
International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

63

Square over Finite Field GF(2
n
) using Self-Assembly of DNA Tiles

Yongnan Li
1,2

, Limin Xiao
1,2

, Li Ruan
1,2

, Ke Xie
1,2

 and Guangchao Yao
1,2

1
State Key Laboratory of Software Development Environment,

Beihang University, Beijing, 100191, China
2
 School of Computer Science and Engineering, Beihang University,

Beijing, 100191, China

liyongnan.buaa@gmail.com {xiaolm, ruanli}@buaa.edu.cn

{xieke89, yutianzuijin}@cse.buaa.edu.cn

Abstract

The tile assembly model is a highly distributed parallel model of molecular computation.

Plenty of experiments have proved that the simple binary arithmetic could be fulfilled by the

process of self-assembly of DNA (deoxyribonucleic acid) tiles. Finite field GF(2
n
) is one of

the most commonly used mathematic sets. A DNA computing system was designed based on

the tile assembly model and applied to perform the operation of square over finite field

GF(2
n
). One concrete example is proposed to show the details of our tile assembly system.

Keywords: DNA computing, Finite field GF(2
n
), Square, Tile assembly model

1. Introduction

The field of DNA based computing is a new technique of simulating biomolecular

structure of DNA. Two major advantages of DNA computing lie in huge memory capacity

and high parallelism. The tile assembly model [1, 2], one of the most important DNA

computing model, is a formal model of crystal growth. The self-assembly process is defined

as autonomous organization of combining components into structurally well-defined

aggregates. The tile assembly system is a concept of the computation through self-assembly

process of the DNA tiles based on the theoretical underpinnings of tile assembly model. It

was fully explained that the crystal growth of the tile assembly system could accomplish such

mathematic computations as addition and multiplication [3, 4].

The implementation of the tile assembly system is a process of folding a single long

scaffold strand into an arbitrary shape by using small helper strands [5]. The tile assembly

systems usually grow crystal by using double-crossover complexes as tiles [6]. Our tile

assembly system is also designed based on the theoretical basis of these double-crossover

complexes.

Finite field GF(2
n
), in which carry bits do not need to be propagated, is one of the most

commonly used mathematic sets for elliptic curves cryptosystem [7, 8] and conic curves

cryptosystem [9-12]. This paper proposes one tile assembly system which could compute the

operation of square over finite field GF(2
n
). There is very little research that has been

proposed to compute the arithmetic over finite field GF(2
n
) in the tile assembly model except

the researches [13, 14] based on a six-tuple tile assembly model, which is different from the

four-tuple tile assembly model adopted in this paper. The four-tuple tile assembly model is a

more sophisticated model used in recent years.

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

64

The rest of this paper is organized as follows. Section 2 introduces tile assembly model.

Section 3 presents the tile assembly system of square over finite field GF(2
n
). The

computation complexity is discussed in Section 4. Section 5 provides a conclusion and a brief

discussion of potential future research ideas.

2. Tile Assembly Model

The tile assembly model must be introduced firstly. is a four-tuple

, including the binding domains on the north, south, west and

east. The set of directions is a set of four functions from positions to

positions i.e. .

The positions and are neighbors if such that .

For a tile , for , is referred as the binding domain of tile on d's side. A

special tile represents the absence of all other tiles.

The position relationships are listed as follows:

 (1)

A strength function , where g is commutative and ,

, denotes the strength of the binding domains, the value of which may be

0, 1 or 2 (called null, weak, strong bonds, respectively). It is common to assume that

. The binding domains determine the interaction between tiles

when two tiles attach to each other. Finally, a tile system is a triple , where

 is a finite set of tiles containing empty tile, g is a strength function, and is a

parameter about the temperature. This paper uses to denote ,

and , .

If is a configuration, then within , a tile t can attach to A at position and

produce a new configuration A'. The conditions are listed as follows:

 (2)

Given a tile system , a set of seed tiles , and a seed configuration

, one may attach tiles of T to S if the above conditions are satisfied. A tile

can attach to a configuration only in empty positions and only if the appropriate binding

domains match the tiles in neighboring positions.

Configuration produced by on S is the process of attaching tiles from T to S. If this

process terminates, the final configuration with no more attachments could be produced.

If all possible final configurations are identical for every sequence of tile attachment,

then is said to produce a unique final configuration on S.

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

65

3. Square System

3.1. Square over Finite Field GF(2
n
)

According to the characteristic of finite field GF(2
n
), carry bits do not need to be

propagated in the process of mathematic computation. For

over finite field GF(2
n
), the value of is .

3.2. Tile Assembly System of Square

Theorem 1 Let , , , and T be a set of tiles

over . Then computes the function over finite field GF(2
n
).

