
International Journal of Hybrid Information Technology

 Vol. 6, No. 3, May, 2013

15

Test Case Generation from Formal Models of Cyber Physical System

Lichen Zhang
*
, Jifeng He and Wensheng Yu

Shanghai Key Laboratory of Trustworthy Computing

 East China Normal University, Shanghai 200062, China

*Corresponding author: zhanglichen1962@163.com

Abstract

Formal methods and testing are two important approaches that assist in the development

of cyber physical systems. Formal specification can be used to assist testing and Formal

methods and testing are seen as complementary. In this paper, we address the problem of

generating test cases for cyber physical systems from formal specifications using differential

dynamic logic(DL), a logic for specifying and verifying hybrid systems.

Keywords: Cyber Physical Systems, Formal Methods, test, differential dynamic logic(DL)

1. Introduction

Cyber-physical systems (CPS) [1], frequently characterized as smart systems include

digital cyber technologies, software, and physical components and are intelligently

interacting with other systems across information and physical interfaces. They are

expressing an emerging behavior and so, create even more live functionalities during the

deployment. CPS are sensing the external world and they immediately react on the state of

the surrounding. Thus, in order to successfully develop such complex systems and to remain

competitive on top of that, early and continuous consideration and assurance of system

quality is becoming of vital importance. Cyber physical systems, due to their increased size

and complexity relative to traditional embedded systems, present numerous developmental

challenges. The long-term viability of requires addressing these challenges through the

development of new design, composition, verification, and validation techniques. These

present new opportunities for researchers in cyber physical systems. It is natural to advocate

the use of formal techniques in this application area in order to cope with these challenges

and indeed a large body of knowledge exists on their use. Formal specifications contain a

great deal of information that can be exploited in the testing of an implementation, either for

the generation of test-cases, for sequencing the tests, or as an oracle in verifying the tests. In

this paper, we address the problem of generating test cases for cyber physical systems from

formal specifications using differential dynamic logic (DL), a logic for specifying and

verifying hybrid systems.

2. Related Work

A test is a description of which input to apply and when to apply it to the implementation

under test, and of which output can be observed from the implementation under test, in order

International Journal of Hybrid Information Technology

Vol. 6, No. 3, May, 2013

16

to decide whether the implementation conforms to its design. A test typically consists of the

following steps:

 apply an input action and continue the test;

 observe an output action from the implementation and if an output action is

observed that was allowed then continue the test, if an output action is observed

that was not allowed then terminate the test with verdict fail, if no output action is

observed and no output action is supposed to be observed then continue the test,

and if no output action is observed but an output action should be observed then

terminate with the verdict fail; or

 terminate the test with the verdict pass.

In [2], Lee, et al., present embedded system software testing based on SOA to

overcome mobile restriction. In [3], Tchamgoue, et al., classified the event-driven program

models into low and high level based on the type of event they handle, categorized

concurrency bug patterns and surveyed existing detection techniques for concurrency bugs in

event-driven programs. They believe that such taxonomy can help the developer to

understand the causes of concurrency bugs and to avoid introducing them. It can also ease the

debugging process, and help developing heuristics for more precise detection tools. In [4],

design considerations to realize a cyber-physical testing language that involves software-

based and human evaluation agents as test oracles are outlined and discussed.

Quantitative conformance testing of cyber-physical system (CPS) exploits time series of

measurements, such as temperature or energy, for validating the correctness of deployed

systems. In [5], Matthias Woehrle, et al., presents the foundations of segmented state space

traversal in the setting of quantitative conformance testing of a CPS. It is demonstrated how

this strategy together with domain-specific adaptations remedies state space explosion

inherent to formal (state-based) verification.

In [6], Praveen Ranjan Srivastava and Tai-hoon Kim presents a method for optimizing

software testing efficiency by identifying the most critical path clusters in a program. They

do this by developing variable length Genetic Algorithms that optimize and select the

software path clusters which are weighted in accordance with the criticality of the path.

Exhaustive software testing is rarely possible because it becomes intractable for even

medium sized software. Typically only parts of a program can be tested, but these parts are

not necessarily the most error prone. Therefore, they proposed a more selective approach to

testing by focusing on those parts that are most critical so that these paths can be tested first.

By identifying the most critical paths, the testing efficiency can be increased.

