
International Journal of Hybrid Information Technology  

   Vol. 6, No. 2, March, 2013 

 

 

39 

 

A Modified Priority Based CPU Scheduling Scheme for Virtualized 

Environment 
 

 

Chia-Ying Tseng* and Kang-Yuan Liu 

Department of Computer Science and Engineering, Tatung University 

#40, Sec. 3, Zhongshan N. Rd., Taipei, Taiwan 

*cytseng@ttu.edu.tw 

Abstract 

In order to maximum the hardware resource utilization, Virtual Machine (VM) 

management has become an important research field of virtualization technology. VM 

scheduling is crucial for the throughput of a system and thus affects the overall system 

performance. According to the scheduling algorithm of Credit Scheduler using in XEN 

hypervisor, each virtual CPU is asynchronously assigned to a physical CPU by CPU 

scheduler in order to maximize the throughput. But for a concurrent program, the 

implementations of threads are not completely independent. In this paper, a solution is 

proposed for the synchronization problem of a concurrent program. By modifying the Xen 

Credit Scheduler, threads in the concurrent program can be synchronized and the 

performance in concurrent workload is greatly enhanced. The waste of CPU time can be 

reduced and achieve higher throughput while keeping the design of the scheduler to be light 

weight, fair, and efficient. With the proposed scheduler, more VMs can be deployed while 

achieving the same throughput, thus gain greater utilization of resources and better energy 

efficiency. 
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1. Introduction 

The traditional technique for reducing the probability of service interruption is to run each 

critical application on a separate physical server. In this way, if a hardware component or this 

critical application fails, only one application is affected. When running multiple applications 

on a single physical server, if one application fails it can cause the operating system and 

other applications to react in unpredictable ways; some applications require specific 

hardware whose drivers might as well generate unpredictable errors with some other 

applications and the hardware component failing may cause the whole host becomes 

unavailable. But this “one server, one application” model leaves most machines vastly 

underutilized and makes the servers idle most of the time. This model is based on the thought 

to ensure the isolation between each application to prevent applications from interfering with 

each other; it is similar to the concept of Virtual Machine (VM). The practice of partitioning 

a single server so that it appears as multiple servers has reduced space utilization, the costs of 

hardware acquisition and energy consumption. In order to maximum the utilization of the 

hardware resources and minimize the capital costs by reducing physical infrastructure, VM 

management has become an important research field of virtualization technology, and the 

scheduling of virtual machines on a physical host machine is crucial for the throughput of a 

system and thus affects the overall system performance. 

In order to maximum the utilization of the hardware resources and minimize the capital 
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costs by reducing physical infrastructure, Virtual machine management has become an 

important research field of virtualization technology, and the scheduling of virtual machines 

on a physical host machine is crucial for the throughput of a system and thus affects the 

overall system performance. 

Virtual Machine scheduling is crucial for the throughput of a system and thus affects the 

overall system performance. According to the scheduling algorithm of Credit Scheduler, each 

virtual CPU is asynchronously assigned to a physical CPU by CPU scheduler in order to 

maximize the throughput. But for a concurrent program, the implementations of threads are 

not completely independent. In this paper, a solution is proposed for the synchronization 

problem of a concurrent program. By modifying the Xen Credit Scheduler, a new priority 

TURBO is added to the proposed scheduler to avoid the scheduling decisions that was made 

for synchronization to be modified by awaking Virtual CPUs (VCPUs) or the load balancing 

algorithm. This allows need-to-sync VCPUs to preempt and being picked up to run at the 

next time slice without impacting overall system fairness; hence the threads in the concurrent 

program can be synchronized. The waste of CPU time can be reduced while keeping the 

design of the scheduler to be light weight, fair and efficient, thus gain greater utilization of 

resources and better throughput. The more Virtual Machines are deployed in a physical host, 

the less physical hosts are required; hence the hardware acquisition costs and maintenance 

costs can be reduced. 
 

2. Virtual CPU Scheduling Strategy in Xen 

Xen originated as a research project at the University of Cambridge and was presented at 

ACM symposium on Operating systems principles [1]. It is an x86 virtual machine monitor 

which allows multiple OSes to share one single hardware in a safe and resource managed 

fashion, but without sacrificing either performance or functionality. The design is targeted at 

hosting up to 100 virtual machine instances simultaneously on a modern server. Xen uses a 

form of virtualization known as para-virtualization, created by the founders of the Xen 

hypervisor project. By using this technology the VMs and hypervisor can co-operate with the 

performance overhead typically in the range of 0.1% to 3.5% and 8% in worst case for 

industry standard performance benchmarks and achieve very high performance for I/O, CPU, 

and memory virtualization. The performance overhead is extremely low compared with full 

virtualization, which can be as much as 20%, or more. But para-virtualization requires 

porting of the guest OSes. HVM such as Intel VT and AMD-V offers new instructions to 

support direct calls to the VMM, enabling original guest OSes to run within Xen VMs, 

starting with Xen 3.0. 

