are not at the right track. 

 

Algorithm 3  

if cwnd < 25: cwnd+=2; 

if cwnd >=25 && cwnd<100: cwnd+=1 

if cwnd >=100 use LLS 

 

Algorithm 4 

if cwnd < 50: cwnd+=2; 

if cwnd >=50 && cwnd<100: cwnd+=1 

if cwnd >=100 use LLS 
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The choice of the threshold values can be explained with the usage of the 100 by LSS as 

special number. LSS round function changes every 50 packets so if we decrease 100 for 50 

packets we well have the threshold of the third algorithm. 25 is the consequence of the LSS 

algorithm, the LSS algorithm rounds K to 0 if cwnd < 25, so it is reasonable to use it as 

threshold in the second algorithm that is also used as increment in the first algorithm. 

With algorithm 1 will be denoted the classical Slow start. 
 

3. Simulation Scenario  

The Subject of our analysis will be two four nodes (n0-n3) bottleneck scenarios presented 

at Figures 2 and 3. 

 

Figure 2. First simulation scenario  

 

Figure 3. Second simulation scenario 
 

Ns 2.35 is used to simulate the environment. TCP Sack is used as a transport protocol. 

Additional 20% traffic loses will be included. The possibility of larger initial window will be 

switched off and on. LSS is used with max_sshtresh set at 100 MSS (maximum segment 

size). The queuing mechanism is Drop Tail. IFQ receives values of 5, 15, 25, 50, 100 and 200 

packets. Link delay is set at 10 ms and the network topology is defined at the Figures 2 and 3. 

Simulation time is set at 250 s. 
 

4. Simulation Results 

The main focus of the analysis will be the throughput and cwnd change. We are going to 

observe two scenarios both consisted of four nodes. In the first scenario the bottleneck 

between the nodes n1 and n2 is set at value of 0.3 Mbps and in the second is set at value of 10 

Mbps.  
 

4.1 First simulation scenario 

At Figures 4, 5, 6, 7, 12 and 13 is presented the cwnd change in accordance of time. Best 

cwnd behavior at Figure 4 is achieved when algorithm three is used, algorithm two shows 

slightly better behavior than cwnd achieved when algorithm four and one are used. At Figure 

5 cwnd achieved with algorithm 2 and 3 show improved behavior than cwnd achieved with 

algorithm 1, cwnd achieved with algorithm 4 is slightly shifted. Overlapping of the cwnd 
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change is achieved when IFQ is set at 25 packets. When IFQ is set at 50 packets best cwnd is 

provided when algorithm 2 is used. For higher IFQ values like 100 and 200 packets better 

start up behavior of cwnd is achieved when the improved algorithms are used. The new 

proposed versions don’t differ much in the behavior. If we analyze the throughput behavior 

shown at the Figures 8, 9, 10, 11, 16 and 17 we can notice improvement in the start up phase. 

Best throughput when IFQ is set at 5 packets is achieved by the third algorithm, throughput 

achieved by algorithm’s 1 and 4 is overlapping but when the second algorithm is used better 

throughput is obtained. If we increase the IFQ value at 15 packets than again best start up 

value is achieved when the second algorithm is used, followed by the throughput achieved 

with the basic Slow start algorithm, the rest of the algorithms follow. For larger IFQ value of 

25 packets the throughput has minor variations during the simulation time. Best throughput is 

achieved when algorithm two is used followed by the throughput achieved by the forth and 

the third algorithm and definitely worst throughput behavior in this phase is achieved with the 

basic slow start. If we increase the IFQ value at 50 packets than the throughput variation is 

presented at Figure 13. Best throughput in this case is achieved by the second algorithm 

followed by the basic algorithm. Throughput achieved by the rest of the algorithms is quite 

similar and is at the last place. If we double the IFQ value at 100 packets than we have similar 

rank list, first is the throughput achieved with algorithm 2, followed by the algorithm 1, 3 and 

4. Doubling the IFQ value at 200 packets will slightly change the rank list where algorithm 2 

provides best throughput followed by algorithm 4 than by 1 and algorithm 3. If we summarize 

the results we can confirm that with the proposed modification of the slow start phase we 

have achieved improved throughput behavior. If we use Larger initial window algorithm then 

the results of the achieved cwnd and throughput variations are presented at Figures 14, 15, 20, 