In [7], Jae-Hee Lim, et al., presents a hierarchical test model and automated test

framework for robot software components of RTC (Robot Technology Component)

combined with hardware module. The hierarchical test model consists of three levels of

testing based on V-model: unit test, integration test, and system test. The automated test

framework incorporates four components of test data generation, test manager, test

execution, and test monitoring.

Most of the national critical key infrastructure, such as power, piped gas and water supply

facilities, or the high-speed railroad, is run on the SCADA (Supervisory Control and Data

Acquisition) system. Recently, concerns have been raised about the possibility of these

facilities being attacked by cyber terrorists, hacking, or viruses. Thus, it is time to adopt the

relevant security management techniques. Sungmo Jung, Jae-gu Song, Seoksoo Kim analyze

International Journal of Hybrid Information Technology

 Vol. 6, No. 3, May, 2013

17

the vulnerabilities of SCADA systems through scenarios, designs a test-bed to prove such

vulnerabilities, and suggests security devices [8].

In [9], Farkhod Alisherov A., and Feruza Sattarova Y. present a methodology for

penetration testing .Penetration testing is one of the oldest methods for assessing the security

of a computer system. The idea behind penetration testing methodologies is that the

penetration tester should follow a pre-scripted format during test as dictated by the

methodology. A penetration testing methodology was proposed in this research.

In [10], Dino Mandrioli, Sandro Morasca, and Angelo Morzent address the problem of

automated derivation of functional test cases for real-time systems, by introducing techniques

for generating test cases from formal specifications written in TRIO, a language that extends

classical temporal logic to deal explicitly with time measures. They describe an interactive

tool that has been built to implement these techniques, based on interpretation algorithms of

the TRIO language. Several heuristic criteria are suggested to reduce drastically the size of

the test cases that are generated. Experience in the use of the tool on real-life cases js

reported.
In [11], Rachel Cardell-Olive presents a test generation method for real-time systems. A

standard timed transition system model of a network of Uppaal timed automata is

transformed under a given test view into a testable timed transition system (TTTS). The test

view captures information about a particular set of tests: the selection of relevant events to be

observed; the mapping between implementation and specification events; the granularity of

the observer's clock; a partition of test events into inputs and outputs. By choosing different

test views, the tester can control the number of tests required: more detailed tests can be used

for critical test purposes, and less detailed tests elsewhere. A test generation algorithm is

presented which constructs a set of test cases from a TTTS. The resulting test suite is input to

a test execution harness for the implementation under test. It is assumed that the

implementation can be viewed as a TTTS and that it has no more states than the specification

TTTS. The final output of the test method is a verdict: yes, the implementation conforms to

its specification or no, the implementation fails to conform to the specification because it

fails a particular experiment.

In [12], Bahareh Badban, et al., present an automated test generation method for hybrid

control systems, which involves the generation of both discrete and real-valued, potentially

time continuous, input data to the system under test.

 In [13] Moez Krichen & Stavros Tripakis propose a new framework for black-box

conformance testing of real-time systems. The framework is based on the model of partially-

observable, non-deterministic timed automata. They argue that partial observability and non-

determinism are essential features for ease of modeling, expressiveness and

implementability. The framework allows the user to define, through appropriate modeling,

assumptions on the environment of the system under test (SUT) as well as on the interface

between the tester and the SUT.

3. Generating Test Cases from Formal Specification of Cyber Physical Systems

Using Differential Dynamic Logic

Much of the process of test execution and monitoring is automated in modern software

development practice. But the generation of test cases has remained a labor-intensive manual

task. Methods are now becoming available that can automate this process [10-12]. A simple

test-generation goal is to find an input that will drive execution of a (deterministic, loop-free)

program along a particular path in its control flow graph. By performing symbolic execution

