
International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

83

A Quick String Matching Employing Mixing Up

Tianlong Yang and Hongli Zhang

School of Computer Science and Technology, Harbin Institute of Technology,

Harbin 150001, China

coolskydragon@163.com

Abstract

Most of the current string matching algorithms behave slowly when the amount of patterns

increases. In this paper a fast matching algorithm named SSEMatch was designed. PHADDW

instruction from SSE (Streamed SIMD Extension) set was used in SSEMatch to produce data

confusion, by which the patterns can be distributed into pseudo hash address such that there

will be less patterns left for verification matching. With the help of PHADDW, the whole

matching time was reduced. Our SSEMatch holds a O(n/m) complexity. Experiment shows

that similarly to WM algorithm, SSEMatch performs better when the length of the shortest

pattern increases. Also when the amount of patterns increases SSEMatch performs better

than WM.

Keywords: String matching; SSE; Fast matching

1. Introduction

String matching can be understood as the problem of finding a pattern with a

property within a given sequence of symbols [1]. Its application can be used in many

fields, such as bioinformatics and computer science. This paper focuses on a string

matching technique for computer security, especially exact multi-pattern matching for

intrusion-detection systems (IDS). Although most commonly used algorithms, such as

AC [2], AC BM [3] or WM [4] (in this paper we call these algorithms matching

automaton), are thought of as a good choice for a network environment application, and

these algorithms mature and perform well, their memory usage may become

problematic when they are applied to instances of super large patterns set. SSE

(Streamed SIMD Extension) is a kind of efficient instructions set for streamed media .

Its application has been extended to scientific computation and medical science except

processing for video image and audio. However it hasn’t been studied widely for string

matching. In this paper we will discuss a fast string matching algorithm employing SSE

instruction.

The remaining part of this paper is organized as follows: In Section 1, we talk about

the characters of SSE instructions set. In Section 2, we talk about the data mixing up

method using SSE instruction and its usage in string matching. In Section 3, we give the

experiment design and show the experimental results of the proposed algorithm. Section

4 is the conclusion of this paper.

2. Related Work

2.1. The Characters of SSE Instructions Set

The instructions inside SSE instructions set [5] can be roughly classified as data

moving instructions, data conversion instructions, logical instructions, arithmetical

http://dict.youdao.com/w/scientific/
http://dict.youdao.com/w/computation/
http://dict.youdao.com/w/medical/
http://dict.youdao.com/w/science/

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

84

instructions, special usage instructions, and string-dealing instructions. After reviewing

the Intel’s instructions manual we can see that the most frequently updated sub-

instructions set is arithmetical instruction. By modification of data type, such as signed,

unsigned, single and double, and the modification of combination of different operand

position inside the SSE register, SSE instructions set scale has been enlarged from the

first version to the latest version. The most interesting instructions in SSE might be

horizontal instruction in SSE3 and SSSE3. The original SSE instruction operation such

as adding, subtracting and so on, are done between two registers vertically. For

example, if two 128 bits SSE registers xmm1 and xmm2 are separated into 4 parts

respectively. After a vertical addition, the first 32 bits of the xmm1 will be the result of

the first part from xmm1 and xmm2. While in a horizontal addition, the first 32 bits o f

xmm1 will be the result of the first and the second part of xmm1. These two kinds of

additions can be described as following:

Vertical Operation:
xmm1[0-31] = xmm1[0-31]+xmm2[0-31],

xmm1[32-63] = xmm1[32-63]+xmm2[32-63],

xmm1[64-95] = xmm1[64-95]+xmm2[64-95],

xmm1[96-127] = xmm1[96-127]+xmm2[96-127],

Horizontal Operation:
xmm1[0-31] = xmm1[0-31]+xmm1[32-63],

xmm1[32-63] = xmm1[64-95]+xmm1[96-127],

xmm1[64-95] = xmm2[0-31]+xmm2[32-63],

xmm1[96-127] = xmm2[64-95]+xmm2[96-127]

Figure 1. Example of Vertical Operation and Horizontal Operation

From the computation we can see that during a horizontal operation, a 128 bits

number can be packed into a 64 bits number. While during a vertical operation the 4

segments of the 128 bits results come directly from relevant segments of xmm1 and

xmm2. If xmm2 is set 0, the procedure of horizontal operation can be regarded as a

procedure of data compression from xmm1. This special property is utilized to

implement a WM-like string matching algorithm in this paper.