The overall system structure is shown in Figure 1. A privileged domain, call Domain0 

(Dom0) , is created at boot time which is permitted to use the control interface to create and 

terminate other user domains (DomU) and to control their associated scheduling parameters, 

physical memory allocation and the access they are given to the machine’s physical disks and 

network devices. Xen supports up to 64-way symmetric multi-processing (SMP) machines 

and a DomU can be configured as either a uni-processor system or an SMP system in the VM 

environment of full virtualization or paravirtualization running unmodified user software. 

Three different CPU schedulers were introduced in Xen: Borrowed Virtual Time (BVT) 

[2], Simple Earliest Deadline First (SEDF) [3], and the Credit Scheduler [4]. Credit 

Scheduler is a non-preemptive fair-share scheduler maintained by weight and cap, weight 

decides the amount of CPU time it can get and cap fixes the maximum amount of CPU a 

domain will be able to consume. Each CPU manages a local run queue of runnable VCPUs 

which is sorted by VCPU priority rather than credit. Generally, the next VCPU to run is 
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picked off the head of the run queue. Credit Scheduler supports for both WC and NWC 

modes with global load balancing; hence it is set to be the default scheduler in Xen. 

Credit Scheduler is designed to be light weight and efficient, each PCPU manages a local 

run queue of runnable VCPUs. This run queue is sorted by VCPU priority rather than credit. 

On each PCPU, no matter what scheduling decision is made during the common path of the 

scheduler, the next VCPU to run is picked off the head of the run queue. Once a VCPU is 

scheduled, it receives the time slice of 30ms. As a VCPU runs, it consumes credits of 100 

every 10ms. When the time slices of a running VCPU expires, if this VCPU is still can be 

running, it will be put after all other VCPUs of equal priority to it. 

 

 

Figure 1. System Structure of Xen 
 

An active VCPU’s priority can be one of two values: OVER (-2) or UNDER (-1) 

representing whether this VCPU has or hasn’t yet exceeded its fair share of CPU resource in 

the ongoing accounting period (30ms). When a non-active VCPU is woken, it is set to 

priority BOOST, which allows it to be put at the head of the run queue and run ahead of any 

UNDERs or OVERs. This will make it more effective at scheduling latency-sensitive VMs. 

Every credit period (30ms), a system-wide accounting thread re-computes how many 

credits each active VM has earned and bumps the credits; if the accounting master has 

modified priorities, a special O(n) sort of the run queue sort and runs at most once per 

accounting period (30ms). The optimized sort will walk through the run queue and move up 

any UNDERs that are preceded by OVERS. 

When a CPU couldn’t find a VCPU with the priority higher than OVER on its local run 

queue it will look on other PCPUs for one, starting with its immediate neighbor. If it failed to 

find more important work to steal, the next VCPU to run is picked off the head of the local 

run queue. This load balancing guarantees each VM receives its fair share of CPU resources 

system-wide. 

If no runnable VCPU is going to be inserted into the run queue of a PCPU then this PCPU 

is going to idle. Before a PCPU goes idle, it will look at other PCPUs to find any runnable 

VCPU. This guarantees that no PCPU idles when there is runnable work in the system. 

For Credit Scheduler, each VCPU is asynchronously assigned to a PCPU in order to 

maximize the throughput while guaranteeing the CPU time fairness according to the weight. 

However, several studies [5, 6, 7] have shown that this strategy may cause CPU allocation 

errors and result in considerable waste of CPU time for concurrent workloads. 
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Assuming that this VM has the Credit that gives it three time slices of CPU time from next 

nine time slices, but there is a synchronization operation between threads at the end of each 

step, and the length of the step is equal to the length of the time slice. So the second step will 

be blocked until each VCPU has finished the work of the first step, the third step will be 

blocked until each VCPU has finished the work of the second step and so on. The 

multithreaded application only completes two steps in the length of nine slots; while there are 

four slots of CPU time is being wasted for the synchronization, as shown in Figure 2. 
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Figure 2. Scenario of the Credit Scheduler Scheduling Sequence in Xen 