International Journal of Hybrid Information Technology

Vol. 6, No. 3, May, 2013

18

along the desired path and conjoining the predicates that guard its branch points, we can

calculate the condition that the desired test input must satisfy. Then, by constraint

satisfaction, we can find a specific input that provides the desired test case. This method

generalizes to find tests for other structural coverage criteria, and for programs with loops,

and for those that are reactive systems (i.e., that take an input at each step). A major impetus

for practical application of this approach was the realization that (for finite state systems) it

can be performed by an off-the-shelf model checker: we simply check the property “always

not P,” where P is a formula that specifies the desired structural criterion, and the

counterexample produced by the model checker is then the test case desired . Different kinds

of structural or specification-based tests can be generated by choosing suitable P. What

makes testing hybrid systems difficult is that continuous input and continuous output always

occur, that they occur in synchrony and that they depend on each other. If the brake system is

stimulated with a steadily decreasing distance, then the brake pressure should increases

steadily. It is even possible that the continuous input depends on the continuous output. For

instance, if the car brakes, the amount of brake pressure influences how rapidly the distance

with the car in front decreases (or increases). Furthermore, discrete output behavior also

depends on continuous input behavior and discrete output behavior may have time

constraints. For instance, if the distance measurement with the car in front makes a jump

(which means a new car is detected), then a ”New Car” output has to occur within 0.5

seconds. A test is passed if only expected output is observed (given the input applied) and it

fails if an unexpected output is observed. If the brake pressure does not increase while the

distance with the car in front decreases (as expected), then the test fails.

 The goal of model-based testing, in the form we consider it, is to automate test generation

and execution. The behavior of the system is specified by a formal model and tests are

automatically generated from this specification. The specification can be a transition system,

an automaton, a process algebra term, or a (formal) specification language. Tests are

generated by selecting discrete or continuous input from the specification and enumerating

the possible observations. A verdict pass or fail is attached to each possible observation in

accordance with the specification. Tests are executed by automatically stimulating the

implementation with the input described by the test and simultaneously observing the output

from the implementation.

The conformance relation formally defines if an implementation conforms to the

specification [13]. The test generation procedure defines how tests are generated from a

specification. With a formal definition of how a test is constructed and a formal conformance

relation it is possible to prove whether our tests are sound and exhaustive with respect to the

conformance relation. That is, if the implementation conforms to the specification then the

implementation will pass all tests that can be generated from the specification and if the

implementation is not conform the specification then it is possible to generate a test which

fails.

 In this paper, we use differential dynamic logic (DL) to specify cyber physical systems, and

generate test cases from formal specifications by differential dynamic logic(DL) [14], and

translate the test cases from formal specifications in to the models of Modelica [16] as

shown in Figure 1, and finally test cyber physical systems using the simulation through

Modelica as shown in Figure 2.

International Journal of Hybrid Information Technology

 Vol. 6, No. 3, May, 2013

19

Figure 1. Modelica

Figure 2. Test steps of Modelica

 Modelica [16] is a new language for hierarchical object oriented physical modeling which

is developed through an international effort. The language unifies and generalizes previous

object-oriented modeling languages. The language has been designed to allow tools to

generate efficient simulation code automatically with the main objective to facilitate

exchange of models, model libraries and simulation specifications. Modelica is primarily a

modeling language, sometimes called hardware description language that allows the user to

specify mathematical models of complex physical systems, e.g., for the purpose of computer

simulation of dynamic systems where behavior evolves as a function of time. Modelica is

also an object-oriented equation based programming language, oriented towards

computational applications with high complexity requiring high performance.

 Differential Dynamic Logic [14] combines descriptions of system behaviour and

correctness statements about the system state within a single specification language. By

permitting arbitrary system operationsαas actions of a labelled multi-modal logic, DL

provides formulas of the form[α]φand <α>φ.The formula [α]φexpresses that all (terminating)

runs of system α lead to states in which condition φ holds, whereas<α>φ expresses that

there is at least one (terminating) run of αafter whichφholds. differential logic dL is a first-

order dynamic logic with three basic characteristics to meet the requirements of cyber

physical systems:

1) Discrete jumps. Projections in state space are represented as instantaneous

assignments of values to state variables.

International Journal of Hybrid Information Technology

Vol. 6, No. 3, May, 2013

20

2) Continuous evolution. Continuous variation in system dynamics is represented with

differential equations as evolution constraints.

