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Abstract 

The tile assembly model is a highly distributed parallel model of molecular computation. 

Plenty of experiments have proved that the simple binary arithmetic could be fulfilled by the 

process of self-assembly of DNA (deoxyribonucleic acid) tiles. Finite field GF(2
n
) is one of 

the most commonly used mathematic sets. A DNA computing system was designed based on 

the tile assembly model and applied to perform the operation of square over finite field 

GF(2
n
). One concrete example is proposed to show the details of our tile assembly system.  
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1. Introduction 

The field of DNA based computing is a new technique of simulating biomolecular 

structure of DNA. Two major advantages of DNA computing lie in huge memory capacity 

and high parallelism. The tile assembly model [1, 2], one of the most important DNA 

computing model, is a formal model of crystal growth. The self-assembly process is defined 

as autonomous organization of combining components into structurally well-defined 

aggregates. The tile assembly system is a concept of the computation through self-assembly 

process of the DNA tiles based on the theoretical underpinnings of tile assembly model. It 

was fully explained that the crystal growth of the tile assembly system could accomplish such 

mathematic computations as addition and multiplication [3, 4].  

The implementation of the tile assembly system is a process of folding a single long 

scaffold strand into an arbitrary shape by using small helper strands [5]. The tile assembly 

systems usually grow crystal by using double-crossover complexes as tiles [6]. Our tile 

assembly system is also designed based on the theoretical basis of these double-crossover 

complexes. 

Finite field GF(2
n
), in which carry bits do not need to be propagated, is one of the most 

commonly used mathematic sets for elliptic curves cryptosystem [7, 8] and conic curves 

cryptosystem [9-12]. This paper proposes one tile assembly system which could compute the 

operation of square over finite field GF(2
n
). There is very little research that has been 

proposed to compute the arithmetic over finite field GF(2
n
) in the tile assembly model except 

the researches [13, 14] based on a six-tuple tile assembly model, which is different from the 

four-tuple tile assembly model adopted in this paper. The four-tuple tile assembly model is a 

more sophisticated model used in recent years.  
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The rest of this paper is organized as follows. Section 2 introduces tile assembly model. 

Section 3 presents the tile assembly system of square over finite field GF(2
n
). The 

computation complexity is discussed in Section 4. Section 5 provides a conclusion and a brief 

discussion of potential future research ideas.  

 

2. Tile Assembly Model 

The tile assembly model must be introduced firstly.  is a four-tuple 

, including the binding domains on the north, south, west and 

east.  The set of directions   is a set of four functions from positions to 

positions i.e. .  

The positions  and  are neighbors if  such that . 

For a tile , for ,  is referred as the binding domain of tile  on d's side. A 

special tile  represents the absence of all other tiles. 

The position relationships are listed as follows:  

  (1) 

A strength function , where g is commutative and , 

, denotes the strength of the binding domains, the value of which may be 

0, 1 or 2 (called null, weak, strong bonds, respectively). It is common to assume that 

. The binding domains determine the interaction between tiles 

when two tiles attach to each other. Finally, a tile system  is a triple , where 

 is a finite set of tiles containing empty tile, g is a strength function, and   is a 

parameter about the temperature. This paper uses  to denote ,  

and , .  

If  is a configuration, then within , a tile t can attach to A at position  and 

produce a new configuration  A'. The conditions are listed as follows:  

  (2) 

Given a tile system , a set of seed tiles , and a seed configuration 

, one may attach tiles of T to S if the above conditions are satisfied. A tile 

can attach to a configuration only in empty positions and only if the appropriate binding 

domains match the tiles in neighboring positions.  

Configuration produced by  on S is the process of attaching tiles from T to S. If this 

process terminates, the final configuration with no more attachments could be produced. 

If all possible final configurations are identical for every sequence of tile attachment, 

then  is said to produce a unique final configuration on S.  
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3. Square System 
 

3.1. Square over Finite Field GF(2
n
) 

According to the characteristic of finite field GF(2
n
), carry bits do not need to be 

propagated in the process of mathematic computation. For   

over finite field GF(2
n
), the value of  is . 