21, 22, 23 and 18, 19, 24, 25, 26, 27. At Figure 14 we can see overlapping of the graphs 

achieved with the algorithms 1, 3, 4. Improved initial behavior is provided by algorithm 2 in 

the initial phase but lost occurs very fast, mainly caused by the network overflow protection 

mechanism. cwnd is reduced and equilibrium is achieved. This cwnd behavior affects the 

throughput as can be seen from Figure 18, worst performance is achieved when algorithm 2 is 

used and almost overlapping of the throughput charts we have when the other algorithms are 

used. If we increase the IFQ value at 15 packets the results are shown at Figures 15 and 19. 

Best cwnd behavior is obtained by algorithm 2 followed by 4, 1 and 3. The throughput charts 

show similar behavior. With the next IFQ increment at value of 25 packets same cwnd 

behavior is achieved when algorithms 1 and 3 are used, worst performance for sure is 

achieved with algorithm 4. We can not define what kind of throughput performances will be 

achieved when algorithm 2 is used. The throughput presented at Figure 19 shows that best 

performances are achieved when algorithm 2 is used followed by algorithms 3, 1 and 4. When 

IFQ is set at 50 packets we have throughput domination when algorithm 2 is used followed by 

throughput achieved with algorithms 1, 4, 3. 

 

 

Figure 4. Cwnd Change, IFQ5, Wnd1, Loss 0% 
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Figure 5. Cwnd Change, IFQ15, Wnd1, Loss 0% 

 

 

Figure 6. Cwnd Change, IFQ25, Wnd1, Loss 0% 
 

 

 

Figure 7. Cwnd Change, IFQ50, Wnd1, Loss 0% 
 

 

 

Figure 8. Thp Change, IFQ5, Wnd1, Loss 0% 
 

 



International Journal of Hybrid Information Technology 

Vol.6, No.5 (2013) 

 

 

304   Copyright ⓒ 2013 SERSC 

 

 

Figure 9. Thp Change, IFQ15, Wnd1, Loss 0% 
 

 

Figure 10. Thp Change, IFQ25, Wnd1, Loss 0% 
 

 

Figure 11. Thp Change, IFQ50, Wnd1, Loss 0% 

 

 

Figure 12. Cwnd Change, IFQ100, Wnd1, Loss 0% 
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Figure 13. Cwnd Change, IFQ200, Wnd1, Loss 0% 

 

 

Figure 14. Cwnd Change, IFQ5, Wnd2, Loss 0% 
 

 

 

Figure 15. Cwnd Change, IFQ15, Wnd2, Loss 0% 

 

 

Figure 16. Thp Change, IFQ100, Wnd1, Loss 0% 
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Figure 17. Thp Change, IFQ200, Wnd1, Loss 0% 
 

 

Figure 18. Thp Change, IFQ5, Wnd2, Loss 0% 
 

 

Figure 19. Thp Change, IFQ15, Wnd2, Loss 0% 
 

 

Figure 20. Cwnd Change, IFQ25, Wnd2, Loss 0% 
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Figure 21. Cwnd Change, IFQ50, Wnd2, Loss 0% 
 

 

Figure 22. Cwnd Change, IFQ100, Wnd2, Loss 0% 

 

 

Figure 23. Cwnd Change, IFQ200, Wnd2, Loss 0% 
 

 

Figure 24. Thp Change, IFQ25, Wnd2, Loss 0% 
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Figure 25. Thp Change, IFQ50, Wnd2, Loss 0% 
 

 

Figure 26. Thp Change, IFQ100, Wnd2, Loss 0% 
 

 

Figure 27. Thp Change, IFQ200, Wnd2, Loss 0% 
 

 

Figure 28. Cwnd Change, IFQ5, Wnd1, Loss 20% 
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Figure 29. Cwnd Change, IFQ15, Wnd1, Loss 20% 
 

 

Figure 30. Cwnd Change, IFQ25, Wnd1, Loss 20% 
 

 

Figure 31. Cwnd Change, IFQ50, Wnd1, Loss 20% 
 

 

