
International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

39

A Modified Priority Based CPU Scheduling Scheme for Virtualized

Environment

Chia-Ying Tseng* and Kang-Yuan Liu

Department of Computer Science and Engineering, Tatung University

#40, Sec. 3, Zhongshan N. Rd., Taipei, Taiwan

*cytseng@ttu.edu.tw

Abstract

In order to maximum the hardware resource utilization, Virtual Machine (VM)

management has become an important research field of virtualization technology. VM

scheduling is crucial for the throughput of a system and thus affects the overall system

performance. According to the scheduling algorithm of Credit Scheduler using in XEN

hypervisor, each virtual CPU is asynchronously assigned to a physical CPU by CPU

scheduler in order to maximize the throughput. But for a concurrent program, the

implementations of threads are not completely independent. In this paper, a solution is

proposed for the synchronization problem of a concurrent program. By modifying the Xen

Credit Scheduler, threads in the concurrent program can be synchronized and the

performance in concurrent workload is greatly enhanced. The waste of CPU time can be

reduced and achieve higher throughput while keeping the design of the scheduler to be light

weight, fair, and efficient. With the proposed scheduler, more VMs can be deployed while

achieving the same throughput, thus gain greater utilization of resources and better energy

efficiency.

Keywords: Virtual Machine, Xen-hypervisor, Virtual CPU scheduling

1. Introduction

The traditional technique for reducing the probability of service interruption is to run each

critical application on a separate physical server. In this way, if a hardware component or this

critical application fails, only one application is affected. When running multiple applications

on a single physical server, if one application fails it can cause the operating system and

other applications to react in unpredictable ways; some applications require specific

hardware whose drivers might as well generate unpredictable errors with some other

applications and the hardware component failing may cause the whole host becomes

unavailable. But this “one server, one application” model leaves most machines vastly

underutilized and makes the servers idle most of the time. This model is based on the thought

to ensure the isolation between each application to prevent applications from interfering with

each other; it is similar to the concept of Virtual Machine (VM). The practice of partitioning

a single server so that it appears as multiple servers has reduced space utilization, the costs of

hardware acquisition and energy consumption. In order to maximum the utilization of the

hardware resources and minimize the capital costs by reducing physical infrastructure, VM

management has become an important research field of virtualization technology, and the

scheduling of virtual machines on a physical host machine is crucial for the throughput of a

system and thus affects the overall system performance.

In order to maximum the utilization of the hardware resources and minimize the capital

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

40

costs by reducing physical infrastructure, Virtual machine management has become an

important research field of virtualization technology, and the scheduling of virtual machines

on a physical host machine is crucial for the throughput of a system and thus affects the

overall system performance.

Virtual Machine scheduling is crucial for the throughput of a system and thus affects the

overall system performance. According to the scheduling algorithm of Credit Scheduler, each

virtual CPU is asynchronously assigned to a physical CPU by CPU scheduler in order to

maximize the throughput. But for a concurrent program, the implementations of threads are

not completely independent. In this paper, a solution is proposed for the synchronization

problem of a concurrent program. By modifying the Xen Credit Scheduler, a new priority

TURBO is added to the proposed scheduler to avoid the scheduling decisions that was made

for synchronization to be modified by awaking Virtual CPUs (VCPUs) or the load balancing

algorithm. This allows need-to-sync VCPUs to preempt and being picked up to run at the

next time slice without impacting overall system fairness; hence the threads in the concurrent

program can be synchronized. The waste of CPU time can be reduced while keeping the

design of the scheduler to be light weight, fair and efficient, thus gain greater utilization of

resources and better throughput. The more Virtual Machines are deployed in a physical host,

the less physical hosts are required; hence the hardware acquisition costs and maintenance

costs can be reduced.

2. Virtual CPU Scheduling Strategy in Xen

Xen originated as a research project at the University of Cambridge and was presented at

ACM symposium on Operating systems principles [1]. It is an x86 virtual machine monitor

which allows multiple OSes to share one single hardware in a safe and resource managed

fashion, but without sacrificing either performance or functionality. The design is targeted at

hosting up to 100 virtual machine instances simultaneously on a modern server. Xen uses a

form of virtualization known as para-virtualization, created by the founders of the Xen

hypervisor project. By using this technology the VMs and hypervisor can co-operate with the

performance overhead typically in the range of 0.1% to 3.5% and 8% in worst case for

industry standard performance benchmarks and achieve very high performance for I/O, CPU,

and memory virtualization. The performance overhead is extremely low compared with full

virtualization, which can be as much as 20%, or more. But para-virtualization requires

porting of the guest OSes. HVM such as Intel VT and AMD-V offers new instructions to

support direct calls to the VMM, enabling original guest OSes to run within Xen VMs,

starting with Xen 3.0.