3) Regular combinations. Discrete and continuous evolutions can be combined to form

hybrid programs using regular expression operators

For example [15], The car has state variables describing its current position (xc), velocity

(vc), and acceleration (ac). The continuous dynamics of the car is described by the

differential equation system of ideal-world dynamics for longitudinal position changes

(
c cx v ， c cv a)We assume bounds for acceleration ac in terms of a maximum

acceleration A 0 and a minimum positive braking power b>0 . We introduce a constant

that provides an upper bound for sensor and actuator delay, communication between the

traffic center or traffic sign detector and the car controller, and computation in both. The car

controller1 and the traffic center may react and exchange messages as quickly as they want,

but they can take no longer than . The Variable speed limit control is modeled by DL as

follows:

 The continuous dynamics (11) of the model describe the evolution of the car’s position and

velocity according to the current acceleration. We use a variable t that evolves with constant

slope (i.e., a clock) for measuring time within the upper bound , and constrain the

evolution of velocity vc to non-negative values, see (12).

 In the following model, we provide a model for variable speed limit control in the presence

of an incident moving towards a car. Cars in this model follow the same control as in the

previous section. They take care to comply with speed limits and potentially satisfy or

optimize secondary objectives. Accordingly, the lower bound Safesl of the speed limit

remains unchanged. We introduce state variables describing an incident’s position (xi) and its

velocity of movement (vi) towards cars. The system dynamics, are extended with motion of

an incident. We also introduce a minimum velocity (vmin), which is often mandatory on

freeways and highways, to exclude unreasonable car behavior from the model (e.g., avoid

having a car brake to a complete stand still, wait for the incident to arrive at the car’s

position, just to finally accelerate with maximum acceleration and rush beyond the incident).

International Journal of Hybrid Information Technology

 Vol. 6, No. 3, May, 2013

21

Variable speed limit control in presence of static and moving incidents (vsli) is modeled by

DL as follows:

Once DL specification has been created, it is analysed according to D L rules. For the

function that the user has indicated, the pre-condition and post-condition are examined, and a

partition representing them is generated. Subsequently, the partition is used to produce

predicates which need to be passed to an external solver to find out whether they are

satisfiable, and, if they are, to choose a random sample from each partition. We assume that

the system state is uniquely determined by the value of n variables, {x1; x2,… , xn}, where

each xi takes its value from its domain Di. Thus, the reachable state space of the system is a

subset of D = D1 ×D×…×Dn. The system may move from one state to another subject to the

constraints imposed by its transition relation. The transition relation is a subset of D ×D,

specified as a Boolean predicate on the values of the variables defining the state-space. We

assume that there is a transition relation for each variable, xi, specifying how the variable

may change its value as the system moves from one state to another. Informally speaking, the

transition relation for xi can be thought of as specifying three components: a set of pre-state

values of xi, a set of post-state values for xi and the condition which guards when xi may

change from a pre-state value to a post-state value. We adopt the usual convention that

primed versions of variables refer to their post-state values while the unprimed versions refer

to their pre-state values.

For Example, Safe bounds test generation: From the viewpoint of a traffic center and an

in-car driver assistance system (e.g., obstacle or pedestrian detection), a combination

sl
Safe slSafe

is most interesting, since it allows us to derive a minimum distance between

an incident and a car that is still safe for braking before meeting the incident. Analogously to

above, we define such a safe operating distance in, which indicates the latest distance at

International Journal of Hybrid Information Technology

Vol. 6, No. 3, May, 2013

22

which a traffic center or an in-car driver assistance system must start processing in order to

warn about an (moving) incident in time so that the system can react safely.

2 2

2

min

1 1
2 2

c sl i
i c c

v v vA A
x x v

b b v

Figure 3 shows the test results of the relation of distance between car and event with the

car’s velocity

Figure 3. the Relation of Distance between Car and Event with the Car’s

Velocity

 Figure 4 shows the test results of the relation of the car’s velocity with the time.

Figure 4. the Relation of the Car’s Velocity with the Time

International Journal of Hybrid Information Technology

 Vol. 6, No. 3, May, 2013

23

The Table 1 shows the test result of car’s safety.

Table 1. The Test Result of Car’s Safety

region distance△S(m) Velocity Vt(m/s)
braking

power
(m/s2)

Car state

<1> 400<=△S safe

<2> 200<=△S<400
Vt<60 a=Vt/t safe

Vt>60 a=Vt/t unsafe

<3> 0<=△S<200

Known Vo，

select suitable
Velocity and
acceleration

a>=6m/s2 safe

a<6m/s2 unsafe

4. Conclusion

In this paper, we address the problem of generating test cases for cyber physical systems

from formal specifications and reduce an infinite set of testing parameters into a finite set.