Figure 32. Thp Change, IFQ5, Wnd1, Loss 20% 
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Figure 33. Thp Change, IFQ15, Wnd1, Loss 20% 
 

 

Figure 34. Thp Change, IFQ25, Wnd1, Loss 20% 
 

 

Figure 35. Thp Change, IFQ50, Wnd1, Loss 20% 
 

 

Figure 36. Cwnd Change, IFQ100, Wnd1, Loss20% 
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Figure 37. Cwnd Change, IF200, Wnd1, Loss 20% 
 

 

Figure 38. Cwnd Change, IFQ5, Wnd2, Loss 20% 
 

 

Figure 39. Cwnd Change, IFQ15, Wnd2, Loss 20% 
 

 

Figure 40. Thp Change, IFQ100, Wnd1, Loss 20% 
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Figure 41. Thp Change, IFQ200, Wnd1, Loss 20% 
 

 

Figure 42. Thp Change, IFQ5, Wnd2, Loss 20% 
 

 

Figure 43. Thp Change, IFQ15, Wnd2, Loss 20% 
 

 

Figure 44. Cwnd Change, IFQ25, Wnd2, Loss 20% 
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Figure 45. Cwnd Change, IFQ50, Wnd2, Loss 20% 

 

Figure 46. Cwnd Change, IFQ100, Wnd2, Loss 20% 
 

 

Figure 47. Cwnd Change, IFQ200, Wnd2, Loss 20% 
 

 

Figure 48. Thp Change, IFQ25, Wnd2, Loss 20% 
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Figure 49. Thp Change, IFQ50, Wnd2, Loss 20% 
 

 

Figure 50. Thp Change, IFQ100, Wnd2, Loss 20% 
 

 

Figure 51. Thp Change, IFQ200, Wnd2, Loss 20% 

 

Figure 52. Cwnd Change, IFQ5, Wnd1, Loss 0% 
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Figure 53. Cwnd Change, IFQ15, Wnd1, Loss 0% 
 

 

Figure 54. Cwnd Change, IFQ25, Wnd1, Loss 0% 
 

 

Figure 55. Cwnd Change, IFQ50, Wnd1, Loss 0% 
 

 

Figure 56. Thp Change, IFQ5, Wnd1, Loss 0% 
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Figure 57. Thp Change, IFQ15, Wnd1, Loss 0% 
 

 

Figure 58. Thp Change, IFQ25, Wnd1, Loss 0% 
 

 

Figure 59. Thp Change, IFQ50, Wnd1, Loss 0% 
 

 

Figure 60. Cwnd Change, IFQ100, Wnd1, Loss 0% 
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Figure 61. Cwnd Change, IFQ200, Wnd1, Loss 0% 

 

 

Figure 62. Cwnd Change, IFQ5, Wnd2, Loss 0% 
 

 

Figure 63. Cwnd Change, IFQ15, Wnd2, Loss 0% 
 

 

Figure 64. Thp Change, IFQ100, Wnd1, Loss 0% 
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Figure 65. Thp Change, IFQ200, Wnd1, Loss 0% 
 

 

Figure 66. Thp Change, IFQ5, Wnd2, Loss 0% 
 

 

Figure 67. Thp Change, IFQ15, Wnd2, Loss 0% 
 

 

Figure 68. Cwnd Change, IFQ25, Wnd2, Loss 0% 
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Figure 69. Cwnd Change, IF50, Wnd2, Loss 0% 
 

 

Figure 70. Cwnd Change, IFQ100, Wnd2, Loss 0% 
 

 

Figure 71. Cwnd Change, IFQ25, Wnd2, Loss 0% 
 

 

Figure 72. Thp Change, IFQ25, Wnd2, Loss 0% 
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Figure 73. Thp Change, IFQ50, Wnd2, Loss 0% 
 

 

Figure 74. Thp Change, IFQ100, Wnd2, Loss 0% 
 

 

Figure 75. Thp Change, IFQ200, Wnd2, Loss 0% 
 

 

Figure 76. Cwnd Change, IFQ5, Wnd1, Loss 20% 
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Figure 77. Cwnd Change, IFQ15, Wnd1, Loss 20% 
 

 

Figure 78. Cwnd Change, IFQ25, Wnd1, Loss 20% 

 