SSE instructions set does not only improve the performance of streamed media, but

also begins to play more and more important roles in Fourier transform [6-11],

generating random number [15], solving system of linear equations [16], parallel FDTD

simulation [17] and medical science [18-19].

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

85

2.2. The Characters of AC and WM

Exact string matching algorithms can be classified into prefix matching, suffix

matching and substring matching, AC (belonging to prefix matching) and WM

(belonging to suffix matching) are two kinds of algorithms that have been given special

attention. With the help of trie tee and fail transition link AC algorithm can match a text

in linear time. However the way of implementing goto transition will influence the

matching time. For example, if all possible transition for each symbol in the alphabet

are stored into the goto information for a state, it takes only O(1) to retrieve the

destination state after a symbol has been read, and the whole matching time wi ll be

O(n), where n is the length of the text; if only transition for accepted symbols are stored

and binary searching tree is used for storing these goto information, it will take

O(nlog|∑|) [1] to match the whole text. It is obvious that if the matching algorithm

demands little memory to store the transition information the matching algorithm

matches slowly.

WM utilize a SHIFT table to make the text pointer move as fast as possible so tha t

the text can be matched in high speed. In order to get shift value of the SHIFT table, the

minimum length (min_len) of all patterns and all possible continuous characters block

BL of length B in the prefix with length min_len of all patterns are concerned [4]. The

construction for SHIFT table can be detailed in the following paragraph. And to make

the description easily we assume that all patterns are of the same length, i.e. min_len is

equal to each pattern’s length.

If the block BL appears in none of the patterns, the pointer’s movement for BL in

SHIFT table can be set to SHIFT(h1(BL))=min_len-B+1. If BL appears in some of the

p
i
s in P, the most right position, j, which BL appears in these patterns, should be

recorded. Then SHIFT(h1(BL)) will be set to min_len-j.

Provided that the shift value SHIFT(h1(BL)) is larger than 0, the pointer can be

moved forward without losing any possible matching. Once SHIFT(h1(BL)) is 0, the

text should be compared with all possible patterns by another hash function h 2 and table

HASH. In order to make the comparison run fast, all the patterns appearing in HASH

can be sorted alphabetically. More about the hash table, HASH, can be found in the

paper [4].

During the matching procedure, the text pointer’s position, pos, is set to min_len, and

the block BL of last B characters ending at pos will be checked. If

shift=SHIFT(h1(BL))>0, the text pointer will move to pos+shift. Once

shift=SHIFT(h1(BL))=0, the first B characters of all patterns appended after the hash

table entrance of HASH(h2(BL)) will be compared with the prefix, prefix(tpos-min_len+1tpos-

min_len+2…t pos-min_len+1+B-1). If the first B characters of the substring for current text equals

to the prefix of some pattern in HASH(h2(BL)), the text will be compared with all the

possible patterns.

3. String Matching Algorithm Based On Horizontal Instruction

We can know that when the amount of patterns increases there will be more patterns

for HASH(j), and these patterns might share few prefix(t0t1…tB-1). Then it will take

more time to compare each prefix(t0t1…tB-1) of the patterns. This part will introduce

another hash-like procedure to make more filtration to the text to avoid impossible

matching. The function of hash function is to make the data mixed up well by some

complicated actions so that a well-mixed-up value can be achieved. The mixed-up value

is called hash value or fingerprint. With the help of hash function, different patterns can

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

86

be distributed in to the address space of the hash table. When we want to know whether

the substring of a text equals to some pattern, we can get the fingerprint of the substring

by hash function. If the patterns’ set is not empty in the hash table with the value

fingerprint, one-by-one patterns comparison with the substring will be operated. In

order to make the matching procedure run quickly, a fast hash function should be used.

But even in the fastest hash function, SuperFastHash[20], there are several rounds of

addition, shift and xor operations. Such complicated function will not result in good

performance. In the following sections we will discuss a simple hash-like function

using horizontal operation in SSE instruction set to speed up the matching procedure.

