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Abstract 

Formal methods and testing are two important approaches that assist in the development 

of cyber physical systems. Formal specification can be used to assist testing and Formal 

methods and testing are seen as complementary. In this paper, we address the problem of 

generating test cases for cyber physical systems from formal specifications using differential 

dynamic logic(DL), a logic for specifying and verifying hybrid systems.  
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1. Introduction 

Cyber-physical systems (CPS) [1], frequently characterized as smart systems include 

digital cyber technologies, software, and physical components and are intelligently 

interacting with other systems across information and physical interfaces. They are 

expressing an emerging behavior and so, create even more live functionalities during the 

deployment. CPS are sensing the external world and they immediately react on the state of 

the surrounding. Thus, in order to successfully develop such complex systems and to remain 

competitive on top of that, early and continuous consideration and assurance of system 

quality is becoming of vital importance. Cyber physical systems, due to their increased size 

and complexity relative to traditional embedded systems, present numerous developmental 

challenges. The long-term viability of requires addressing these challenges through the 

development of new design, composition, verification, and validation techniques. These 

present new opportunities for researchers in cyber physical systems. It is natural to advocate 

the use of formal techniques in this application area in order to cope with these challenges 

and indeed a large body of knowledge exists on their use. Formal specifications contain a 

great deal of information that can be exploited in the testing of an implementation, either for 

the generation of test-cases, for sequencing the tests, or as an oracle in verifying the tests. In 

this paper, we address the problem of generating test cases for cyber physical systems from 

formal specifications using differential dynamic logic (DL), a logic for specifying and 

verifying hybrid systems. 
 

2. Related Work 

A test is a description of which input to apply and when to apply it to the implementation 

under test, and of which output can be observed from the implementation under test, in order 
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to decide whether the implementation conforms to its design. A test typically consists of the 

following steps: 

 apply an input action and continue the test; 

 observe an output action from the implementation and  if an output action is 

observed that was allowed then continue the test, if an output action is observed 

that was not allowed then terminate the test with verdict fail, if no output action is 

observed and no output action is supposed to be observed then continue the test, 

and if no output action is observed but an output action should be observed then 

terminate with the verdict fail; or 

 terminate the test with the verdict pass. 

In [2], Lee, et al., present embedded system software testing based on SOA to 

overcome mobile restriction. In [3], Tchamgoue, et al., classified the event-driven program 

models into low and high level based on the type of event they handle, categorized 

concurrency bug patterns and surveyed existing detection techniques for concurrency bugs in 

event-driven programs. They believe that such taxonomy can help the developer to 

understand the causes of concurrency bugs and to avoid introducing them. It can also ease the 

debugging process, and help developing heuristics for more precise detection tools. In [4], 

design considerations to realize a cyber-physical testing language that involves software-

based and human evaluation agents as test oracles are outlined and discussed. 

Quantitative conformance testing of cyber-physical system (CPS) exploits time series of 

measurements, such as temperature or energy, for validating the correctness of deployed 

systems. In [5], Matthias Woehrle, et al., presents the foundations of segmented state space 

traversal in the setting of quantitative conformance testing of a CPS. It is demonstrated how 

this strategy together with domain-specific adaptations remedies state space explosion 

inherent to formal (state-based) verification. 

In [6], Praveen Ranjan Srivastava and Tai-hoon Kim presents a method for optimizing 

software testing efficiency by identifying the most critical path clusters in a program. They 

do this by developing variable length Genetic Algorithms that optimize and select the 

software path clusters which are weighted in accordance with the criticality of the path. 

Exhaustive software testing is rarely possible because it becomes intractable for even 

medium sized software. Typically only parts of a program can be tested, but these parts are 

not necessarily the most error prone. Therefore, they proposed a more selective approach to 

testing by focusing on those parts that are most critical so that these paths can be tested first. 

By identifying the most critical paths, the testing efficiency can be increased. 

In [7], Jae-Hee Lim, et al., presents a hierarchical test model and automated test 

framework for robot software components of RTC (Robot Technology Component) 

combined with hardware module. The hierarchical test model consists of three levels of 

testing based on V-model: unit test, integration test, and system test. The automated test 

framework incorporates four components of test data generation, test manager, test 

execution, and test monitoring.  