The overall system structure is shown in Figure 1. A privileged domain, call Domain0

(Dom0) , is created at boot time which is permitted to use the control interface to create and

terminate other user domains (DomU) and to control their associated scheduling parameters,

physical memory allocation and the access they are given to the machine’s physical disks and

network devices. Xen supports up to 64-way symmetric multi-processing (SMP) machines

and a DomU can be configured as either a uni-processor system or an SMP system in the VM

environment of full virtualization or paravirtualization running unmodified user software.

Three different CPU schedulers were introduced in Xen: Borrowed Virtual Time (BVT)

[2], Simple Earliest Deadline First (SEDF) [3], and the Credit Scheduler [4]. Credit

Scheduler is a non-preemptive fair-share scheduler maintained by weight and cap, weight

decides the amount of CPU time it can get and cap fixes the maximum amount of CPU a

domain will be able to consume. Each CPU manages a local run queue of runnable VCPUs

which is sorted by VCPU priority rather than credit. Generally, the next VCPU to run is

International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

41

picked off the head of the run queue. Credit Scheduler supports for both WC and NWC

modes with global load balancing; hence it is set to be the default scheduler in Xen.

Credit Scheduler is designed to be light weight and efficient, each PCPU manages a local

run queue of runnable VCPUs. This run queue is sorted by VCPU priority rather than credit.

On each PCPU, no matter what scheduling decision is made during the common path of the

scheduler, the next VCPU to run is picked off the head of the run queue. Once a VCPU is

scheduled, it receives the time slice of 30ms. As a VCPU runs, it consumes credits of 100

every 10ms. When the time slices of a running VCPU expires, if this VCPU is still can be

running, it will be put after all other VCPUs of equal priority to it.

Figure 1. System Structure of Xen

An active VCPU’s priority can be one of two values: OVER (-2) or UNDER (-1)

representing whether this VCPU has or hasn’t yet exceeded its fair share of CPU resource in

the ongoing accounting period (30ms). When a non-active VCPU is woken, it is set to

priority BOOST, which allows it to be put at the head of the run queue and run ahead of any

UNDERs or OVERs. This will make it more effective at scheduling latency-sensitive VMs.

Every credit period (30ms), a system-wide accounting thread re-computes how many

credits each active VM has earned and bumps the credits; if the accounting master has

modified priorities, a special O(n) sort of the run queue sort and runs at most once per

accounting period (30ms). The optimized sort will walk through the run queue and move up

any UNDERs that are preceded by OVERS.

When a CPU couldn’t find a VCPU with the priority higher than OVER on its local run

queue it will look on other PCPUs for one, starting with its immediate neighbor. If it failed to

find more important work to steal, the next VCPU to run is picked off the head of the local

run queue. This load balancing guarantees each VM receives its fair share of CPU resources

system-wide.

If no runnable VCPU is going to be inserted into the run queue of a PCPU then this PCPU

is going to idle. Before a PCPU goes idle, it will look at other PCPUs to find any runnable

VCPU. This guarantees that no PCPU idles when there is runnable work in the system.

For Credit Scheduler, each VCPU is asynchronously assigned to a PCPU in order to

maximize the throughput while guaranteeing the CPU time fairness according to the weight.

However, several studies [5, 6, 7] have shown that this strategy may cause CPU allocation

errors and result in considerable waste of CPU time for concurrent workloads.

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

42

Assuming that this VM has the Credit that gives it three time slices of CPU time from next

nine time slices, but there is a synchronization operation between threads at the end of each

step, and the length of the step is equal to the length of the time slice. So the second step will

be blocked until each VCPU has finished the work of the first step, the third step will be

blocked until each VCPU has finished the work of the second step and so on. The

multithreaded application only completes two steps in the length of nine slots; while there are

four slots of CPU time is being wasted for the synchronization, as shown in Figure 2.