Figure 2. Data Structure and Algorithm

The horizontal operation PHADDW xmm1, xmm2 in SSE instruction set [21] can be

written as following:

xmm1[0-15] = xmm1[0-15]+xmm1[16-31]

xmm1[16-31] = xmm1[32-47]+xmm1[48-63]

xmm1[32-47] = xmm1[64-79]+xmm1[80-95]

xmm1[64-63] = xmm1[96-111]+xmm1[112-127]

xmm1[64-79] = xmm2[0-15]+xmm2[16-31]

xmm1[80-95] = xmm2[32-47]+xmm2[48-63]

xmm1[96-111] = xmm2[64-79]+xmm2[80-95]

xmm1[112-127] = xmm2[96-111]+xmm2[112-127]

In PHADDW, 8 additions for 16 bits integer can be computed in just one instruction

cycle. The results of xmm1[0-15], xmm1[16-31], xmm1[32-47] and xmm1[48-63] come

from xmm1[0-15], xmm1[16-31], xmm1[32-47], xmm1[48-63], xmm1[64-79],

xmm1[80-95], xmm1[96-111] and xmm1[112-127]. The value in xmm1[0-31] comes

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

87

only from xmm1, under the circumstance that the PHADDW instruction is operated

twice, in the first round set value in xmm2 is the same as that in xmm1, and before the

second round nothing in xmm1 and xmm2 is changed. By this way xmm1[0-31] will be

a result of 6 additions of 128 bits number. After two rounds of operation, the value of

xmm1[0-31] can be regarded as a mixed-up result. Although the mixed-up operation is

not strong enough, it really can make the 128 bits number distributed into a 2
32

 space

evenly. So our purpose is just to distribute the 128 bits number into a space with length

256×256×256 instead of making more complicated mixed-up value. By this character

of PHADDW, we can design a multiple string matching algorithm suitable to patterns

which are longer than 16.

3.1. Evenly Distribution of 2 rounds of PHADDW

Let D={e|eZ,0≤e≤2
n
-1} represents a set of any n-bits data. From Figure 3(1) it can

be seen that: (1)  a,bD, there are 2
n
×2

n
 ways for computing (a+b)%2

n
. (2)  rD, if

r is regarded as a computation’s result, there are 2
n
 possible computations which satisfy

(x+y)%2
n
=r.

Figure 3(2) shows us how a data in xmm register is distributed evenly after

horizontal operations. After two rounds of PHADDW,  xxmm1[112-127], there are

2
n
 possible computations which satisfy (a+b)mod2

n
=x. Also there should be 2

n
 possible

computations which satisfy (e+f)mod2
n
=a and (g+k)mod2

n
=b respectively. After two

rounds of PHADDW there are 2
n
×2

n
×2

n
 possible computations which satisfy {{[(

e+f)mod2
n
]+ [(g+k)mod2

n
]} mod2

n
 }=x. xmm1[112-127] can represen 2

n
 different

data, as a result there are 2
n
×2

n
×2n×2

n
 =2

4n
 possible computations. For the same reason,

 xxmm1[96-111] there are 2
4n

 possible computations. From Figure 3(1) it can be

concluded that  xxmm1[96-127] there are 2
4n

×2
4n

=2
8n

 possible computations. Let

n=16, 2
8n

=2
128

, that means any data from xmm1[96-127] is from the computation results

from 128-bits register.

 xxmm1[112-127][96-111], x can represent 2
8n

/2
2n

=2
6n

 computations because all

possible ways of computations are distributed evenly. In this paper, only the last 24 bits

of xmm1[112-127][96-111] is used (operation u32i_v&0x00ffffff in Figure 4). Any data

composed of the last 24 bits of xmm1[112-127][96-111] can be decomposed as

2
8n

/2
24

=2
104

 computations in formula 1, where means the conjunction of two data.

{{[(e+f)mod2
n
]+[(g+k)mod2

n
]}mod2

n
 } {{[(e’+f’)mod2

n
]+[(g’+k’)mod2

n
]}mod2

n
 } (1)

With the help of (1), we can conclude that u32i_v can express 2
104

 possible data.

In our design there SHIFT and pseudo_hash_table are two major data structures used,

and only the first 16 continuous characters of each pattern are used to locate the

pattern’s address in the pseudo_hash_table. Our design has the same computing

complexity of O(n/m) with that of WM, because our SHIFT is the same with that of

WM, and our pseudo_hash_table plays the same role as the HASH table does in WM. In

order to make the computation more effective, we can retrieve data directly from the

pseudo_hash_table with the last 24 bits of the number pseudo_hash_value(32). If non-

empty information is found in the table entrance low24(pseudo_hash_value(32)), we

can go on to retrieve the last 8 bits of pseudo_hash_value(32) from the link list

appended to pseudo_hash_table [low24(pseudo_hash_value(32))]. The filtration

procedure is the same with that of WM algorithm, but this is not discussed in this paper.