 

3.2. Tile Assembly System of Square 

Theorem 1 Let ,    ,  , and T be a set of tiles 

over  . Then  computes the function  over finite field GF(2
n
).   

 

Figure 1. The Concept Tile  

 

 

Figure 2. Boundary Tiles  

Figure 1 shows the concept tile of the tile assembly system. The tile has two input 

sides (west and south) and two output sides (east and north). The first bit of every side 

is l and the second bit of every side is r. The boundary tiles and the computation tiles 

are showed in Figure 2 and Figure 3, respectively. Note that the colors are only used for a 

better understanding, the tiles themselves have no sense of color. The boundary tiles are 

used for constructing the seed configuration of tile assembly system. The magenta tiles 

assign the parameter ai( ) into the final answer and identify the white tiles. 

The white tiles insert the ‘0’ bit into the final solution. The green tiles perform the 

operation of a right-shift for parameter ai ( ) that has not been processed. 

The gray tiles are only used for passing the parameters from west side to east side or from 

south side to north side. A example of 1111
2
 over finite field GF(2

n
) is showed in Figure 4 

and Figure 5. Two parameters, a and C, are coded as 1111 and 0000000 on the bottom row. 
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All tiles on leftmost column are coded as 0# . The top row reads the solution: 1010101 in 

Figure 5. 
 

 

Figure 3. Computation Tiles  

 

Figure 4. The Seed Configuration of a Sample Input of a=1111 

 

Figure 5. The Final Configuration of the Example 11112 
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Proof of Theorem 1 Consider the tile system . Let a be the input parameter of square 

over finite field GF(2
n
). Let C be the result. The sizes, in bits, of a and C, are n and 2n-1, 

respectively. For all , let  be such that , and 

. The initial value of parameter C is 0.  

Let   , , , , 

, , , , ,   

Then the seed configuration  is such that  

  

  

  

  

 has 13 types of computation tiles with the west side and the south side as the input sides, 

and the east side and the north side as the output sides. There would be only one single 

position where a tile may attach to S since its west neighbor tile and south neighbor tile are 

fixed.  

Obviously, the self-assembly process begins from the position (0,0). For ,  the two-

tuple  is unique. It is certain that  produces a unique final configuration 

on S. The abutting binding domains of two tiles have to match each other when a tile attaches 

to S.  

Let the final configuration be F. For all , , S and F agree on 

 and . Therefore, for , ; for 

, ; for , . 

For the tiles with two-bit binding domains , let  be the first bit and  be the 

second bit of the binding domain. Let . Since  binds with two neighbor tiles, for 

, , , . For 

all , let . Thus, the initial inputs of all binding domains are  

  

  

  

  

For , , all the followings are true in the process of tile self-

assembly: 

  

  
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  

  

 

4. Complexity Discussion 

As , only one tile with two neighbors may attach at any time in this system. 

Therefore, no tile may attach to the configuration unless its west neighbor and south neighbor 

have already existed. When  tile attaches to the position , 

this parallel molecular computation of square over finite field GF(2
n
) will terminate. 

Obviously, the assembly time of this system is  

and the space complexity is . This system of square requires 13 

types of computation tiles and 4 types of boundary tiles. 

 

5. Conclusion 

A tile assembly system is proposed to compute the operation of square over finite 

field GF(2
n
). Many researches have been proposed to deal with parallel computation of 

basic operations over this specific finite field. These studies mainly focus on reducing 

computing unit [15], accelerating computing speed [16] and lowering power consump-

tion [17]. Differing from these researches, our work contributes on figuring out the 

result in linear assembly time, and it is supposed to obtain the solution space within as 

less steps as possible. This system could fulfill the process of self-assembly and figure 

out the solution in linear assembly time. The assembly time of this system is 

 and the space complexity is .  

This tile assembly system was extended from the methods of implementing 

arithmetic computations used by Brun for binary addition and multiplication  [3]. The 

described tile assembly system is designed theoretically based on the condition that all 

DNA operations are perfect. Although DNA computation has the problem of high error-

rates, there are some existing methods of error control and error correction [18]. These 

researches suggest a bright future for DNA computing.  
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