
International Journal of Hybrid Information Technology

Vol.6, No.5 (2013), pp.237-248

http://dx.doi.org/10.14257/ijhit.2013.6.5.22

ISSN: 1738-9968 IJHIT

Copyright ⓒ 2013 SERSC

A Dynamic Trustworthiness Attestation Method based on Dual

Kernel Architecture

Kong Xiangying
1,2

, Chen Xuebing
2
 and Zhuang Yi

1
1College of Computer Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing, China
2Jiangsu Automation Research Institute, Lianyungang China

Kongxy716@aliyun.com

Abstract

The existing trustworthiness attestation methods are not only difficult to be applied to the

embedded system because they are mainly based on virtual machine technology, but have

some problems such shat evidence is not obtained in time, protecting the privacy need trusted

third party and trust measurement efficiency is low. In this paper, an embedded system

dynamic trustworthiness attestation method based on dual-kernel (super kernel and normal

kernel) operating system architecture is proposed. Super kernel is non-changeable, and it

verifies the integrity of the critical data structures and kernel file in normal kernel. Super

kernel can serve as a trusted third party which can dynamically verify whether the code

segment changes in runtime. A system implementation is given in this paper, and the

experimental data show that the behavior of the system can dynamically verify the behavior of

program whether meets embedded trusted application demand or not.

Keywords: Trusted Computing; Trustworthiness Attestation; Dual core; Dynamic Integrity

Measurement; Embedded System

1. Introduction

The wide application of embedded system is closely related to people's life and its safety

also becomes hot topics in the study of computer technology, especially computing

environment safety. To prove whether the embedded computing environment used and

interacted with is credible or not becomes the focus of attention and this is the problem of

computing environments certificate (Trustworthiness Attestation).Trustworthiness Atte-

station turns out to be process of measuring and verifying the state of computing platform and

Trusted Computing provides credible solution to solve the trusted certificate. Attestation is

the most important features of trusted computing, and the basis of trusted relationship. Many

institutes and scholars have conducted a lot of research on trustworthiness attestation, and got

a lot of achievements. TCG (Trusted Computing Group) proposed, based on TPM (Trusted

Platform Module), binary attestation TBA (TPM-based Binary Attestation) method [1]. Based

on TBA, IBM put forward IMA (Integrity Measurement Architecture) [2], which implements

the integrity measurement of components before loading and supports remote attestation. But

there are some problems such that lack of information privacy protection, difficult to adapt to

system dynamic expansion requirements and low validation efficiency, in TCG integrity

measurement method before loading and remote attestation. Sadeghi A R, Ahmad R S et al.

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

238 Copyright ⓒ 2013 SERSC

carried out the study on security attribute [3-6], and proposed PBA (Property-based

Attestation) method, which to some extent, solved the privacy problem, but still did not solve

the low efficiency and difficult to implementation of dynamic credibility and attestation. Li

Xiaoyong et al. put forward trustworthiness attestation based on the behavior of the system [7,

8], while, Wang Shihua et al. proposed trusted atteatation method based on strategy[9]. The

two methods respectively change the platform state attestation into trusted attestation of

historical behavior sequence and feasible strategy, but they only consider part of the system

security attributes, and the granularity of system behavior and strategy measurement is

coarser. Virtualization is one of the hotspots in trusted computing research. Shi Guangyuan et

al. put forward a dynamic credible attestation method based on safety Virtual Machine

Introspection (VMI) [10], which use VMI technology in dynamic verification procedures on

whether actual behavior is consistent with the expected behavior, to judge the credibility of

the program. However, Xen and KVM virtual technology are still limited to I86 general

processor, so it’s difficult to be implemented on most embedded processor platform. Dual

kernel technology is a kind of layered architectures proposed by RT Linux [11] and RTAI

[12] in order to improve the Linux real-time performance. It, under the standard Linux kernel,

realized a small real-time kernel, and the original non-real-time Linux kernel runs on the

small kernel as a preemptable task, and all tasks run in the kernel address space. In this paper,

using RT Linux Kernel technology [11] for reference, an embedded system dynamic

trustworthiness attestation based on dual kernel (bi-Kernel TRAM, the biKernel-based

Trustworthiness Remote Attestation Method) is proposed. We design reliable attestation

architecture, use the dual kernel technology to solve the problem of proving system security,

and verify the integrity on system important components and key data in program running, in

order to improve the security of the system.