It is necessary to point out that our design is only used for those patterns whose lengths

are not shorter than 16.

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

88

Figure 3. Evenly Distribution for 2n Modulo Addition Operation

Figure 4. Two Rounds of PHADDW

4. Experimental Results

In this part some experiments considering demand for memory and matching speed

are used to test the performance of the newly proposed SSEMatch algorithm. To make

the test more impartial, WM and AC are chosen among string matching algorithms

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

89

because SSEMatch is similar to WM and AC which run steady during a matching

procedure. The code of AC is from snort [22] while the code of WM is from a website

[23]. In the website, the implementation of WM only employs one time of shift and xor

operation for hash function h1 and h2 so that the cost for hash computation can be

ignored during the test. We changed from reporting for each appearance of all possible

matches in a text to reporting only the first appearance of the match in a text for both

AC and WM codes.

The tests were run on a notebook equipped with 2.0 GHz Pentium Intel(R) Core(TM)

2 Duo CPU, 2 GB of memory, 32×2 KiB L1 data cache and 2048 KiB L2 cache. The

computer was running Fedora 16 x86_64 Linux with kernel 3.1.0. All programs were

written in C (except that the model reading text file was written in C++) and compiled

using the optimization level -O3 with the gcc compiler 4.6.2. In the tests, we did not

explicitly specify which core was used. All the sets of different amount patterns come

from the same set of 5,000,000 URLs. And the text is a network data containing

1,000,000 URLs. Among the 5,000,000 URLs, there are only 4,000,000 patterns whose

lengths are not less than 32, so for parameter 32 the patterns amount is up to 4,000,000.

And for parameter 48 and 64 the patterns amount is up to 1,000,000 and 200,000 for the

same reason.

Figure 5. Demand for Memory with Different Patterns’ Amount

4.1. The Memory’s Demand of SSEMatch

It is shown in Figure 5 that AC demand for memory increases almost linearly while

the patterns amount increases. This is due to the data structure used to store trie node.

More patterns lead to more trie nodes while no shared prefixes among patterns are

found. So AC demand for memory is nearly proportional to the pattern amount. In the

test, the experimental data relating to AC demand for memory is not recorded in the

result when the pattern amount is more than 90,000. This is because the system stops to

respond to user’s action when AC demand for memory goes up to 1.5G. Therefore the

subsequent result for AC is set to 0, also the following results in this figure and those

results in later figures for AC are set to 0 for the same reason. For WM, its demand for

memory mainly depends on SHIFT table size and the patterns total bytes. In our test,

B=2, so WM only requires 256×256 units to store the SHIFT table; for SSEMatch, a

table with 256×256×256 units is employed; as a result SSEMatch demand for memory

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

90

is between WM and AC. From this test we can see that SSEMatch demand for memory

is nearly steady when the patterns amount increases, and its demand for memory is

acceptable.

4.2. The Amount of Patterns Needs to be Verified of SSEMatch and WM

In Figure 6 and Figure 7 the results respectively show the difference of maximal and

average number of patterns (pattern) waiting to be verified for table entrance between

WM and SSEMatch. For WM a table entrance is any element inside 256×256=65536

units when B=2, the number VerifyCntWM of patterns (pattern) waiting to be verified

means how many patterns can be found from this element. For SSEMatch a table

entrance is any element inside 256×256×256=256
3
 units from pseudo_hash_table, the

number VerifyCntSSE of patterns (pattern) waiting to be verified means how many

patterns can be found from this element of pseudo_hash_table.

Figure 6. The Amount of Patterns Needs to be Verified of SSEMatch and WM
(Maximal Value)

Once the shift value in SHIFT table is 0, the substring of current text should be

compared with the patterns belonging to some entrance of the table (table for WM or

pseudo_hash_table for SSEMatch). For WM the prefix of the substring needs to be

compared with each prefix (prefix_judgement) listed for the table entrance before

patterns comparison. For SSEMatch, after shift is 0, the only operation that needs to be

done is to use 2 PHADDW instructions to locate current text substring entrance inside

the pseudo_hash_table and compare the substring with the patterns belonging to this

entrance, this procedure is named as SSE_judgement. When the patterns amount

increases, the time for prefix_judgement is longer than SSE_judgement because

pseudo_hash_table size is far more larger than hash table size for WM. So it will be a

good choice to compare VerifyCntSSE with VerifyCntWM.