 

Figure 79. Cwnd Change, IFQ50, Wnd1, Loss 20% 
 

 

Figure 80. Thp Change, IFQ5, Wnd1, Loss 20% 
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Figure 81. Thp Change, IFQ15, Wnd1, Loss 20% 
 

 

Figure 82. Thp Change, IFQ25, Wnd1, Loss 20% 
 

 

Figure 83. Thp Change, IFQ50, Wnd1, Loss 20% 
 

 

Figure 84. Cwnd Change, IFQ100, Wnd1, Loss20% 
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Figure 85. Cwnd Change, IF200, Wnd1, Loss 20% 
 

 

Figure 86. Cwnd Change, IFQ5, Wnd2, Loss 20% 
 

 

Figure 87. Cwnd Change, IFQ15, Wnd2, Loss 20% 
 

 

Figure 88. Thp Change, IFQ100, Wnd1, Loss 20% 
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Figure 89. Thp Change, IFQ200, Wnd1, Loss 20% 
 

 

Figure 90. Thp Change, IFQ5, Wnd2, Loss 20% 
 

Figure 91. Thp Change, IFQ15, Wnd2, Loss 20% 
 

 

Figure 92. Cwnd Change, IFQ25, Wnd2, Loss 20% 
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Figure 93. Cwnd Change, IFQ50, Wnd2, Loss 20% 
 

 

Figure 94. Cwnd Change, IFQ100, Wnd2, Loss 20% 
 

 

Figure 95. Cwnd Change, IFQ200, Wnd2, Loss 20% 
 

 

Figure 96. Thp Change, IFQ25, Wnd2, Loss 20% 
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Figure 97. Thp Change, IFQ50, Wnd2, Loss 20% 
 

 

Figure 98. Thp Change, IFQ100, Wnd2, Loss20% 
 

 

Figure 99. Thp Change, IFQ200, Wnd2, Loss 20% 

When IFQ is set at 100 and 200 packets same cwnd behavior is achieved with algorithms 

2, 3 and 4 but throughput variation is different, the best is achieved with algorithm 3. From 

the following we can conclude that for small IFQ values there is no improvement of the 

throughput. When IFQ is set at values of 25 and 50 packets best throughput is provided by the 

second algorithm. In case when IFQ receives values of 100 and 200 packets, best 

performances are achieved when the algorithm 3 is used.  If we incorporate 20% throughput 

losses at the link between n1 and n2 than the cwnd and throughput behavior in case when 

larger initial window is included/excluded is shown at the figures starting from 28 and ending 

with Figure 51. We can notice that in both cases with included/excluded larger initial window 

there are no changes of the cwnd and throughput behavior. We can notice that the size of the 

IFQ buffer doesn’t impact the cwnd and the throughput. One of the possible reasons for this 

cwnd, throughput behavior is the bottleneck capacity of the link between n1 and n2 and the 
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incorporated 20% uniform losses. In the initial simulation period cwnd and throughput 

performances achieved whit the second algorithm outperform the other achieved with the rest 

of the algorithms this stands for the ending period too. In the middle of the simulation cwnd 

of the algorithm 2 has large saw shape but it doesn’t provide best throughput performances. In 

the middle of the simulation best throughput performance is achieved with algorithm 3 and 4. 

It is obviously that they provide identical cwnd and throughput behavior. In this case we can 

say that they outperform the second algorithm 
 

4.2 Second simulation scenario 

The obtained cwnd results of this scenario are presented at the Figures 52, 53, 54, 55, 60, 

61. From the figures can be concluded that when IFQ receives values of 5, 15, 100, 200 

packets there is almost overlapping of the charts. There is a difference in the behavior only in 

the initial period of the Slow Start phase. When IFQ is set at 5 packets all algorithms has 

provided same cwnd and throughput change. If we increase the IFQ size at 15 packets than 

best cwnd is provided when algorithm 2 is used it enables to be achieved best throughput too. 

Minor cwnd and throughput variation can be noted when are used the rest of the algorithms. 