The paper is organized as follow: Section 2 gives the bi-Kernel architecture of the system;

Section 3 describes the measurement and verification methods; Section 4 gives the system

implementation and related results and Section 5 is the conclusion.

2. The Trustworthiness Remote Attestation System based on Dual Kernel

Attestation is the procedure of providing evidence or (and) logical reason to the Challenger

to proof its some properties. A typical attestation process includes three participants: AT

(Attestation), the party proposing service requesting, CH (Challenger), the party providing the

service, and a trusted third party acting as mediator AP (Appraiser), as shown in Figure 1.

Figure 1. A typical trustworthiness attestation system

AP is a stand-alone machine, and it can arbitrate credibility of all ATs in the system. In

such a system, AP is easy to become the bottleneck of the whole system.

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 239

In the bi-Kernel TRAM architecture, as shown in Figure 2, the AP acts as a super kernel

(called AP-Kernel) running on the ordinary kernel (called AT-Kernel) and AT sojourns on the

same machine, but AP-Kernel and AT-Kernel are stored physically isolated.

AP-Kernel is unchangeable which is similar to TPM and the nature of its composition is

static (non-changing). AP-Kernel with system privileges cannot be accessed by any user and

thusly, CH must trust the AP-Kernel. AT-Kernel is running as an AP-Kernel process

therefore AP-Kernel can control AT-Kernel running, get AT-Kernel running state, or direct

access and check all resources of the AT-kernel to determine if a violation of the rules such as

an attack occurs. AP-Kernel can also check the sequences and variables called by the

applications so that it can find the untrusted behaviors in the program running due to an

attack. Meantime, AP-Kernel provides the integrity measurement on key date structure such

as kernel module list, and it can detect whether there is hidden suspicious malicious module

loaded into AT-kernel, thus checking AT and sending the results to CH.

Figure 2. bi-Kernel TRAM trustworthiness attestation system

AT-Kernel runs as an AP-Kernel process, but a program in AT-kernel runs the same as on

a common kernel, that is, dual kernel architecture is transparent to the program in AT-Kernel.

For the convenience of AP-Kernel monitoring the operations of the AT-Kernel system, a

monitoring module is added in the AT-Kernel kernel, which intercepts system calls of AT-

kernel and records the related parameters then send to AP-Kernel through a particular data

channel.

AP-Kernel only measures AT-Kernel after receiving request from CH, while does nothing

in the normal system running, therefore the entire CPU is substantially occupied by AP-kernel

process in AT-Kernel so that the application system performance is not affected.

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

240 Copyright ⓒ 2013 SERSC

Figure 3. the attestation interaction of bi-Kernel TRAM architecture

bi-Kernel TRAM architecture does not affect the Consultant CH. CH can still think that the

arbiter AP is an independent existence, and that AP-Kernel is completely trustworthy. For

after the system is deployed AP-Kernel is no longer allowed to vary, CH can also verify

credibility of AP-kernel by integrity measurement. bi-Kernel TRAM allows users to

dynamically change AT-kernel configuration according to demand.

In bi-Kernel TRAM architecture, AT, AP and CH tripartite processing attestation

interaction is shown in Figure 3.

AT sends service requests Serv_Req to Consultant CH to ask access to CH service

resources; CH verifies the identity of the AP Cert_Id after receives the request; if certificate

validation is successful, then CH and AP will establish a credible pipeline Trust_Pipe,

otherwise mark AP exception and attestation terminates; CH negotiates Nego with AP, that is

CH sends the request to AP to measure the integrity of AT; AP measures AT according to the

measurement requirements proposed by CH and gets the information cared by CH; AP

returns the prove results to CH by trusted pipeline Trust_Pipe and CH validates attestation

results; if the attestation results validation is successful, then CH allows AP to access its

services, or refuses to provide service.

3. Measurement and Verification Methods

As similar to virtual machine technology architecture, the bi-Kernel TRAM architecture

designed for embedded system can support a variety of trusted measurement mechanisms, for

example, the model of trusted program behavior attestation described in [10] can be

introduced in the architecture.

3.1 Static Integrity Measurement

In bi-Kernel TRAM architecture, AT-Kernel, which runs user programs, need to measure

the integrity of user programs, but AT-Kernel is running on top of AP-kernel and cannot

directly access physical TPM, so we introduce a software virtual TPM (vTPM) into the AP-

Kernel, which is a kernel process of AP-kernel; for AT-kernel, vTPM can be accessed and

used as a real TPM. The trusted software architecture based on bi-Kernel TRAM with vTPM

is shown in Figure 4.