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

91

Figure 7. The Amount of Patterns Needs to be Verified of SSEMatch and WM
(Average Value)

The results in Figure 6 and Figure 7 show that VerifyCntWM is always larger than

VerifyCntSSE, such results are supposed to lead to a higher speed for SSEMatch than

WM (results in Figure 9).

Figure 8. The Amount of Operations During Matching of SSEMatch and WM

For the test in Figure 8 the total number of operations during matching is compared

between SSEMatch and WM. In SSEMatch, the operations include: locating the text

substring entrance in the pseudo_hash_table by 2 PHADDW instructions noted as

tssematch1; judging whether there are some patterns belonging to the located entrance

noted as tssematch2; comparing the text substring with each of the patterns belonging to

the located entrance noted as tssematch3. As a result the total operations for SSEMatch

will be tssematch=tssematch1+ tssematch2 + tssematch3, and tssematch1= tssematch2×2. In WM the

operations include: comparing the text substring prefix with each possible prefix

belonging to the located entrance noted as twm1; comparing the text substring with each

of the patterns belonging to the located entrance noted as twm2. So the total operations

for WM will be twm=twm1+twm2. It needs to be pointed out that the operations of shift

value computation for both WM and SSEMatch and the operation of locating some

entrance inside the hash table of WM are not included because these operations only

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

92

employ simple shift and xor, they can be ignored compared with other complicated

operations while discussing the performance of the two algorithms. The results show

that during a matching procedure, SSEMatch needs fewer operations than WM. This is

also an evidence to show that SSEMatch will take less time than WM (as shown in

Figure 9).

4.3. The Matching Speed of SSEMatch and WM

From the results in Figure 9, it can be seen that the matching speed of all the three

algorithms are likely to drop while the patterns amount increases. Compared with WM

and SSEMatch, the speed of AC drops fastest because AC’s demand for more memory

increases more dramatically than the other two algorithms while the patterns amount

increases. When the lengths of patterns are not longer than 16, WM runs faster than

SSEMatch while the patterns amount is within 80,000. Once the patterns amount is over

80,000 WM falls behind SSEMatch. In the later results in Figure 9 regarding the length

of patterns as 32, 48 and 64, SSEMatch surpasses WM in matching speed whatever the

patterns amount is. Compared with WM, we can conclude that each factor of SSEMatch

(such as max(VerifyCntSSE), ave(VerifyCntWM), tssematch and memory) possibly

relating to the matching speed of the algorithm remains more steady when the patterns

amount increases. As our conclusion of this part, SSEMatch will be a better choice than

WM when the patterns amount is very large or the length of patterns differs from each

other very much.

Figure 9. The Matching Speed of SSEMatch and WM

5. Conclusion

In this paper, a new data-mix-up method is proposed to reduce the time to mix data

up. This kind of data-mix-up method depends on the PHADDW instruction of

horizontal additions in SSE instructions set. With the help of PHADDW a new string

matching algorithm SSEMatch is designed. Similar to WM, SSEMatch can match text

fast by moving the text pointer fast. Different from WM, our design does not use

prefixes to filter out unnecessary pattern verification. Instead our design depends on

pseudo hash to filter out impossible matching. To use this kind of pseudo hash, the

prefixes with length of 16 of all patterns should be extracted and then packed into a

fingerprint of 4 bytes by two PHADDW instructions. Each fingerprint represents an

entrance of the pseudo_hash_table. In the later matching, when the text pointer stops

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

93

going further a fingerprint for the prefix of the text substring will be computed by the

same two PHADDW instructions. It means that the current text substring cannot be a

pattern if there is no pattern belonging to the substring entrance in the

pseudo_hash_table. So the current substring of the text can be filtered out and the text

pointer can be moved forward for later matching. The limitation of SSEMatch is that it

can only be used when all the patterns are not shorter than 16. Compared with WM,

SSEMatch demands more memory, however the demand for memory can be kept within

200M and 500M. The advantage of SSEMatch is that its demand for memory is between

AC and WM, and the matching speed of SSEMatch is faster and more steady than WM

when the patterns amount increases. Especially when the patterns amount goes up

beyond 20,000, SSEMatch will be a better choice.

Acknowledgements

This research was partially supported by the National Basic Research Program of

China (973 Program) under grant No. 2011CB302605; the National High Technolgy

Research and Development Program of China (863 Program) under grants No.

