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Abstract 

Gas turbines can be found in many industrial application areas. Gas turbine generation is 

limited by some undesirable effects which can be incorporated as operational constraints. 

Because of importance of energy, optimization of power generation systems is necessary. In 

order to achieving higher efficiencies, some propositions are preferred such as recovery of 

heat from exhaust gases in a regenerator, utilization of intercooler in a multistage 

compressor, steam injection to combustion chamber and etc. In this article multi-objective 

particle swarm optimization are employed for Pareto approach optimization of Gas Turbine 

cycle. In the multi-objective optimization a number of conflicting objective functions are to be 

optimized simultaneously. Multi-objective optimization offers a candidate scheme whose 

solution can satisfy the foregoing major requirements. At the first stage single objective 

optimization has been investigated and then MOPSO has been used for multi-objective 

optimization. The sets of selected decision variables based on this Pareto front, will cause the 

best possible combination of corresponding objective functions. The obtained results show 

that the output of multi-objective optimization scheme confirms that of single objective 

results. 

 

Keywords: Gas turbine, Multi-objective optimization, Particle swarm optimization, Power 

generation 
 

1. Introduction 

Most optimization problems in everyday life are not static in nature, have multiple 

objectives and at least two of the objectives are in conflict with one another. Multi-objective 

optimization problems (MOOPs) with conflicting objectives do not have a single solution. 

Therefore, MOO algorithms aim to obtain a diverse set of non-dominated solutions, i.e. 

solutions that balance the trade-off between the various objectives, referred to as the Pareto-

optimal front (POF). Another goal of multi-objective algorithms (MOAs) is to find a POF that 

is as close as possible to the true POF of the problem. Many MOAs store the found non-

dominated solutions in an archive. Therefore, if an algorithm finds new non-dominated 

solutions, the new solutions are compared with the solutions in the archive. If a new solution 

is dominated by any of the solutions in the archive, it is not placed in the archive. Otherwise, 

the new solution is placed in the archive and any solutions in the archive that are dominated 

by the new solution are removed from the archive/repository.  

There are many methods to solve multi-objective problems. In this paper we use the multi-

objective particle swarm optimization (MOPSO) algorithm. MOPSO is a PSO based 
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algorithm adapted for MOO by Lechuga [1]. In this paper, an optimal set of design variables 

in a gas turbine power plant, namely, compressor pressure ratio (Rp), excess air in 

combustion (EA), turbine inlet temperature (TIT), and inlet air temperature(T0) are used to 

reach Pareto front. Our considerable objective functions are net output power of cycle (Wnet) 

and cycle thermal efficiency (ηT). Our aim is to optimize this objective functions, with 

regarding suitable practical constraints, using MOPSO. 

From this section, input the body of your manuscript according to the constitution that you 

had. For detailed information for authors, please refer to [1]. 

 

2. Multi-Objective Optimization 
 

2.1 Definitions 

Each optimization problem contains one or more objective functions and a set of 

decision variables and most optimization problems contain a set of constraints. 

Optimization problems can be classified according to a number of characteristics, 

including the number of decision variables, the type of decision variables, the degree of 

linearity of the objective functions, the type of constraints, the number of optimization 

criteria or objectives and the number of optima [2, 3]. These concepts are discussed in 

more detail below.  

The objective function represents the quantity to be optimized, i.e., the quantity to 

be minimized or maximized. The objective function is also referred to as the cost 

function or optimization criterion. If the problem that has to be optimized is expressed 

using only one objective function, it is referred to as a SOOP. However, if a problem 

has more than one objective that has to be optimized simultaneously, it is ca lled a 

MOOP. Each objective function has a vector of decision variables that influence the 

value of the objective function. Therefore, a search algorithm iteratively modifies the 

value of these variables to find the optimum for the objective function. If an 

optimization problem has constraints, the set of constraints restricts the values that can 

be assigned to the set of decision variables. When solving an optimization problem with 

equality or inequality constraints, the optimization method’s goal is to assign values 

from the specified domain to the decision variables in order to optimize the objective 

function and to satisfy the constraints.  