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 241

Figure 4. The trusted software architecture of bi-Kernel TRAM with vTPM

The BIOS of bi-Kernel TRAM system adopts modified PMON (TruPMON), which

supports Trusted Boot. The TruPMON structure is shown in Figure 5. TruPMON divides

PMON into CRTM and T-Loader to enhance the design. CRTM, as a root of trusted

measurement of computers, partly realizes platform initialization sub-module, TPM driver

sub-module, trusted measurement module and trusted call sub-module; CRTM mainly

accomplishes basic platform initialization, including the initialization of CPU, memory,

Cache and stack, establishment of T-Loader program to minimize operating environment,

initialization of TPM hardware and building the Trusted Root (Measurement Root, Storage

Root, Report Root); T-Loader is used to load the operating system.

Figure 5. TruPMON architecture

The trusted protocol stack uses open source software TrouSerS [13] and trusted services

platform uses OpenPTS [14]. The introduction of vTPM makes the introduction of trusted

CRTM

CRTM

Platform Init (stage 1)

Trusted Chip Driver Module

Trusted Measurement Engine

Trusted Call Engine

T-Loader

Platform Driver Module

(Stage 1)

Boot、Loading module

CH

CPU
TruPM

ON

TPM

tpm-drv

AP-Kernel

TPM

Emul

ator

vTPM

tpm-drv

AT-Kernel

IMA

TrouSerS

OpenPTS

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

242 Copyright ⓒ 2013 SERSC

root to AT-Kernel. The system startup process is as follows: After the system powers on,

TruPMON boots; firstly, it measures AP-Kernel, and extends the results to hardware TPM,

then AP-Kernel starts; secondly, AP-Kernel measures AT-Kernel and stores the results to

corresponding PCRs in vTPM, then AT-kernel starts; AT-kernel completes the measurements

of follow-up loading application modules, and extends the results to corresponding PCRs in

vTPM.

bi-Kernel TRAM takes TPM and TruPMON as trusted root, and gets the credibility of

platform by continuously submitting credible measurement reports to match an entity to its

expected value. The Root of Trusted Measurement (RTM) and Root of Trusted Report (RTR)

join up to provide current measurement data of the platform, and compare these measurement

results with their expected values to determine whether the platform operations meet the

expectations. The trusted chain transfer process is shown in Figure 6.

Figure 6. Trust Chain Transfer of bi-Kernel TRAM

3.2 Dynamic Integrity Measurement

However, the credibility of program in loaded time is not equal to that in runtime. Paper

[15] presents a self-modifying code technology SMC (Self-Modifying Code) which can let

program modifies its code during operations. SMC makes the static binary representation of

the program different between loaded and running. SMC behaviors are usually divided into

two steps: first, modify the read and write permissions of memory pages which store the

program code; second, cover corresponding specific code to achieve its purpose to modify the

code. Paper [16] gives a dynamic tracking process instruction technology for dynamic

integrity measurement of the process, but it does not give the impact on system performance

by such an instruction. [17, 18] introduce Intel TXT (Trusted Execution Technology) based

on the Intel VT (Virtualization Technology), however it is difficult applied to other

architectures.

For dynamic trusted measurement of the program, we design a dynamic integrity

measurement method: analysis and measure the binary file of the program running on AT-

kernel before loading, and store the measurements to corresponding PCRs in vTPM; in Linux

system, every loaded program corresponds to a process, and for every process system

maintains a memory descriptor mm_struct which records all address space information of the

process, and in mm_struct, unsigned long variable start_code, end_code, start_data and

end_data respectively points to starting or ending address of program code and data. When

RTR
RTS

AT

AP

TruPMON

TPM

CRTM T-Loader AP-Kernel

vTPM

AT-Kernel APP

RTM

Measure

Store

Log

Report

Measure

Log

APP

Measure

Log

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 243

need to attest the running program, we re-measure the program and compare the results with

that measured in pre-loaded time to determine whether the code segment modifies, so that we

can detect the occurrence of the attacks. The dynamic integrity measurement architecture

(DynIMA) is shown in Figure 7.

Figure 7. DynIMA Architecture

The attestation process is as follow:

 1) Measurement module receives the request from CH party to attest certain program;

 2) Measurement module communicates with monitor module which parses

corresponding process name of the program in AT kernel, and finds the process in process

list, gets the process handle, and then gets the address where the code segment stores; and

then finishes corresponding address conversion;

 3) Measurement module use vTPM to hash and sign the contents of the corresponding

code segment;

 4) Measurement module returns the information signed by vTPM to the challenge party

CH;

 5) The challenge party CH validates the measurement results to decide the next action,

and returns the results.