3X
2

21

2X
2X

1

Under

PCPU0 PCPU1 PCPU2

Over

VCPU

1,0

Over

Over

VCPU0

VCPU1

VCPU2

VCPU3

1

1

1 2 3 4 5 6 7 8 90

Run Queue

Time slot of Domain 1

VCPU

1,3

Under

VCPU

1,2

Under

VCPU

1,1

Under

Under

Under Under

Task to run next

Idle Idle Idle

PCPU3

Over

Under

Idle

2X
2

2

Figure 2. Scenario of the Credit Scheduler Scheduling Sequence in Xen

3. The Design of Priority based CPU Scheduling Algorithm

While an x86 symmetrical multi-processing (SMP) system is booting, it will assign a

processor which monitors the operation of the multiprocessor system. This master processor

is called a Bootstrap Processor (BSP) while all other processors are called Application

Processors (AP). It is the same for a VM since it is a duplication of a real machine. In

previous section the performance drop of a concurrent program running credit scheduler was

discussed which is due to asynchronous scheduling and the communication or

synchronization between threads. BSP is the master processor; hence in a virtualization

environment communications and synchronizations are handled by the Virtual Bootstrap

Processor (VBSP). So if a VBSP is picked up to run, all non-idling Virtual Application

Processors (VAP) in the same domain must be picked up to run at the same time slice for

synchronization purpose. Since one VCPU can run only one at a time on a PCPU, all VCPUs

must be picked up by different PCPUs and run. So the proposed scheduler must achieve two

goals for synchronization. First, pick up all the non-idling VAPs in the need-to-sync domain

when their VBSP is picked up. Secondly, assign each VCPUs to run on different PCPU in the

same time slice.

A new priority TURBO, which is higher than the BOOST, UNDER, OVER and IDLE is

added to the proposed algorithm to avoid the scheduling decisions that was made for

synchronization to be modified by awaking VCPUs or the load balancing algorithm. This

allows need-to-sync VCPUs to preempt and being picked up to run at the next time slice

without impacting overall system fairness. A global variable turbo_domain is defined to keep

track of the latest turbo domain setting that will be used in the stage of run queue sorting. The

pseudo code of the proposed scheduler is shown in Figure 3.

International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

43

Algorthm csched_schedule (now);

Input: now (the current time).

Output: ret (task to run next).

BEGIN {Check the VCPU that is about to end its time slice}

 IF current running VCPU is runnable THEN

 Insert it to local run queue;

 ELSE

 Current VCPU is idle or local run queue is empty;

 END IF

 {Select next runnable VCPU from local run queue}

 Get the task from the top of local run queue;

IF the VCPU’s priority is TURBO, OR no domain is set to be the turbo

domain and the VCPU hasn't eaten through its credits

THEN

 Remove the task from local run queue;

 ELSE {See if there is more urgent task on other PCPU}

 IF there is more urgent work on other PCPUs THEN

 Get this more urgent work;

 ELSE

 Get the task from the top of local run queue;

 END IF

 END IF

 {Update idlers mask if necessary}

 IF the VCPU is IDLE THEN

 IF idlers mask hasn't been updated THEN

 Update idlers mask;

 END IF

 ELSE

 IF the PCPU was idling THEN

 Clear it from idlers mask;

 END IF

 END IF

 {SET the time slice}

 IF it's an IDLE VCPU THEN

 Set illegal time slice (-1);

 ELSE

 Set the time slice to be CSCHED_MSECS_PER_TSLICE;

 END IF

 Set task to run next;

 {Clear turbo domain setting if necessary}

 IF TURBO DOMAIN is set and task to run next is the VBSP of

TURBO DOMAIN

THEN CLEAR the TURBO DOMAIN setting;

 END IF

 {Set a turbo domain if necessary}

 Get the next member from local run queue;

 IF it is not the end of local run queue THEN

 Get VCPU from the top of local run queue;

 IF it's a non-idle VBSP and no domain has been set to be the TRUBO

THEN Set TRUBO DOMAIN;

 Inform each PCPU that its run queue needs to be sorted;

 END IF

 END IF

 RETURN task to run next;

END

Figure 3. Algorithm of the Scheduling Sequence

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

44

An O(n) optimized sort of the run queue walks through the run queue and boost all non-

idle VCPUs in turbo domain to the priority of TURBO, then it moves the TUEBOs to the

head of the run queue and move up any UNDERs that are preceded by OVERS with the

following algorithm (Figure 4).

Algorthm csched_runq_sort (cpu);

Input: cpu (PCPU ID).