Multi-objective optimization problems have more than one objective. Let a single 

objective function be defined as 

 fk : R
nx

 → R. Then f (x) = (f1(x), f2(x),. . . , fnk(x)) ∈ Ospace ⊆ R
nm

 represents an objective 

vector containing nk  objective function evaluations, and Ospace is the objective space. 

Using the notation defined above, a MOOP can be mathematically defined as follows: 

Minimize : f (x) 

Subject to : gi(x) ≤ 0, i = 1, . . . , ng 

hj(x) = 0, j = 1, . . . , nh 

x ∈ [xmin , xmax]
nx

 

(1) 

For SOOPs, where only one objective is optimized, global optima are defined as the 

best candidate solutions that lead to the smallest value of the objective function. 

However, when dealing with a MOOP, the various objectives are normally in conflict 



International Journal of Hybrid Information Technology 

Vol.6, No.5 (2013) 

 

 

Copyright ⓒ 2013 SERSC   271 

 

with one another, i.e., improvement in one objective leads to a worse solution for at 

least one other objective. MOOPs do not have specific optima, but trade-off solutions. 

A decision vector x∗ is Pareto-optimal if there does not exist a decision vector x ≠ x ∗ 

∈ F that dominates x∗, i.e., ∄k : fk(x) < fk(x∗). If x∗ is Pareto-optimal, the objective 

vector, f (x∗), is also Pareto-optimal. 

Together, all the Pareto-optimal decision vectors form the Pareto-optimal set (POS), 

defined as the set of all Pareto-optimal decision vectors, i.e., 

P∗ = {x∗
 ∈ F |∄x ∈ F : x ≺ x∗}        (2) 

The POS contains the best trade-off solutions for the MOOP. The corresponding 

objective vectors form the Pareto-optimal front (POF), which is the objective vector f 

(x) and the POS P∗, the POF, PF∗ ⊆ Ospace is defined as 

PF∗ = {f = (f1(x∗), f2(x∗), . . . , fnk(x∗))}, ∀x∗ ∈ P∗  
   (3) 

Therefore, the POF contains the set of objective vectors that corresponds to the POS, 

i.e. the set of decision vectors that are non-dominated.  

When solving a MOOP, the goal is to approximate the true POF. If the problem 

requires a single solution, the best trade-off solution is selected for the specific problem 

from the set of solutions represented by the POF. Therefore, the goal is to find an 

approximation of the true POF such that: 

• The distance between the found POF and the true POF is minimized.  

• The set of non-dominated solutions is as diverse as possible and as evenly spread 

out along the found POF as possible. 

• The set of non-dominated solutions contains as many solutions as possible. 

• The solutions that have been found and that form the found POF are stored for later 

reference. 

 

2.2 Particle Swarm Optimization 

Inspired by the social behavior of bird flocks, Eberhart and Kennedy [4] introduced 

PSO. The PSO algorithm (see Table 1) maintains a swarm of particles, where each 

particle represents a solution of the optimization problem under consideration. Each 

particle moves through the search space and the particle’s position in the search space 

is updated based on its own experience (cognitive information), as well as the 

experience of its neighbors (social information). The particle’s position that produced 

the best solution so far is referred to as its personal best or pbest. The position that lead 

to the best overall solution by all particles in a pre-defined neighborhood, i.e., either the 

best of the neighborhood’s particles’ pbests or the best of the current positions of the 

neighborhood’s particles, is called the neighborhood best or nbest. The first PSOs 

introduced by Eberhart and Kennedy are the global best PSO, or gbest PSO, and the 

local best PSO, or lbest PSO. The gbest PSO defines the neighborhood of each particle 

as the whole swarm. In this case the neighborhood best is also referred to as the global 

best or gbest.  