4. System Implementation and Testing

4.1 Implementation

We, by the ideas of RTLinux realization, implemented bi-Kernel TRAM on Godson 2F

platform. As shown in Figure 8, similar to RTLinux, AP-Kernel is a real-time nanokernel;

AT-Kernel is a modified version of standard Linux kernel 2.6.18.

In interrupt management, AP-Kernel intercepts the hardware interrupt of Godson IP2-IP7

[19], and AT-Kernel is isolated with interrupt controller by soft interrupt. The concrete

approach is that replace standard Linux kernel interrupt switch function (cli, sti), interrupt

return function (ret_from_irq), interrupt handler (do_IRQ) and interrupt vector table, etc.

[20], AT-kernel's interrupt process is replaced by simulated soft interrupts, that is to say, with

a set of variables to record the interrupt switch and the occurrences, all hardware interrupts

Measure Results

end_code

start_code

Measure Request

vTPM CH

Process

Binary

Program

Measurement

Module

Monitor

Module

AT-Kernel

AP-Kernel

Code

Segment

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

244 Copyright ⓒ 2013 SERSC

are intercepted by AP-kernel, and according to the interrupt types and flags it determines

whether or not to assign interrupt to AT-Kernel.

For task scheduling, AP-Kernel redefines the scheduling function. AT-Kernel runs as a

low-priority task of AP-kernel, but normal user process can still run on the AT-Kernel and

use the variety services provided by AT-Kernel.

The measurement module runs as a real-time process on AP-kernel, and communicates

with AT-Kernel by using the Mbuff communication mechanism of RTLinux.

Figure 8.Dual kernel architecture based on Godson 2F

4.2 Testing

First, we tested the SMC attack detection ability. On the principle of SMC, we designed

and implemented a program SMC_demo which can attack by dynamically modify their own

code. The program started by printing a message to show it has started. After a random period

of time, the program filled code segment from back to front with 0xaa by 4 bytes (enough to

form a system call address). The system uses DynIMA mechanism, and the results of the

attestation process output are shown in Figure 9. From the test results, we can see that

DynIMA can detect changes in the code segment and make up the defect of static integrity

measurement.

We also tested the time consumed for the measurement by testing the static integrity

measurement time and dynamic integrity measurement time of four different magnitude

modules (as shown in Figure 10 and Figure 11). The static module size, code segment size

and measurement time of the four test program are shown in Table 1 (static test and

measurement did not consider the disk read time). As outlined in Table 1, the measurement

time is linear to the size, and the relation is about 62us/MByte. The time consumption is very

small and does substantially no effect on the system operation because vTPM is virtual

software and the measurement of vTPM is calculated by CPU and PCR operations are

memory operations, thus its operational performance is far superior to physical TPM.

I/O Soft interupt

Hardware interupt I/O

AT-Kernel

Hardware（Godson 2F）

AP-Kernel
scheduler

Driver

two-level schedule

APP APP APP

Measure

Module

Monitor

Module Mbuff

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 245

Figure 9. The outputs of attestation

Figure 10.Four different magnitude modules

Figure 11. The hash of four different magnitude modules

Table 1. Time of Measurement

Medule N.O.
Static

Length(KB)

Code Segment

Length(KB)

Time of Static

Measurement(us)

Time of Dynamic

Measurement(us)

Mod1 80.6 61.216 5 4

Mod2 352.437 237.522 22 15

Mod3 4886.375 1003.358 303 62

Mod4 62445.733 15573.834 3872 966

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

246 Copyright ⓒ 2013 SERSC

5. Conclusion

For trustworthiness attestation demand of embedded systems, we take the reference of

RTLinux dual-core technology, and apply super kernel as trusted third party. Through code

dynamic measurement make up the defect of static integrity measurement method and

improve the credibility of system operations in runtime. Based on TrouSerS, OpenPTS,

PMON et al. open source technologies, modify PMON structure by reference to TCG-BIOS

requirements and implement on Godson 2F platform. The test results show that the system

can effectively deal with self-modifying code technology attack and measurement time also

meets the demand of real-time systems. In the future, we will further study the dynamic

measurement of data section method.

References

[1] TRUSTED C G. TCG Specification Architecture Overview, Reversion 1.4, (2007).