 

3. The Design of Priority based CPU Scheduling Algorithm 

While an x86 symmetrical multi-processing (SMP) system is booting, it will assign a 

processor which monitors the operation of the multiprocessor system. This master processor 

is called a Bootstrap Processor (BSP) while all other processors are called Application 

Processors (AP). It is the same for a VM since it is a duplication of a real machine. In 

previous section the performance drop of a concurrent program running credit scheduler was 

discussed which is due to asynchronous scheduling and the communication or 

synchronization between threads. BSP is the master processor; hence in a virtualization 

environment communications and synchronizations are handled by the Virtual Bootstrap 

Processor (VBSP). So if a VBSP is picked up to run, all non-idling Virtual Application 

Processors (VAP) in the same domain must be picked up to run at the same time slice for 

synchronization purpose. Since one VCPU can run only one at a time on a PCPU, all VCPUs 

must be picked up by different PCPUs and run. So the proposed scheduler must achieve two 

goals for synchronization. First, pick up all the non-idling VAPs in the need-to-sync domain 

when their VBSP is picked up. Secondly, assign each VCPUs to run on different PCPU in the 

same time slice. 

A new priority TURBO, which is higher than the BOOST, UNDER, OVER and IDLE is 

added to the proposed algorithm to avoid the scheduling decisions that was made for 

synchronization to be modified by awaking VCPUs or the load balancing algorithm. This 

allows need-to-sync VCPUs to preempt and being picked up to run at the next time slice 

without impacting overall system fairness. A global variable turbo_domain is defined to keep 

track of the latest turbo domain setting that will be used in the stage of run queue sorting. The 

pseudo code of the proposed scheduler is shown in Figure 3. 
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Algorthm csched_schedule (now); 

Input: now (the current time). 

Output: ret (task to run next). 

BEGIN {Check the VCPU that is about to end its time slice} 

    IF current running VCPU is runnable THEN 

        Insert it to local run queue; 

    ELSE 

        Current VCPU is idle or local run queue is empty; 

    END IF 

    {Select next runnable VCPU from local run queue} 

    Get the task from the top of local run queue; 

IF the VCPU’s priority is TURBO, OR no domain is set to be the turbo 

domain and the VCPU hasn't eaten through its credits  

THEN 

         Remove the task from local run queue; 

    ELSE {See if there is more urgent task on other PCPU} 

         IF there is more urgent work on other PCPUs THEN 

             Get this more urgent work; 

         ELSE 

             Get the task from the top of local run queue; 

         END IF 

    END IF 

    {Update idlers mask if necessary} 

    IF the VCPU is IDLE THEN 

         IF idlers mask hasn't been updated THEN 

            Update idlers mask; 

         END IF 

    ELSE 

         IF the PCPU was idling THEN 

            Clear it from idlers mask; 

         END IF 

    END IF 

    {SET the time slice} 

    IF it's an IDLE VCPU THEN 

        Set illegal time slice (-1); 

    ELSE 

        Set the time slice to be CSCHED_MSECS_PER_TSLICE; 

    END IF 

    Set task to run next; 

    {Clear turbo domain setting if necessary} 

    IF TURBO DOMAIN is set and task to run next is the VBSP of  

TURBO DOMAIN 

THEN  CLEAR the TURBO DOMAIN setting; 

    END IF 

    {Set a turbo domain if necessary} 

    Get the next member from local run queue; 

    IF it is not the end of local run queue THEN 

        Get VCPU from the top of local run queue; 

      IF it's a non-idle VBSP and no domain has been set to be the TRUBO  

THEN Set TRUBO DOMAIN; 

             Inform each PCPU that its run queue needs to be sorted; 

        END IF 

    END IF 

    RETURN task to run next; 

END 

Figure 3. Algorithm of the Scheduling Sequence 
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An O(n) optimized sort of the run queue walks through the run queue and boost all non-

idle VCPUs in turbo domain to the priority of TURBO, then it moves the TUEBOs to the 

head of the run queue and move up any UNDERs that are preceded by OVERS with the 

following algorithm (Figure 4). 

 
Algorthm csched_runq_sort (cpu); 

Input: cpu (PCPU ID). 