BEGIN

 {Check whether it is necessary to sort the run queue}

 IF we've served all sorting requests THEN

 No need to sort and exit;

 END IF

 Claim that all sorting requests have been served;

 Spin lock for protection;

 {Sort the run queue}

 WHILE it's not the end of local run queue

 {Boost all active VCPU in TURBO DOMAIN}

 IF it's not an idle VCPU, TURBO DOMAIN is set and it's

 a member of the TURBO DOMAIN THEN

 Set its priority to TURBO;

 END IF

 IF it's a TURBO VCPU THEN

 IF it's the first VCPU of run queue THEN

 Set it to be the last-known-under;

 ELSE

 {Move TURBOs up if necessary}

 IF this TURBO is not behind a TURBO THEN

 Remove it from run queue;

 Insert it behind last-known-turbo;

 END IF

 END IF

 Set it to be the last-known-turbo;

 ELSE

 IF VCPU's priority is UNDER or BOOST THEN

 IF it's hot behind last-known-under THEN

 Remove it from run queue;

 Insert it behind last-known-under;

 END IF

 Set it to be the last-known-under;

 END IF

 END IF

 END WHILE

 Spin unlock;

END

Figure 4. Algorithm of the Run Queue Sort

If this VCPU’s priority was boosted it will be reset during the execution to avoid it

consuming a non-negligible amount of CPU resources. If the turbo domain is dead and is no

longer returning to run queue, the system-wide accounting thread will know it and reset the

turbo domain setting.

4. Performance Evaluation

In this section, the necessity of application isolation is verified by comparing the

performance between a native machine without virtualization environment installed and the

“one VM, one application” model using Xen Credit Scheduler. Then the experiments to

International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

45

compare the performance of parallel workloads and concurrent workloads using both Credit

Scheduler and the Modified Credit Scheduler are performed.

4.1 Experimental Environment

The experimental hardware platform is an IBM Compatible PC, with a 2.66GHz Intel Core

i7-920 processor, both Turbo Boost and Hyper-Threading is disabled. The system is installed

with 12GB DDR III 1066 MHz RAM and 5x500GB RAID6 7200 RPM SATA II hard disk.

The host OS in Dom0 is CentOS 5.4 with kernel 2.6.18 and Xen Hypervisor 3.4.2 as the

VMM. The guest OS in DomU is CentOS 5.4 with kernel 2.6.18, the memory allocated for

VMs is set to 512MB and the hard disk space is set to 4GB

4.2 Benchmark

The NAS Parallel Benchmarks (NPB) are developed and maintained by the NASA

Advanced Supercomputing (NAS) Division, NPB 1.0 was developed in 1991 [8] and released

in 1992 with benchmarks such as Embarrassingly Parallel (EP), MultiGrid (MG), Conjugate

Gradient (CG), Fast Fourier Transform (FT), Integer Sort (IS), Block Tridiagonal (BT),

Scalar Pentadiagonal (SP) and Lower-Upper symmetric Gauss-Seidel (LU). The first five are

the parallel kernel benchmarks, and the last three are the simulated application benchmarks.

NPB is a set of benchmarks targeting performance evaluation of highly parallel

supercomputers for the key characteristics of typical processing in computational

aerodynamics; it specifies five problem sizes for each benchmark - smallest class “S”, class

“W”, class “A”, class “B” and the largest class “C”. The following gives an overview of the

two benchmarks which was selected for the experiments.

EP: An “embarrassingly parallel” kernel, numerous separate segments of a single and

reproducible sequence can be generated on separate processor cores of a multi-core system.

This kernel, in contrast to other parallel kernel benchmarks in the list, requires virtually no

inter-core communication.

LU: A regular-sparse, block (5x5) lower and upper triangular system solution.

Communication of partition boundary data occurs after completion of computation on all

diagonals that contact an adjacent partition. This constitutes a diagonal pipelining method

and is called a “wavefront” method [9].

4.3 Experiments and Results

Two benchmarks are selected for the performance evaluation of parallel workload and

concurrent workload, EP and LU. All processors work separately with virtually no inter-

processor communication in EP which represents the benchmark for evaluating parallel

workload, while the concurrent workload is evaluated by LU which is a small message

communication sensitive benchmark.

The experiments start with the performance evaluation between the “one VM, one

application” model using Credit Scheduler and running multiple benchmarks in a single non-

virtualized environment using Linux process scheduler.