Most of the national critical key infrastructure, such as power, piped gas and water supply 

facilities, or the high-speed railroad, is run on the SCADA (Supervisory Control and Data 

Acquisition) system. Recently, concerns have been raised about the possibility of these 

facilities being attacked by cyber terrorists, hacking, or viruses. Thus, it is time to adopt the 

relevant security management techniques. Sungmo Jung, Jae-gu Song, Seoksoo Kim analyze 
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the vulnerabilities of SCADA systems through scenarios, designs a test-bed to prove such 

vulnerabilities, and suggests security devices [8]. 

In [9], Farkhod Alisherov A., and Feruza Sattarova Y. present a methodology for 

penetration testing .Penetration testing is one of the oldest methods for assessing the security 

of a computer system. The idea behind penetration testing methodologies is that the 

penetration tester should follow a pre-scripted format during test as dictated by the 

methodology. A penetration testing methodology was proposed in this research.  

In [10], Dino Mandrioli, Sandro Morasca, and Angelo Morzent address the problem of 

automated derivation of functional test cases for real-time systems, by introducing techniques 

for generating test cases from formal specifications written in TRIO, a language that extends 

classical temporal logic to deal explicitly with time measures. They describe an interactive 

tool that has been built to implement these techniques, based on interpretation algorithms of 

the TRIO language. Several heuristic criteria are suggested to reduce drastically the size of 

the test cases that are generated. Experience in the use of the tool on real-life cases js 

reported. 
In [11], Rachel Cardell-Olive presents a test generation method for real-time systems. A 

standard timed transition system model of a network of Uppaal timed automata is 

transformed under a given test view into a testable timed transition system (TTTS). The test 

view captures information about a particular set of tests: the selection of relevant events to be 

observed; the mapping between implementation and specification events; the granularity of 

the observer's clock; a partition of test events into inputs and outputs. By choosing different 

test views, the tester can control the number of tests required: more detailed tests can be used 

for critical test purposes, and less detailed tests elsewhere. A test generation algorithm is 

presented which constructs a set of test cases from a TTTS. The resulting test suite is input to 

a test execution harness for the implementation under test. It is assumed that the 

implementation can be viewed as a TTTS and that it has no more states than the specification 

TTTS. The final output of the test method is a verdict: yes, the implementation conforms to 

its specification or no, the implementation fails to conform to the specification because it 

fails a particular experiment.  

In [12], Bahareh Badban, et al., present an automated test generation method for hybrid 

control systems, which involves the generation of both discrete and real-valued, potentially 

time continuous, input data to the system under test.  

  In [13] Moez Krichen & Stavros Tripakis propose a new framework for black-box 

conformance testing of real-time systems. The framework is based on the model of partially-

observable, non-deterministic timed automata. They argue that partial observability and non-

determinism are essential features for ease of modeling, expressiveness and 

implementability. The framework allows the user to define, through appropriate modeling, 

assumptions on the environment of the system under test (SUT) as well as on the interface 

between the tester and the SUT.  

 

3. Generating Test Cases from Formal Specification of Cyber Physical Systems 

Using Differential Dynamic Logic  

Much of the process of test execution and monitoring is automated in modern software 

development practice. But the generation of test cases has remained a labor-intensive manual 

task. Methods are now becoming available that can automate this process [10-12]. A simple 

test-generation goal is to find an input that will drive execution of a (deterministic, loop-free) 

program along a particular path in its control flow graph. By performing symbolic execution 
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along the desired path and conjoining the predicates that guard its branch points, we can 

calculate the condition that the desired test input must satisfy. Then, by constraint 

satisfaction, we can find a specific input that provides the desired test case. This method 

generalizes to find tests for other structural coverage criteria, and for programs with loops, 

and for those that are reactive systems (i.e., that take an input at each step). A major impetus 

for practical application of this approach was the realization that (for finite state systems) it 

can be performed by an off-the-shelf model checker: we simply check the property “always 

not P,” where P is a formula that specifies the desired structural criterion, and the 

counterexample produced by the model checker is then the test case desired . Different kinds 

of structural or specification-based tests can be generated by choosing suitable P. What 

makes testing hybrid systems difficult is that continuous input and continuous output always 

occur, that they occur in synchrony and that they depend on each other. If the brake system is 

stimulated with a steadily decreasing distance, then the brake pressure should increases 

steadily. It is even possible that the continuous input depends on the continuous output. For 

instance, if the car brakes, the amount of brake pressure influences how rapidly the distance 

with the car in front decreases (or increases). Furthermore, discrete output behavior also 

depends on continuous input behavior and discrete output behavior may have time 

constraints. For instance, if the distance measurement with the car in front makes a jump 