 

BEGIN 

    {Check whether it is necessary to sort the run queue} 

    IF we've served all sorting requests THEN 

        No need to sort and exit; 

    END IF 

    Claim that all sorting requests have been served; 

    Spin lock for protection; 

    {Sort the run queue} 

    WHILE it's not the end of local run queue 

        {Boost all active VCPU in TURBO DOMAIN} 

        IF it's not an idle VCPU, TURBO DOMAIN is set and it's 

        a member of the TURBO DOMAIN THEN 

            Set its priority to TURBO; 

        END IF 

        IF it's a TURBO VCPU THEN 

            IF it's the first VCPU of run queue THEN 

                Set it to be the last-known-under; 

            ELSE 

                {Move TURBOs up if necessary} 

                IF this TURBO is not behind a TURBO THEN 

                    Remove it from run queue; 

                    Insert it behind last-known-turbo; 

                END IF 

            END IF 

        Set it to be the last-known-turbo; 

        ELSE 

            IF VCPU's priority is UNDER or BOOST THEN 

                IF it's hot behind last-known-under THEN 

                    Remove it from run queue; 

                    Insert it behind last-known-under; 

                END IF 

                Set it to be the last-known-under; 

            END IF 

        END IF 

    END WHILE 

    Spin unlock; 

END 

Figure 4. Algorithm of the Run Queue Sort 

If this VCPU’s priority was boosted it will be reset during the execution to avoid it 

consuming a non-negligible amount of CPU resources. If the turbo domain is dead and is no 

longer returning to run queue, the system-wide accounting thread will know it and reset the 

turbo domain setting. 
 

4. Performance Evaluation 

In this section, the necessity of application isolation is verified by comparing the 

performance between a native machine without virtualization environment installed and the 

“one VM, one application” model using Xen Credit Scheduler. Then the experiments to 
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compare the performance of parallel workloads and concurrent workloads using both Credit 

Scheduler and the Modified Credit Scheduler are performed. 

 

4.1 Experimental Environment 

The experimental hardware platform is an IBM Compatible PC, with a 2.66GHz Intel Core 

i7-920 processor, both Turbo Boost and Hyper-Threading is disabled. The system is installed 

with 12GB DDR III 1066 MHz RAM and 5x500GB RAID6 7200 RPM SATA II hard disk. 

The host OS in Dom0 is CentOS 5.4 with kernel 2.6.18 and Xen Hypervisor 3.4.2 as the 

VMM. The guest OS in DomU is CentOS 5.4 with kernel 2.6.18, the memory allocated for 

VMs is set to 512MB and the hard disk space is set to 4GB 
 

4.2 Benchmark 

The NAS Parallel Benchmarks (NPB) are developed and maintained by the NASA 

Advanced Supercomputing (NAS) Division, NPB 1.0 was developed in 1991 [8] and released 

in 1992 with benchmarks such as Embarrassingly Parallel (EP), MultiGrid (MG), Conjugate 

Gradient (CG), Fast Fourier Transform (FT), Integer Sort (IS), Block Tridiagonal (BT), 

Scalar Pentadiagonal (SP) and Lower-Upper symmetric Gauss-Seidel (LU). The first five are 

the parallel kernel benchmarks, and the last three are the simulated application benchmarks. 

NPB is a set of benchmarks targeting performance evaluation of highly parallel 

supercomputers for the key characteristics of typical processing in computational 

aerodynamics; it specifies five problem sizes for each benchmark - smallest class “S”, class 

“W”, class “A”, class “B” and the largest class “C”. The following gives an overview of the 

two benchmarks which was selected for the experiments. 

EP: An “embarrassingly parallel” kernel, numerous separate segments of a single and 

reproducible sequence can be generated on separate processor cores of a multi-core system. 

This kernel, in contrast to other parallel kernel benchmarks in the list, requires virtually no 

inter-core communication. 

LU: A regular-sparse, block (5x5) lower and upper triangular system solution. 

Communication of partition boundary data occurs after completion of computation on all 

diagonals that contact an adjacent partition. This constitutes a diagonal pipelining method 

and is called a “wavefront” method [9].  

 

4.3 Experiments and Results 

Two benchmarks are selected for the performance evaluation of parallel workload and 

concurrent workload, EP and LU. All processors work separately with virtually no inter-

processor communication in EP which represents the benchmark for evaluating parallel 

workload, while the concurrent workload is evaluated by LU which is a small message 

communication sensitive benchmark. 