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

46

NPB2.3-omp-C lu.S

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of running VMs/Benchmarks

T
im

e
 i
n
 s

e
c
o
n
d
s

Modified

Credit

Figure 5. lu.S Benchmark on Xen with Credit Scheduler and the Proposed

Scheduler

As shown in Figure 5, the wasted CPU time gains much faster with Credit Scheduler

especially when there are more than two active domains since there’s a better chance for two

domains to get the PCPUs by turns. The average execution time for the proposed scheduler of

15 active domains running LU simultaneously is only 1% higher than average execution time

for the Credit Scheduler of 3 active domains running LU simultaneously. It is worthwhile

trading 1% more execution time for 5 times more throughput.

NPB2.3-omp-C lu.S

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of running VMs/Benchmarks

S
p
e
e
d
u
p

Figure 6. Speed up of Proposed Scheduler with lu.S

As Figure 6 shows, with the scheduler proposed, the performance is greatly enhanced

within 6 VMs compared with Credit Scheduler, the default scheduler of Xen. When running

7 to 15 VMs in the experimental environment, the speed up grows slower, approximately 3

times slower than running 1 to 6 VMs. The speedup starts dropping with 16 active domains

running one LU each; it shows that the CPU allocation error rate rises too fast while running

16 VMs and the proposed scheduler cannot handle more than 15 active domains.

For a parallel workload, such as EP the proposed scheduler posed a minor performance

drop, as shown in Figure 7.

International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

47

It can be observed in Figure 8 that the performance drop of the proposed scheduler, except

only 1 VM’s running, is within 3% and can be regarded as the scheduling overhead, mainly

on finding more urgent work on other PCPUs. The implement of synchronization in the

scheduler is to set a turbo domain and then pick up all runnable VCPUs of turbo domain from

all PCPU run queues and run, clearly the defect of the scheduler is the typical range of

picking up a job extends from one run queue to all run queues. The speedup is nearly 1.07

with only 1 active domain which takes the advantage of continuous boosting of VCPU’s

priority. The only active DomU in the system with Computational Intensive Workload (CIW)

burns out credit quickly, thus the priority goes OVER very often. OVERs need to find more

urgent work on other PCPUs for load balancing and find nothing but idle task. For the

proposed scheduler, most of the time the priority of VCPUs are TURBO in the one and only

active DomU, it’s not necessary to find more urgent works from other PCPUs; hence the

scheduling overhead is decreased and shows better performance with only one active Domain

running.

NPB2.3-omp-C ep.S

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of running VMs/Benchmarks

T
im

e
 i
n
 s

e
c
o
n
d
s

Modified

Credit

Figure 7. ep.S Benchmark on Xen with Credit Scheduler and the Proposed

Scheduler

NPB2.3-omp-C ep.S

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of running VMs/Benchmarks

S
p
e
e
d
u
p

Figure 8. Speed up of Proposed Scheduler with ep.S

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

48

The proposed scheduler gains 3% more scheduling overhead compared with Credit

Scheduler. For concurrent workloads the performance drop over asynchronous scheduling

pose a great threat then the extra scheduling overhead. But for parallel workloads it gains

nothing but the execution time. The experiment result suggests that different scheduling

strategies should be used for different workloads in order to maximize the throughput.

5. Conclusion

In this paper, a solution is proposed for the synchronization problem of a concurrent

program. By modifying the Xen Credit Scheduler, a new priority TURBO is added to the

proposed scheduler to avoid the scheduling decisions that was made for synchronization to be

modified by awaking VCPUs or the load balancing algorithm. This allows need-to-sync

VCPUs to preempt and being picked up to run at the next time slice without impacting

overall system fairness. If a VBSP is going to be picked up to run in the scheduling decision,

all non-idling VAP in the same domain must be picked up to run at the same time slice for

synchronization purpose; hence if there’s currently no turbo domain existed the domain of

this VBSP will become the turbo domain. All VCPUs’ priority will be set to TURBO in turbo

domain and resort the run queue. This allows need-to-sync VCPUs to preempt and being

picked up to run at the next time slice without impacting overall system fairness; hence the

threads in the concurrent program can be synchronized, and the waste of CPU time can be

reduced while keeping the design of the scheduler to be light weight, fair and efficient.

The CPU scheduler proposed in this paper does not fit all circumstances, it works fine and

greatly enhances the performance in concurrent workload by degreasing CPU allocation

errors; but it incurs minor performance drop in parallel workload due to the extra overhead of

finding the most urgent work from other PCPUs.