The velocity of a particle is calculated as follows: 

vi(t + 1) = vi(t) + c1r1(t)[yi(t) − xi(t)] + c2r2(t)[yN(t) − xi(t)] 
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where vi(t) and xi(t) are the velocity and position of particle i at time step t 

respectively; yN(t) represents the nbest of neighborhood and yi(t) represents the pbest at 

time t; c1r1(t)[y(t)−x(t)] is the cognitive component of the velocity and 

c2r2(t)[yN(t)−x(t)] is the social component of the velocity; c1 and c2 are positive 

acceleration coefficients that influence the contributions of the cognitive and social 

components respectively; and r1, r2 ~ U(0, 1)
nx

 are random values sampled from an 

uniform distribution with nx representing the number of decision variables or the 

dimension of the search space. Once the new velocity of a particle has been calculated, 

its new position can be determined by adding the velocity to its current position as 

follows: 

xi(t + 1) = xi + vi(t + 1)        (4) 

 

 

Table 1. Particle swarm optimization algorithm 

Steps  

1 Create and initialize a swarm 

2 While stopping condition has not been reached 

3 For each particle in swarm do 

4 Set pbest 

5 Set nbest 

6 For each particle in swarm do 

7 Calculate new velocity 

8 Calculate new position 

 
 

2.3 Multi-Objective Particle Swarm Optimization 

The MOPSO algorithm was introduced by Coello Coello and Salazar Lechuga [5] as 

one of the first PSO algorithms extended for MOO. Before the MOPSO algorithm can 

be executed, the swarm is initialized. Similar to PSO, the first step of the MOPSO 

algorithm initializes each particle’s initial position, velocity and pbest, and sets swarm 

size, neighborhood size, and the control parameters.  

In addition to the PSO initialization, the particles are evaluated and the positions of 

the particles that are non-dominated are stored in the archive. Furthermore, the search 

space that has been explored so far is divided into hypercubes and all particles are 

placed in a hypercube based on the particle’s position in objective space.  

MOPSO uses an archive to preserve elitism. However, the original version of 

MOPSO struggled to converge to the true POF in the presence of many local POFs [6]. 

To overcome this problem, Coello et al., [6] introduced an updated version of MOPSO 

that uses a mutation operator. Initially, the mutation operator is applied to all particles, 

but then the number of particles being mutated decreases rapidly as the number of 

iterations increases. The goal of the mutation operator is to increase the swarm’s 

exploration ability. However, the mutation operator is not only applied to the particles, 

but also to the range of each decision variable of the MOOP. This leads to the whole 

range of each decision variable to be included in the beginning of the search, but then 
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as the number of iterations increases, the range of each decision variable decreases. 

Coello et al., [6] compared the performance of the MOPSO with the mutation operator 

against three other MOO algorithms, namely NSGA-II, Micro-GA [7] and pareto 

archived evolution strategy (PAES) [8] on five constrained MOO benchmark functions. 

The results of the study indicated that MOPSO with the mutation operator was the on ly 

MOO algorithm able to find solutions along the full extent of the POF for all 

benchmark functions (see Table 2). 

 

Table 2. Multi-objective PSO algorithm 

Steps 
 

1 Create and initialize a swarm 

2 While stopping condition has not been reached 

3 Calculate new velocity 

4 Calculate new position 

5 Manage boundary constraint violations 

6 Update archive 

7 Update the particles’ allocation to hypercubes 

8 For each particle in swarm do 

9 Update pbest 

 
 

3. The Gas Turbine Power Plant 

A schematic of RIGT (Regenerative-Intercooled-Gas Turbine) cycle is given in 

Figure 1. The system consists of a two-stage intercooled air compressor, a regenerator, 

a combustion chamber and a gas turbine. The incoming air has a pressure of 1.013 bars. 