Figure 1. The Concept Tile

Figure 2. Boundary Tiles

Figure 1 shows the concept tile of the tile assembly system. The tile has two input

sides (west and south) and two output sides (east and north). The first bit of every side

is l and the second bit of every side is r. The boundary tiles and the computation tiles

are showed in Figure 2 and Figure 3, respectively. Note that the colors are only used for a

better understanding, the tiles themselves have no sense of color. The boundary tiles are

used for constructing the seed configuration of tile assembly system. The magenta tiles

assign the parameter ai() into the final answer and identify the white tiles.

The white tiles insert the ‘0’ bit into the final solution. The green tiles perform the

operation of a right-shift for parameter ai () that has not been processed.

The gray tiles are only used for passing the parameters from west side to east side or from

south side to north side. A example of 1111
2
 over finite field GF(2

n
) is showed in Figure 4

and Figure 5. Two parameters, a and C, are coded as 1111 and 0000000 on the bottom row.

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

66

All tiles on leftmost column are coded as 0# . The top row reads the solution: 1010101 in

Figure 5.

Figure 3. Computation Tiles

Figure 4. The Seed Configuration of a Sample Input of a=1111

Figure 5. The Final Configuration of the Example 11112

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

67

Proof of Theorem 1 Consider the tile system . Let a be the input parameter of square

over finite field GF(2
n
). Let C be the result. The sizes, in bits, of a and C, are n and 2n-1,

respectively. For all , let be such that , and

. The initial value of parameter C is 0.

Let , , , ,

, , , , ,

Then the seed configuration is such that









 has 13 types of computation tiles with the west side and the south side as the input sides,

and the east side and the north side as the output sides. There would be only one single

position where a tile may attach to S since its west neighbor tile and south neighbor tile are

fixed.

Obviously, the self-assembly process begins from the position (0,0). For , the two-

tuple is unique. It is certain that produces a unique final configuration

on S. The abutting binding domains of two tiles have to match each other when a tile attaches

to S.

Let the final configuration be F. For all , , S and F agree on

 and . Therefore, for , ; for

, ; for , .

For the tiles with two-bit binding domains , let be the first bit and be the

second bit of the binding domain. Let . Since binds with two neighbor tiles, for

, , , . For

all , let . Thus, the initial inputs of all binding domains are









For , , all the followings are true in the process of tile self-

assembly:





International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

68





4. Complexity Discussion

As , only one tile with two neighbors may attach at any time in this system.

Therefore, no tile may attach to the configuration unless its west neighbor and south neighbor

have already existed. When tile attaches to the position ,

this parallel molecular computation of square over finite field GF(2
n
) will terminate.

Obviously, the assembly time of this system is

and the space complexity is . This system of square requires 13

types of computation tiles and 4 types of boundary tiles.

5. Conclusion

A tile assembly system is proposed to compute the operation of square over finite

field GF(2
n
). Many researches have been proposed to deal with parallel computation of

basic operations over this specific finite field. These studies mainly focus on reducing

computing unit [15], accelerating computing speed [16] and lowering power consump-

tion [17]. Differing from these researches, our work contributes on figuring out the

result in linear assembly time, and it is supposed to obtain the solution space within as

less steps as possible. This system could fulfill the process of self-assembly and figure

out the solution in linear assembly time. The assembly time of this system is

 and the space complexity is .

This tile assembly system was extended from the methods of implementing

arithmetic computations used by Brun for binary addition and multiplication [3]. The

described tile assembly system is designed theoretically based on the condition that all

DNA operations are perfect. Although DNA computation has the problem of high error-

rates, there are some existing methods of error control and error correction [18]. These

researches suggest a bright future for DNA computing.

Acknowledgments

This study is sponsored by the fund of the State Key Laboratory of Software

Development Environment under Grant No. SKLSDE-2012ZX-06, the Hi-tech Research

and Development Program of China (863 Program) under Grant No. 2011AA01A205,

Beijing Natural Science Foundation under Grant No. 4122042 and the National Natur al

Science Foundation of China under Grant No. 61232009.

International Journal of Hybrid Information Technology

 Vol. 6, No. 4, July, 2013

69

References

[1] S. Rebecca and W. Erik, “Programmable control of nucleation for algorithmic self-assembly”,

Proceedings of 10th International Workshop on DNA Computing, Milan, Italy, (2005) June 7-10.

[2] W. Erik, “Algorithmic self-assembly of DNA”, Proceedings of 2006 International Conference on

Microtechnologies in Medicine and Biology, Okinawa, Japan, (2006) May 9-12.