2011AA010705, No. 2012AA012502 and No. 2012AA012506; the National Key

Technology R&D Program of China under grant No. 2012BAH37B01. I really

appreciate Ozoemena Ani's help for her work correcting this paper. The authors also

gratefully acknowledge the helpful comments and suggestions of the reviewers, which

have improved the presentation.

References

[1] G. Navarro and M. Ra_not, “Flexible pattern matching in strings: practical on-line search algorithms for texts

and biological sequences”, Cambridge University Press, (2002).

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic search”, Communications of

the ACM, vol. 18, no. 6, (1975).

[3] C. Coit, S. Staniford and J. McAlerney, “Towards faster string matching for intrusion detection or exceeding

the speed of snort 1”, (2001).

[4] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching”, Technical Report TR-94-17, University

of Arizona, (1994).

[5] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture.

[6] Z. Qi, W. Feng-dan, D. Ke and W. Zhen-yang, “MMX/SSE/SSE2-based Optimization of the Key Algorithms

of H.264 Decoder”, Information and Electronic Engineering, vol. 1, (2006).

[7] L. Xiao-hong, “Parallelization of Motion Estimate Algorithm in H.264 Based on SSE”, Journal of Hefei

University, vol. 3, (2005).

[8] C. Yansong, D. Dagao and D. Zhongliang, “The Analysis of Transform and Quantization in H.264”, Modern

Transmission, vol. 5, (2004).

[9] D. Da-gao, C. Yan-song and D. Zhong-liang, “Study on Optimization of H.264 Video Encoder”, TV

Engineering, vol. 3, (2005).

[10] L. Yun-lin and W. Shu-dong, “Conversion of Color Space Between YUV and RGB on SSE2 Technique”,

Journal of Image and Graphics, vol. 1, (2010).

[11] X. Zhiying, Z. Liping and C. Jing, “Recognition and tracking system design of image based on SSE

instructions”, Foreign Electronic Measurement Technology, vol. 2, (2012).

[12] T. Yuelin, W. Biao, R. Yong, M. Deling, F. Peng and P. Yingjun, “Application of SSE to real-time frequency

spectrum analysis for neutron pulse signal”, Nuclear Techniques, vol. 1, (2009).

[13] L. Cheng-jun, Z. Wei-feng and Z. Chong-guang, “Optimal 2D FFT algorithm based on intel SIMD

instructions”, Computer Engineering and Applications, vol. 43, no. 5, (2007).

[14] Y. Quan, G. Zi-qi, Y. Qian and L. Cai-xia, “Highly Effective FFT Algorithm Based on Parallel Techniques”,

Science Technology and Engineering, vol. 16, (2008).

[15] Z. Guang and H. Wen-bao, “Construct Random Number Generator Based on SSE2 Instruction”, Journal of

Information Engineering University, vol. 3, (2008).

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

94

[16] D. Yong, F. Ruhuia and H. Tianjian, “SSE-based Linear Equation Parallel Calculation”, Computer and

Communications, vol. 1, (2004).

[17] Z. Li-hong, Y. Wen-hua and Y. Xiao-ling, “New acceleration technique for parallel FDTD simulation”,

Chinese Journal of Radio Science, vol. 1, (2012).

[18] S. Qi, L. Zhi-yu and C. Peng, “Evolution for 60Co container CT image reconstruction based on SSE”,

Nuclear Electronics & Detection Technology, vol. 1, (2007).

[19] L. Ruo-yu, L. Qiang and Z. Shao-qun, “Use MMX and SSE Instruction in Medical Image Processing”,

Application Research of Computers, vol. 1, (2005).

[20] P. Hsieh, Hash functions (last accessed on Nov. 23rd, 2011) URL http://www.azillionmonkeys.com/qed/

hash.html

[21] Intel64 and IA-32 Architectures Software Developers Manual volume2B-instruction set ref-2009.

[22] http://www.snort.org.

[23] http://www.zhiwenweb.cn/Category/Security/1261.htm.

Authors

Tianlong Yang, born in 1980, Ph. D. candidate. Email:

coolskydragon@163.com. His main research interest is string

matching.

Hongli ZHANG, born in 1973, professor, Ph. D. supervisor. Her research interests

include network security and network measurement.

http://www.azillionmonkeys.com/qed/%20hash.html
http://www.azillionmonkeys.com/qed/%20hash.html
http://www.snort.org/
http://www.zhiwenweb.cn/Category/Security/1261.htm
mailto:coolskydragon@163.com