[2] R. Sailer, X. Zhang, T. Jaeger, et al., “Design and implementation of a TCG-based integrity measurement

architecture”, Proceedings of the 13th USENIX Security Symposium, San Diego, CA, USA, (2004).

[3] A. R. Sadeghi and C. Stuble, “Property-based attestation for computing platforms: caring about properties,

not mechanisms”, The 2004 New Security Paradigms Workshop, Virginia Beach, VA, USA, (2004).

[4] J. Poritz, M. Schunter, E. V. Herreweghen and M. Waidner, “Property attestation scalable and privacy

friendly security assessment of peer computers”, IBM Research Report RZ 3548,

http://domino.watson.ibm.com/library/cyberdig.nsf/papers/215E33CB2B4F7FA485256E97002A0D6C/$ File

/rz3548.pdf, (2004).

[5] U. Kuhn, M. Selhorst and C. Stuble, “Realizing property-based attestation and sealing with commonly

available hard- and software”, Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing,

New York, NY, USA, (2007).

[6] K. Rene, R. S. Ahmad, S. Christian, et al., “A practical property-based bootstrap architecture”, Proceedings

of the 2009 ACM Workshop on Scalable Trusted Computing, Chicago, Illinois, USA, (2009), pp. 29-38.

[7] X. Y. Li, C. X. Shen and X. D. Zuo, “An efficient attestation for trustworthiness of computing platform”,

Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal

Processing (IIH-MSP'06), (2006).

[8] X. Y. Li, X. D. Zuo and C. X. Shen, “System behavior based trustworthiness attestation for computing

platform”, Acta Electronic Sinica, vol. 7, no. 7, (2007), pp. 1235-1239.

[9] S. H. Wang and X. Y. Li, “Policy Based Trustworthiness Attestation for Computing Platform”, Acta

Electronic Sinica, vol. 4, no. 4, (2009), pp. 900-904.

[10] G. Shi, C. Shen and Y. Liu, “Dynamical attestation for trust based on secure virtual machine introspection”,

Journal of China institute of communications, vol. 11, no. 11A, pp. 24-38.

[11] C. E. Hall, “A real-time Linux system for autonomous navigation and flight attitude control of an un

inhabited aerial vehicle”, Proceedings of the 20th Digit al Avionics Systems Conference Proceedings,

Daytona Beach, FL, USA: IEEE Press, vol. 2001, (2011), pp. 1A11-1A19.

[12] G. Zhang, L. Chen and A. Yao, “Study and comparison of the RTHAL-based and ADEOS-based RTAI real-

time solutions for Linux”, Proceedings of the First International Multi-Symposiums on Computer and

Computational Sciences, Hangzhou, China: IEEE Press, (2006), pp. 771-775.

[13] TrouSerS, http://trousers.sourceforge.net/ v0.3.6, The open-source TCG Software Stack.

[14] openpts, http://sourceforge.jp/projects/openpts/wiki/FrontPage, Open Platform Trust Services.

[15] Y. -d. Wu, Z. -g. Zhao and T. -w. Chui, “An attack on SMC-based software protection”, Springer Berlin/

Heidelberg, (2007), pp. 232-248.

[16] L. Davi, A. -R. Sadeghi and M. Winandy, “Dynamic integrity measurement and attestation: towards defense

against return-oriented programming attacks”, Proceeding STC '09 Proceedings of the 2009 ACM workshop

on Scalable trusted computing, (2009), pp. 49-54.

[17] M. Gillespie, “Intel® Trusted Execution Technology: A Primer”, http://software.intel.com/en-

us/articles/intel-trusted-execution-technology-a-primer/, Intel Software Network, (2009) June 1.

[18] S. Choinyambuu, “A Root of Trust for Measurement”, MSE Project Report, (2011) June 15.

[19] Institute of computing technology, Chinese academy of sciences. User Guide of Godson 2F Platform v0.2 [Z],

(2007).

[20] Linux kernel source, http://www.kernel.org/pub/linux/kernel/v2.6.

http://sourceforge.jp/projects/openpts/wiki/FrontPage
http://www.sigsac.org/ccs/CCS2009/

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 247

Author

Kong Xiangying is born in 1972. He is a ph.d candiadate of Nanjing

University of Aeronautics & Astronautics. He research interests include

Software Engineering, Information Security, Real-Time Operating

system, et al.

International Journal of Hybrid Information Technology

Vol.6, No.5 (2013)

248 Copyright ⓒ 2013 SERSC