[3] Y. Brun, “Arithmetic computation in the tile assembly model: Addition and multiplication”,

Theoretical Computer Science, vol. 378, (2007), pp. 17-31.

[4] Y. Brun, “Nondeterministic polynomial time factoring in the tile assembly model”, Theoretical

Computer Science, vol. 395, (2008), pp. 3-23.

[5] P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns”, Nature, vol. 440, no.

7082, (2006), pp. 297-302.

[6] P. Sa-Ardyen, A. V. Vologodskii and N. C. Seeman, “The flexibility of DNA double crossover

molecules. Biophysical Journal, vol. 84, (2003), pp. 3829-3837.

[7] F. B. Muhaya, Q. A. Al-Haija and L. Tawalbeh, “Applying hessian curves in parallel to improve

elliptic curve scalar multiplication hardware”, International Journal of Security and its Applications,

vol. 4, no. 2, (2010), pp. 27-38.

[8] K. Edoh, “Elliptic curve cryptography on PocketPCs”, International Journal of Security and its

Applications, vol. 3, no. 3, (2009), pp. 23-34.

[9] Y. Li, L. Xiao, Y. Hu, A. Liang and L. Tian, “Parallel algorithms for cryptosystem on conic curves

over finite field Fp”, Proceedings of 9th International Conference on Grid and Cloud Computing,

Nanjing, Jiangsu, China, (2010) November 1-5.

[10] Y. Li, L. Xiao, A. Liang and Z. Wang, “Parallel point-addition and point-double for cryptosystem on

conic curves over ring Zn”, Proceedings of 11th International Conference on Parallel and Distributed

Computing, Applications and Technologies, Wuhan, China, (2010) December 8-11.

[11] Y. Li, L. Xiao, G. Qin, X. Li and S. Lei, “Comparison of three parallel point-multiplication

algorithms on conic curve”, Proceedings of 11th International Conference on Algorithms and

Architectures for Parallel Processing, Melbourne, VIC, Australia , (2011) October 24-26.

[12] Y. Li and L. Xiao, “Parallel point-multiplication for conic curves cryptosystem”, Proceedings of 3rd

International Symposium on Parallel Architectures, Algorithms and Programming, Dalian, China,

(2010) December 18-20.

[13] C. Zhen, “Computation of Multiplicative Inversion and Division in GF(2(n)) by Self-Assembly of

DNA Tiles”, Journal of Computational and Theoretical Nanoscience, vol. 9, (2012), pp. 336-346.

[14] R. Barua and S. Das, “Finite field arithmetic using self-assembly of DNA tilings”, Proceeding of the

2003 Congress on Evolutionary Computation, Canberra, Australia, (2003) December 8-12.

[15] A. E. Cohen and K. K. Parhi, “Fast reconfigurable elliptic curve cryptography acceleration for GF(2

m) on 32 bit processors”, Journal of Signal Processing Systems, vol. 60, no. 1, (2010), pp. 31-45.

[16] Y. Li and L. Xiao, “Parallelization of two arithmetic operations over finite field GF(2n)”,

International Journal of Security and its Applications, vol. 6, no. 2, (2012), pp. 223-228.

[17] S. C. Seo, D. Han and S. Hong, “TinyECCK16: An efficient field multiplication algorithm on 16-bit

environment and its application to Tmote Sky sensor motes”, Ieice Transactions on Information and

Systems. E92-D, (2009), pp. 918-928.

[18] Y. Baryshnikov, E. Coffman, N. Seeman and T. Yimwadsana, “Self-correcting self-assembly: Growth

models and the hammersley process”, Proceeding of 11th International Workshop on DNA

Computing, London, ON, Canada, (2006) June 6-9.

Authors

Yongnan Li is a Ph.D. student at School of Computer Science and

Engineering, Beihang University. His main research areas are computer

architecture, cloud computing, parallel computing and information

security.

International Journal of Hybrid Information Technology

Vol. 6, No. 4, July, 2013

70

Limin Xiao is a professor of the Institute of Computer Architecture, Beihang

University. He is also a senior membership of China Computer Federation. His

main research areas are computer architecture, computer system software, high

performance computing, virtualization and cloud computing.

Ruan Li is a lecturer of the Institute of Computer Architecture, Beihang

University. She is also a senior membership of China Computer Federation. Her

main research areas are virtualization and cloud computing, computer system

software, high performance computer.

Ke Xie is a graduate student in Beihang University. His main research

areas are computer architecture, parallel file system, computer system

software, virtualization and cloud computing.

Guangchao Yao is a graduate student in Beihang University. His main

research areas are computer architecture, computer system software,

virtualization and cloud computing.