(which means a new car is detected), then a ”New Car” output has to occur within 0.5 

seconds. A test is passed if only expected output is observed (given the input applied) and it 

fails if an unexpected output is observed. If the brake pressure does not increase while the 

distance with the car in front decreases (as expected), then the test fails. 

   The goal of model-based testing, in the form we consider it, is to automate test generation 

and execution. The behavior of the system is specified by a formal model and tests are 

automatically generated from this specification. The specification can be a transition system, 

an automaton, a process algebra term, or a (formal) specification language. Tests are 

generated by selecting discrete or continuous input from the specification and enumerating 

the possible observations. A verdict pass or fail is attached to each possible observation in 

accordance with the specification. Tests are executed by automatically stimulating the 

implementation with the input described by the test and simultaneously observing the output 

from the implementation. 

The conformance relation formally defines if an implementation conforms to the 

specification [13]. The test generation procedure defines how tests are generated from a 

specification. With a formal definition of how a test is constructed and a formal conformance 

relation it is possible to prove whether our tests are sound and exhaustive with respect to the 

conformance relation. That is, if the implementation conforms to the specification then the 

implementation will pass all tests that can be generated from the specification and if the 

implementation is not conform the specification then it is possible to generate a test which 

fails. 

  In this paper, we use differential dynamic logic (DL) to specify cyber physical systems, and 

generate test cases  from formal specifications by differential dynamic logic(DL) [14], and 

translate the test cases  from formal specifications in to the models of Modelica [16] as 

shown in Figure 1, and finally test cyber physical systems using  the simulation through 

Modelica as shown in Figure 2. 
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Figure 1. Modelica 
 

 

 

Figure 2. Test steps of Modelica  
 

  Modelica [16] is a new language for hierarchical object oriented physical modeling which 

is developed through an international effort. The language unifies and generalizes previous 

object-oriented modeling languages. The language has been designed to allow tools to 

generate efficient simulation code automatically with the main objective to facilitate 

exchange of models, model libraries and simulation specifications. Modelica is primarily a 

modeling language, sometimes called hardware description language that allows the user to 

specify mathematical models of complex physical systems, e.g., for the purpose of computer 

simulation of dynamic systems where behavior evolves as a function of time. Modelica is 

also an object-oriented equation based programming language, oriented towards 

computational applications with high complexity requiring high performance. 

    Differential Dynamic Logic [14] combines descriptions of system behaviour and 

correctness statements about the system state within a single specification language. By 

permitting arbitrary system operationsαas actions of a labelled multi-modal logic, DL 

provides formulas of the form[α]φand <α>φ.The formula [α]φexpresses that all (terminating) 

runs of system  α lead to states in which condition φ holds, whereas<α>φ  expresses that 

there is at least one (terminating) run of αafter whichφholds. differential logic dL is a first-

order dynamic logic with three basic characteristics to meet the requirements of cyber 

physical systems: 

1) Discrete jumps. Projections in state space are represented as instantaneous 

assignments of values to state variables.  
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2) Continuous evolution. Continuous variation in system dynamics is represented with 

differential equations as evolution constraints.  

3) Regular combinations. Discrete and continuous evolutions can be combined to form 

hybrid programs using regular expression operators 

For example [15], The car has state variables describing its current position (xc), velocity 

(vc), and acceleration (ac). The continuous dynamics of the car is described by the 

differential equation system of ideal-world dynamics for longitudinal position changes 

(
c cx v  ， c cv a  )We assume bounds for acceleration ac in terms of a maximum 

acceleration A 0 and a minimum positive braking power b>0 . We introduce a constant   

that provides an upper bound for sensor and actuator delay, communication between the 

traffic center or traffic sign detector and the car controller, and computation in both. The car 

controller1 and the traffic center may react and exchange messages as quickly as they want, 

but they can take no longer than . The Variable speed limit control is modeled by DL as 

follows: 

 
 

    The continuous dynamics (11) of the model describe the evolution of the car’s position and 

velocity according to the current acceleration. We use a variable t that evolves with constant 

slope (i.e., a clock) for measuring time within the upper bound  , and constrain the 

evolution of velocity vc to non-negative values, see (12). 