CPU scheduling strategies are crucial for application performance, so different scheduling

strategies should be used for different types of application in order to reach the maximum

throughput. But even the characteristic of application workload might change for a single

application. If an application has both concurrent workloads, parallel workload and

sequential workload in different phase of execution, using the scheduler for particular

workload may not be the best choice. Different scheduling strategies should be used

according to different application workload; hence a self adapting scheduling strategy

management is needed. Using Dom0 to analyze current application workload and change the

scheduling strategy of each DomU accordingly might be one of the directions for future

works.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, “Xen

and the art of virtualization”, 19th ACM symposium on Operating systems principles, Bolton Landing, NY,

USA, (2003), pp. 164-177.

[2] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive

threads in a general-purpose scheduler”, ACM SIGOPS Operating Systems Review, vol. 33, no. 5, (1999), pp.

261-276.

[3] S. Diestelhorst, “Scheduling Operating-Systems”, Großer Beleg, Technische Universität Dresden, Dresden,

Germany, (2007).

[4] E. Ackaouy, “The Xen Credit CPU Scheduler, XenSource: Open Source Enterprise Virtualization”,

http://www.xen.org/files/summit_3/sched.pdf, (2006) September 18.

[5] L. Cherkasova, D. Gupta and A. Vahdat, “Comparison of the three CPU schedulers in Xen”, ACM

SIGMETRICS Performance Evaluation Review, vol. 35, no. 2, New York, NY, USA, (2007), pp. 42-51.

[6] C. Xu, Y. B. Bai and C. Luo, “Performance Evaluation of Parallel Programming in Virtual Machine

International Journal of Hybrid Information Technology

 Vol. 6, No. 2, March, 2013

49

Environment”, Proceedings of 6th IFIP International Conference on Network and Parallel Computing, Gold

Coast, QLD, (2009) October 19-21, pp. 140-147.

[7] X. H. Xu, P. P. Shan, J. Wan and Y. C. Jiang, “Performance Evaluation of the CPU Scheduler in XEN”,

Proceedings of International Symposium on Information Science and Engineering, Shanghai, (2008)

December 20-22, pp. 68-72.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O.

Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnam and S. K. Weeratunga, “The

NAS Parallel Benchmarks”, International Journal of Supercomputer Applications, vol. 5, no. 3, (1991), pp.

63-73.

[9] E. Barszcz, R. Fatoohi, V. Venkatakrishnan and S. Weeratunga, “Solution of Regular, Sparse Triangular

Linear Systems on Vector and Distributed-Memory Multiprocessors”, Technical Report NAS RNR-93-007,

NASA Ames Research Center, Moffett Field, CA, 94035-1000, (1993).

[10] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third generation architectures”,

Communications of the ACM, vol. 17, no. 7, (1974) July, pp. 412-421.

[11] H. Jin, M. Frumkin and J. Yan, “The OpenMP Implementation of NAS Parallel Benchmarks and Its

Performance”, NAS Technical Report NAS-99-011, NASA Ames Research Center, Moffett Field, CA, (1999)

October.

[12] J. H. Che, Q. M. He, Q. H. Gao and D. W. Huang, “Performance Measuring and Comparing of Virtual

Machine Monitors”, IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Shanghai,

(2008), pp. 381-386.

Authors

Chia-Ying Tseng received a bachelor degree in industrial education

from Taiwan Normal University in 1979 and a master degree in

computer engineering from the Electrical and Computer Engineering

Department of Arizona State University, USA, in 1985. In 1990, he was

selected by Ministry of Education to enter the PhD program in the

Computer Science and Engineering Department of Arizona State

University for one year research. Currently, he is an Assistant Professor

in the Computer Science and Engineering Department of Tatung

University, Taiwan. His research interests include Embedded System

Design, Embedded Real Time Operating System, Multiprocessor

System-on-Chip (MPSoC), Cloud Computing and Virtualization.

Kang-Yuan Liu received the B.S. degree in Chemical Engineering

from National Taiwan University of Science and Technology in 2002,

and his M.S. degree in Computer Science and Engineering from Tatung

University in 2004. Currently, he is the Ph.D. candidate in Tatung

University. His research interests include video compression, real-time

operating system scheduling, and embedded system programming.

International Journal of Hybrid Information Technology

Vol. 6, No. 2, March, 2013

50