This is not the case when IFQ is set at 25 packets, in this case best cwnd change is obtained 

with algorithm 2 followed by algorithm 4, 3 and 1, this is the main reason for the throughput 

behavior presented at figure 58 where grate improvement can be noticed in the slow start 

phase. If we double the IFQ size than in the initial moment we achieve faster growth of the 

cwnd function by the advanced algorithms but the bandwidth overshooting limitation requests 

larger decrease parameter to be used which is the main reason for the rapid degradation of the 

cwnd value when loss has occurred in the first moments of the slow start phase. This cwnd 

behavior impacts the throughput and that is why algorithm 1 show best performances 

followed by the algorithm 2, 4 and 3. If we double the IFQ size again than best throughput 

will be provided by algorithm 2, almost similar results are obtained when algorithm 1 and 4 

are used. Worst throughput behavior is shown when algorithm 3 is used. In the last simulation 

IFQ parameter receives value of 200 packets. At Figure 61 is presented the cwnd change and 

at figure 65 is presented the throughput change form where we can notice that best throughput 

is provided by algorithm 2, second best by algorithm 3 followed by algorithm 1 and 4. If we 

sublimate the results it is quite obvious that the proposed algorithm provides faster change of 

the cwnd parameter that enables TCP to speed up the bandwidth estimation process. Larger 

initial window mechanism provides faster cwnd increase, we will include it in the following 

analysis. At Figures 62, 63, 68, 69, 70, 71 is presented the cwnd change and at Figures 66, 67, 

72, 73, 74, 75 we have presented the throughput change. At the beginning we will set the IFQ 

value at 5 packets, figures of interest are 62 and 66. Used algorithm 1, 3 and 4 are providing 

overlapping of the cwnd and throughput graphs. Worst performance in this case we have 

when algorithm 2 is used. This situation changes if we increase the IFQ at 15 packets.

Best cwnd and throughput performances are obtained with algorithm 3 followed by algorithm 

2, 4 and 1. When IFQ is set at 25 packets the rank list is as follows algorithm 4, 3, 2, 1. The 

throughput gain is visible for the improved algorithms. Doubling of the IFQ value changes 

the situation, algorithm 1 outperforms the rest of the algorithms (2, 3, 4). If we set IFQ at 100 

packets, best throughput is obtained when algorithm 2 is used. If we double the IFQ size 

algorithms 4 and 3 show best performances. From this cwnd and throughput behavior we can 

conclude that when larger initial window is used and IFQ receives small values the novel 

algorithms outperform the initial slow start algorithm and provide better throughput 

utilization except when IFQ is set at 50 packets.  Overall we can say that in most of the cases 

best performances are obtained with algorithm 3 followed by algorithm 2. Usage of the larger 

initial window mechanism decreases the performances obtained with the algorithm 2 than in 
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case when this mechanism is not in use. In both scenarios new developed algorithms show 

better performances in the slow start phase than the initial. We will complete the analysis with 

incorporating 20% throughput losses between nodes n1 and n2. At Figures 76, 77, 78, 79, 84, 

85 is presented the cwnd behavior, the throughput is presented at 80, 81, 82, 83, 88, 89 in case 

when Larger initial window is not in usage. In this case we have similar situation like in the 

previous simulation scenario there is almost similar behavior of the cwnd and the throughput 

regardless the IFQ change. In this case we can say that the IFQ change does not impact the 

throughput. Same results are obtained when IFQ receives value of 5 packets and 200 packets. 

During the simulation time of 250 seconds there is domination of the cwnd achieved with the 

second algorithm. This impacts the throughput and provides best throughput to be achieved 

when algorithm 2 is used, second best is achieved by algorithm 3 and 4 which behave similar 

and overlap. If we activate the Larger initial window algorithm then the cwnd and throughput 

behavior are presented at the following Figures 86, 87, 92, 93, 94, 95 and 90, 91, 96, 97, 98, 

99 respectively. Activation of the Larger initial window mechanism resulted with not so vivid 

cwnd change that is confirmed by the size of the window. In the first 40 s of the simulation 

we can notice that cwnd is wider, this is repeated when the simulation reaches time of 70 till 

90 seconds. In this case best cwnd performances are achieved when algorithm 2 is used 

followed by algorithm 3 and 4. Throughput follows the cwnd behavior so best throughput is 

obtained with algorithm 2 followed by the throughput achieved with algorithm 3 and 4. From 

the figures it is obvious that the throughput obtained with algorithm 3 and 4 is overlapping. 