The experiments start with the performance evaluation between the “one VM, one 

application” model using Credit Scheduler and running multiple benchmarks in a single non-

virtualized environment using Linux process scheduler. 
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Figure 5. lu.S Benchmark on Xen with Credit Scheduler and the Proposed 

Scheduler 

 

As shown in Figure 5, the wasted CPU time gains much faster with Credit Scheduler 

especially when there are more than two active domains since there’s a better chance for two 

domains to get the PCPUs by turns. The average execution time for the proposed scheduler of 

15 active domains running LU simultaneously is only 1% higher than average execution time 

for the Credit Scheduler of 3 active domains running LU simultaneously. It is worthwhile 

trading 1% more execution time for 5 times more throughput. 
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Figure 6. Speed up of Proposed Scheduler with lu.S 

 

As Figure 6 shows, with the scheduler proposed, the performance is greatly enhanced 

within 6 VMs compared with Credit Scheduler, the default scheduler of Xen. When running 

7 to 15 VMs in the experimental environment, the speed up grows slower, approximately 3 

times slower than running 1 to 6 VMs. The speedup starts dropping with 16 active domains 

running one LU each; it shows that the CPU allocation error rate rises too fast while running 

16 VMs and the proposed scheduler cannot handle more than 15 active domains. 

For a parallel workload, such as EP the proposed scheduler posed a minor performance 

drop, as shown in Figure 7. 
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It can be observed in Figure 8 that the performance drop of the proposed scheduler, except 

only 1 VM’s running, is within 3% and can be regarded as the scheduling overhead, mainly 

on finding more urgent work on other PCPUs. The implement of synchronization in the 

scheduler is to set a turbo domain and then pick up all runnable VCPUs of turbo domain from 

all PCPU run queues and run, clearly the defect of the scheduler is the typical range of 

picking up a job extends from one run queue to all run queues. The speedup is nearly 1.07 

with only 1 active domain which takes the advantage of continuous boosting of VCPU’s 

priority. The only active DomU in the system with Computational Intensive Workload (CIW) 

burns out credit quickly, thus the priority goes OVER very often. OVERs need to find more 

urgent work on other PCPUs for load balancing and find nothing but idle task. For the 

proposed scheduler, most of the time the priority of VCPUs are TURBO in the one and only 

active DomU, it’s not necessary to find more urgent works from other PCPUs; hence the 

scheduling overhead is decreased and shows better performance with only one active Domain 

running. 
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Figure 7. ep.S Benchmark on Xen with Credit Scheduler and the Proposed 

Scheduler 
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Figure 8. Speed up of Proposed Scheduler with ep.S 
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The proposed scheduler gains 3% more scheduling overhead compared with Credit 

Scheduler. For concurrent workloads the performance drop over asynchronous scheduling 

pose a great threat then the extra scheduling overhead. But for parallel workloads it gains 

nothing but the execution time. The experiment result suggests that different scheduling 

strategies should be used for different workloads in order to maximize the throughput. 

 

5. Conclusion 

In this paper, a solution is proposed for the synchronization problem of a concurrent 

program. By modifying the Xen Credit Scheduler, a new priority TURBO is added to the 

proposed scheduler to avoid the scheduling decisions that was made for synchronization to be 

modified by awaking VCPUs or the load balancing algorithm. This allows need-to-sync 

VCPUs to preempt and being picked up to run at the next time slice without impacting 

overall system fairness. If a VBSP is going to be picked up to run in the scheduling decision, 

all non-idling VAP in the same domain must be picked up to run at the same time slice for 

synchronization purpose; hence if there’s currently no turbo domain existed the domain of 

this VBSP will become the turbo domain. All VCPUs’ priority will be set to TURBO in turbo 

domain and resort the run queue. This allows need-to-sync VCPUs to preempt and being 

picked up to run at the next time slice without impacting overall system fairness; hence the 

threads in the concurrent program can be synchronized, and the waste of CPU time can be 

reduced while keeping the design of the scheduler to be light weight, fair and efficient. 

The CPU scheduler proposed in this paper does not fit all circumstances, it works fine and 

greatly enhances the performance in concurrent workload by degreasing CPU allocation 

errors; but it incurs minor performance drop in parallel workload due to the extra overhead of 

finding the most urgent work from other PCPUs. 

CPU scheduling strategies are crucial for application performance, so different scheduling 

strategies should be used for different types of application in order to reach the maximum 

throughput. But even the characteristic of application workload might change for a single 

application. If an application has both concurrent workloads, parallel workload and 

sequential workload in different phase of execution, using the scheduler for particular 

workload may not be the best choice. Different scheduling strategies should be used 

according to different application workload; hence a self adapting scheduling strategy 

management is needed. Using Dom0 to analyze current application workload and change the 

scheduling strategy of each DomU accordingly might be one of the directions for future 

works. 
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