The further work is devoted to develop the test case generating methods and tools for the

verification of the dynamic continuous features of cyber physical systems.

Acknowledgments

 This work is supported by Shanghai 085 Project for Municipal Universities and the

Innovation Program of Shanghai Municipal Education Commission under grant No. ZF1213,

national high technology research and development program of China (No.2011AA010101),

national basic research program of China (No.2011CB302904), the national science

foundation of China under grant No.61173046, No.61021004, No.61061130541,

No.91118008), doctoral program foundation of institutions of higher education of China (No.

20120076130003), national; science foundation of Guangdong province under grant

(No.S2011010004905).

References

[1] E. A. Lee and S. A. Seshia, “Introduction to Embedded Systems – A Cyber-Physical Systems Approach”,

Berkeley, CA: LeeSeshia.org, (2011).

[2] M. -H. Lee, C. -J. Yoo and O. -B. Jang, “Embedded System Software Testing Using Mobile Service Based

On SOA”, International Journal of Advanced Science and Technology, vol. 1, (2008) December, pp. 55-64.

[3] G. M. Tchamgoue, K. -H. Kim and Y. -K. Jun, “Testing and Debugging Concurrency Bugs in Event-Driven

Programs”, International Journal of Advanced Science and Technology, vol. 40, (2012) March, pp. 55-68.

[4] C. Berger, “Automating Acceptance Tests for Sensor- and Actuator-based Systems on the Example of

Autonomous Vehicles”, Shaker Verlag, Aachener Informatik-Berichte, Software Engineering Band 6,

Aachen, Germany, (2010).

[5] M. Woehrle, K. Lampka and L. Thiele, “Conformance testing for cyber-physical systems”, ACM

Transactions on Embedded Computing Systems, (2011).

[6] P. R. Srivastava and T. -h. Kim, “Application of Genetic Algorithm in Software Testing”, International

Journal of Software Engineering and Its Applications, vol. 3, no. 4, (2009) October, pp. 87-96.

International Journal of Hybrid Information Technology

Vol. 6, No. 3, May, 2013

24

[7] J. -H. Lim, S. -H. Song, J. -R. Son, T. -Y. Kuc, H. -S. Park, H. -S. Kim, “An Automated Test Method for

Robot Platform and Its Components”, International Journal of Software Engineering and Its Applications,

vol. 4, no. 3, (2010) July, pp. 9-18.

[8] S. Jung, J. -g. Song, S. S. Kim, “Design on SCADA Test-bed and Security Device”, International Journal of

Multimedia and Ubiquitous Engineering, vol. 3, no. 4, (2008) October, pp. 75-86.

[9] F. Alisherov A. and F. Sattarova Y., “Methodology for Penetration Testing”, International Journal of Grid

and Distributed Computing, vol. 2, no. 2, (2009) June, pp. 43-50.

[10] D. Mandrioli, S. Morasca and A. Morzenti, “Generating Test Cases for Real-Time Systems from Logic

Specifications”, ACM Transactions on Computer Systems, vol. 13, no. 4, (1995), pp. 365–398.

[11] R. Cardell-Oliver, “Conformance Tests for Real-Time Systems with Timed Automata Specifications”, Formal

Aspects of Computing, vol. 12, (2000), pp. 350-371.

[12] B. Badban, M. Franzle, J. Peleska and T. Teige, “Test Automation for Hybrid Systems”, In Proceedings of

the Third International Workshop on Software Quality Assurance (SOQUA 2006), ACM, New York, NY,

USA, (2006), pp. 14–21.

[13] M. Krichen and S. Tripakis, “Conformance testing for real-time systems”, Formal Methods in System Design,

vol. 34, no. 3, (2009), pp. 238–304.

[14] A. Platzer, “Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics”, Springer,

(2010), pp. 426, ISBN 978-3-642-14508.

[15] S. Mitsch, S. M. Loos and A. Platzer, “Towards formal verification of freeway traffic control”, In Chenyang

Lu, editor, ACM/IEEE Third International Conference on Cyber-Physical Systems, Beijing, China, (2012)

April 17-19.

 [16] P. Fritzson, “Principles of Object-Oriented Modeling and Simulation with Modelica 2.1”, New York, NY:

Wiley-IEEE Press, (2004).