Worst performances in this case are shown by the well known slow start, algorithm 1. In this 

scenario we can say that better performances are achieved with the proposed algorithms than 

when the link is set at 300Kbps with included 20 % throughput losses and incorporated 

Larger initial window algorithm. 

 

5. Conclusion 

In this paper we have proposed three different algorithms and we have presented the 

throughput and cwnd behavior. Algorithm 2 is recognized as advanced Slow start 

algorithm because of his nature, it is fast in the beginning, cwnd increases with value of 

cwnd=+3 and the decreasing factor is set at 4 after cwnd receives value of 25 the 

increasing factor is reduced at cwnd=+2 and the decreasing factor is set at 3. In order to 

provide fast but not too aggressive modification after cwnd receives value of 50 packets 

we are decreasing the increasing factor of cwnd and it receives values according 

cwnd=+1 with reducing factor 2 (standard slow start algorithm) after exceeding value of 

75 packets, cwnd increasing factor is set at cwnd=+0.5 with decreasing factor set at 

value of 2, for cwnd values grater than 100 we are using the LSS algorithm. This 

modification enables TCP to be faster in the initial period but not too aggressive. 

Variation of this modification is proposed in which cwnd receives value of cwnd=+2 

with decreasing factor 3, two variations are tested with threshold parameter set at 25 

and 50 packets in order to analyze the aggressive behavior of the proposal. We can say 

that best throughput behavior in the scenario is provided when algorithm 2 is used so 

this confirms our decision to name it as advanced slow start algorithm because of it 

improved characteristics in the initial phase. For smaller IFQ values in both situations 

we had almost overlapping of the throughput charts especially when the network 

bandwidth is higher. Increasing of the IFQ size shows more superior behavior of the 

advanced slow start algorithm, its improved behavior is most recognized for higher IFQ 

values (100, 200 packets). The other two proposals have more aggressive nature and 

provide lower performances than the basic slow start algorithm especially for higher 

IFQ values. If we incorporate Larger initial window in the first simulation scenario than 
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we can conclude that for small IFQ values like 5, 15 packets all algorithms provide 

similar behavior. When IFQ receive value of 25 and 50 packets than algorithm 2 

outperform the rest of the algorithms but this situation changes when IFQ is set at 

values of 100 and 200 packets. In this case algorithms 3 and 4 outperform algorithm 1 

and 2. Incorporation of Larger initial window mechanism in the second simulation 

scenario provides overlapping of the throughput chart when IFQ is set at 5 packets, 

exception is the throughput obtained when algorithm 2 is used, it shows poorest 

performances. When IFQ receives 15 and 25 packets all new proposed algorithms show 

better performances than the standard slow start algorithm. Doubling the IFQ value at 

50 packets changes the situation and algorithm one shows best performances. We can 

say that the reason for this behavior is the usage of the Larger Initial Window algorithm 

and the higher value of the reduction factor in the initial period of the slow start phase. 

When IFQ is set at 100 and 200 packets again we achieve better performances with the 

new proposed versions. If we incorporate losses in the system then Larger Initial 

window and the IFQ change does not impact the throughput and cwnd change in the 

both scenarios. In the first simulation scenario algorithms 3 and 4 over lap, algorithm 2 

show improved performances in part of the simulation time. In the second scenario best 

performances are obtained when algorithm 2 is used followed by algorithm 3 and 4 

which overlap themselves and poorest throughput performances are achieved by 

algorithm 1. The conducted analysis aloud us to conclude that in lossless systems there 

is large throughput improvement achieved by algorithm 2, small degradation of the 

performances is noted when Larger initial window is incorporated this stands when 20% 

throughput losses are included in case of increased bandwidth between n1 and n2. 

When are included losses in the first simulation scenario the throughput behavior 

provided by algorithm 3 and 4 outperform the one achieved when algorithm 2 is used.  

Generally we can say that the modification is important and algorithm 2 show improved 

performances in slow and high speed links. IFQ and large initial window mechanism 

impact the throughput and cwnd change in case of lossless scenario.  
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