  In the following model, we provide a model for variable speed limit control in the presence 

of an incident moving towards a car. Cars in this model follow the same control as in the 

previous section. They take care to comply with speed limits and potentially satisfy or 

optimize secondary objectives. Accordingly, the lower bound Safesl of the speed limit 

remains unchanged. We introduce state variables describing an incident’s position (xi) and its 

velocity of movement (vi) towards cars. The system dynamics, are extended with motion of 

an incident. We also introduce a minimum velocity (vmin), which is often mandatory on 

freeways and highways, to exclude unreasonable car behavior from the model (e.g., avoid 

having a car brake to a complete stand still, wait for the incident to arrive at the car’s 

position, just to finally accelerate with maximum acceleration and rush beyond the incident). 
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Variable speed limit control in presence of static and moving incidents (vsli) is modeled by 

DL as follows: 

 

 
 

Once DL specification has been created, it is analysed according to D L rules. For the 

function that the user has indicated, the pre-condition and post-condition are examined, and a 

partition representing them is generated. Subsequently, the partition is used to produce 

predicates which need to be passed to an external solver to find out whether they are 

satisfiable, and, if they are, to choose a random sample from each partition. We assume that 

the system state is uniquely determined by the value of n variables, {x1; x2,… , xn}, where 

each xi takes its value from its domain Di. Thus, the reachable state space of the system is a 

subset of D = D1 ×D×…×Dn. The system may move from one state to another subject to the 

constraints imposed by its transition relation. The transition relation is a subset of D ×D, 

specified as a Boolean predicate on the values of the variables defining the state-space. We 

assume that there is a transition relation for each variable, xi, specifying how the variable 

may change its value as the system moves from one state to another. Informally speaking, the 

transition relation for xi can be thought of as specifying three components: a set of pre-state 

values of xi, a set of post-state values for xi and the condition which guards when xi may 

change from a pre-state value to a post-state value. We adopt the usual convention that 

primed versions of variables refer to their post-state values while the unprimed versions refer 

to their pre-state values. 

For Example, Safe bounds test generation: From the viewpoint of a traffic center and an 

in-car driver assistance system (e.g., obstacle or pedestrian detection), a combination 

sl
Safe  slSafe

is most interesting, since it allows us to derive a minimum distance between 

an incident and a car that is still safe for braking before meeting the incident. Analogously to 

above, we define such a safe operating distance in, which indicates the latest distance at 
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which a traffic center or an in-car driver assistance system must start processing in order to 

warn about an (moving) incident in time so that the system can react safely. 

 
2 2

2

min

1 1
2 2

c sl i
i c c

v v vA A
x x v

b b v
 

      
              

       
  

 

Figure 3 shows the test results of the relation of distance between car and event with the 

car’s velocity 

 

 

Figure 3. the Relation of Distance between Car and Event with the Car’s 

Velocity 

 
 Figure 4 shows the test results of the relation of the car’s velocity with the time. 

 

 

Figure 4. the Relation of the Car’s Velocity with the Time 
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The Table 1 shows  the test result of car’s safety. 
 

Table 1. The Test Result of Car’s Safety 

region distance△S(m) Velocity Vt(m/s) 
braking 

power 
(m/s2) 

Car state 

<1> 400<=△S     safe 

<2> 200<=△S<400 
Vt<60 a=Vt/t safe 

Vt>60 a=Vt/t unsafe 

<3> 0<=△S<200 

Known Vo，

select suitable 
Velocity and 
acceleration 

a>=6m/s2 safe 

a<6m/s2 unsafe 
 

4. Conclusion 

In this paper, we address the problem of generating test cases for cyber physical systems 

from formal specifications and reduce an infinite set of testing parameters into a finite set.  

The further work is devoted to develop the test case generating methods and tools for the 

verification of the dynamic continuous features of cyber physical systems. 
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