Turbine and compressor have an isentropic efficiency of 87 and 85 percent, 

respectively. The regenerative heat exchanger has an effectiveness of 75%. Combustion 

chamber adiabatic efficiency is 98%.the pressure drop through the air preheater is 4% 

of the inlet pressure for both flow streams and through the combustion chamber is 3% 

of the inlet pressure. It is 2% for intercooler. The fuel (natural gas, type C, C 1.5H5), is 

injected at environment temperature and pressure slightly more than environment 

pressure. In our cycle, overall compressor pressure ratio is Rp = P4/P1 and for each 

stage, pressure ratios are RP1 and RP2, respectively. Temperature of hot air exiting from 

first stage reduces to compressor inlet air temperature, due to heat extraction in 

intercooler.  
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Figure 1. Regenerative-Intercooled Gas Turbine Cycle 
 

4.   Optimization Problem 

Our goal, as mentioned before, is to maximize η(Rp,TIT,EA,T0) and 

Wnet(Rp,TIT,EA,T0) simultaneously. In our study, according to selection of Rp, TIT, EA, 

T0 as design parameters, suitable practical constraints must exert on objective function. 

These constraints are selected regarding to responsible references and sources. Our 

linear constraints are:  

•  Compression ratios between 3 to 15 are used at modern gas turbine cycles. Higher 

amount of this parameter is used for propulsive gas turbine cycles. In common power 

stations, compression ratio is bounded between 11 to 16. So, for considering wide range 

of compression ratios, we select it as follow: 1 ≤ Rp ≤ 25. 

•  Constraint of maximum temperature of cycle, is metallurgical nor 

thermodynamically. Presently maximum turbine inlet temperature is about 1250 to 

1340
o
C. In modern gas turbine cycles, this temperature is about 1500

o
C .Therefore: 

1200 ≤ TIT ≤ 1600 K. 

 

Table 3. Values of decision variables in SOOP using PSO 

 
 

This objective function is limited with two nonlinear constraints, too. First, in order 

to ease in natural displacement of exhaust gases (produced in combustion process) in 

stacks due to inequality of densities, and ecological considerations, we have [9]: Exh ≥ 

T0. Also, because of presence of some compositions such as Nitrogen, Sulfur and etc. in 

combustion productions, and for avoiding formation of corrosive materials such as 
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sulfuric acid, nitric acid, etc., we must restrain formation of water drops in cycle 

exhaust. For this purpose we consider this constraint as [10]: Exh ≥ T dewpoint which 

Tdewpoint is the dew point of combustion products. Finally, according to these constraints, 

desired nonlinear objective function is optimized using genetic algorithm in MATLAB. 

The results of the single-objective optimization using PSO are summarized in Table 3. 

Figure 2 shows Pareto fronts of two objectives after using MOPSO scheme. As you 

see interval variation is (45.29, 48.71) and (703.1, 721.2) for thermal efficiency and net 

power output, respectively. Two end points of Pareto optimal solution are the same 

optimum values in each direction. So MOPSO scheme’s output confirms single-

objective optimization results appropriately. 

 

 

Figure 2. Pareto front of thermal efficiency and net power  
 

5. Conclusion 

The work presented in this paper provided a provided a multi objective PSO (MOPSO 

algorithm) to obtain Pareto based optimization of the performance of a Brayton Cycle. 

Applying the multi-objective functions, namely thermal efficiency and the net output power 

were determined in terms of four design variables (Compressor pressure ratio, Excess air in 

combustion, turbine inlet temperature and inlet air temperature). Multi objective Particle 

Swarm Optimization MOPSO can easily handle constraints of gas turbine operation. It does 

not require a priori knowledge of the relative importance of the objective functions. 

Simultaneous optimization of two outputs revealed some interesting features among optimal 

objective functions and decision variables involved in the thermodynamic cycle of proposed 

system that would have not been obtained without the use of a multi-objective optimization 

approach. There is a set of acceptable trade-off near optimal solutions. This set is called 

Pareto front or optimality trade-off surfaces. It was also demonstrated that two extreme 

points in the Pareto included those of single objective optimization results.  
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