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Abstract   

Noise has great influence on the signal analysis for centrifugal compressor. In order to 

eliminate the noise, the iterative singular value decomposition (ISVD) de-noising is applied in 

this paper. Firstly, the algorithm of this method is introduced. It is based on singular value 

decomposition about the trajectory matrix of attractor which is reconstructed according to 

time delay embedding theory. Secondly, the accuracy of this method is tested by 

reconstructing the pseudo-phase portrait for the signal of Lorenz attractor. Comparing with 

the pseudo-phase portrait reconstructed from signal contained noise, the pseudo-phase 

portrait reconstructed after ISVD de-noising is more regular. Finally, this method is used in 

the centrifugal compressor signal analysis. By this method, the correlation dimension, which 

can reflect different fault condition for nonlinear system, is estimated accurately. It is proved 

that this method can reduce the noise effectively, which influences the correlation dimension 

computing a lot. This method can improve the nice rate of signal analysis. 
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1. Introduction 

Centrifugal compressor is a large rotating machine in petrochemical enterprises. Because 

its structure is complex, centrifugal compressor usually functions showing greatly non-linear 

characteristics. In recent years, the theory of chaos and fractal has been widely applied in the 

fault diagnosis of the large, complex and non-linear system [1-3]. Pseudo-phase portrait can 

be used to extract qualitative feature of chaotic attractor, however, the noise contained in 

measured signal will make the pseudo-phase portrait irregular. The correlation dimension of 

the fractal theory is also a very important parameter for characterizing the chaotic attractor. It 

is usually used to quantitatively describe the behavior of the non-linear system. However, the 

correlation dimension is very sensitive to the presence of the noise. Kostelich and T. 

Schreiber [4] showed that, the noise contained in measured signal will strongly reduce the 

width of the scaling region on the log-log plot of correlation integrals, cause an increase of 
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the correlation dimension and obscure the underlying fractal structure. Therefore, in order to 

make the pseudo-phase portrait regular and estimate the correlation dimension accurately, it is 

necessary to reduce noise from the measured signal. 

At present, digital filter, time-average technique, wavelet de-noising, and so on are often 

used in reducing noise. If the noise has a lot of difference from the system signal, the noise 

can be eliminated by these methods. However, the noise and the system signal usually mix 

with each other for the non-linear system. The de-noising effect of the conventional methods 

is not obvious. 

To reduce noise, the iterative singular value decomposition (ISVD) de-noising [5-7], which 

is based on the phase space reconstruction, is applied in this paper. 

  

2. ISVD De-noising Algorithm  

The procedure of the ISVD de-noising method is as follows (2.1~2.4) 

 

2.1. Construction of the Trajectory Matrix  

Given the measured one dimension time series Nxxx ,,, 21  , the trajectory matrix 

D can be constructed according to time delay embedding theory 
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where  1-- nNNn  ,  is the time delay and n  is the embedding dimension. The 

embedding theorem of Takens[8] states that the embedding dimension n should satisfy 

the inequality 12  dn , where d is the dimension of a manifold containing the 

attractor. 

 

2.2. Singular Value Decomposition 

Apply singular value decomposition (SVD) to the trajectory matrix D . 

                           TCSD                                       (2) 



International Journal of Hybrid Information Technology  

   Vol. 5, No. 4, October, 2012 

 

 

33 

 

where S  is the eigenvectors of 
TXX , C  is the eigenvectors of XX T

,   is the 

diagonal matrix containing the singular values, 
nNnS


 ,

nnC  ,and 

nn , nNn  . 

                      ),,,( 21 ndiag                                  (3) 

where n ,,, 21   are the singular values of D and 021  n  . 

Shin et al. [6] showed that the noise will cause all the singular values to be non-zero. 

Especially, if the noise is white noise, the noise will cause all the singular values to be 

increased the same amount
2

noise , then they can be written as 

                     
222
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where k is the rank of D , noise  is caused by the noise and k),1,2,(i22  noisei     

 

2.3. Acquisition of the Noise Reduced Signal 

The trajectory matrix D  can also be written as  
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where mD  is the deterministic part of the trajectory matrix that denotes the clean system 

signal, W denotes the noisy signal, 
kNnS


1

, kk1
, nkC 1

 and k  is the 

rank of D . 

The optimal approximate of mD  is given by  

                            1 1 1m

TD S C                                 (6) 
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From eq.(6), we can see if we reserve the bigger singular values ( 1, , )i i k   and set 

the others to be zero, 
mD can be obtained by the inverse course of SVD.  

Average each column of the matrix mD , and we obtain the noise reduced signal. 

 

2.4. Iteration 

Because 
mD  is only an estimate of the deterministic part mD , the recovered signal is not 

noise free after only one iteration. It needs to repeat the above steps several times before we 

obtain the satisfied signal.  

 

2.5. An Important Question 

It is an important question to determine the number of the bigger singular values k . It may 

affect the question whether the optimal approximate matrix
mD  reserves the main 

information of the system signal. In this paper the contribution rate of the singular value is 

used to determine it.  

The contribution rate of i is given by 

                          
2 2

i i i
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                                     (7) 
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, then k p , where   is the contribution rate criterion and k  

is the number of the bigger singular values. Application results show that this method can 

determine k  correctly.  

 

3. Numerical Simulation Experiment 

In order to verify the validity of the program written according to the ISVD de-noising 

algorithm, the signal of Lorenz attractor is analyzed. The theoretic correlation dimension of 

Lorenz attractor is 2.06. 
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The Lorenz attractor is given by 
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To generate a time series, we set the initial condition    0 0 0, , 0.05,0.05,0.05x y z   and 

integrate eq. (8) using a fourth order Runge-Kutta method with a fixed integration step 

size of 0.01s, and after discarding the first 2000 steps as the transient regime, we collect 

40960 data points of x .The signal is assumed to be clean and 10% Gaussian white 

noise is added to it.  

 

3.1. Qualitative Experiment 

The ISVD de-noising method is applied to the noisy signal. The iteration number is 2, the 

embedding dimension 15n  and the time delay 1 . 

The pseudo-phase portraits [9] for noisy signal and by ISVD de-noising are shown in 

Figure 1 and the time waveforms are shown in Figure 2. 

 

 

Figure 1．Pseudo-phase Portrait (a) for Noisy Lorenz Signal (b) by ISVD 

De-nosing 
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Figure 2．(a) Noisy Lorenz Signal (b) Recovered Time Series Obtained by Two 

Iterations of the ISVD De-nosing 

Comparing Figure 1(a) with Figure 1(b), we can see that the pseudo-phase portrait by 

ISVD is more regular. Comparing Figure 2(a) with Figure 2(b), we can see that the waveform 

by ISVD is smoother and the characteristic waveform is well reserved. 

 

3.2. Quantitative Experiment 

In order to quantitatively describe Lorenz attractor, we can estimate the correlation 

dimension of Lorenz attractor. The ISVD de-noising method is applied to the noisy signal 

firstly. Then the correlation dimension of Lorenz attractor is estimated according to the 

modified G-P algorithm [10]. 

The parameters of ISVD de-noising are as follows, the iteration number is 2, the 

embedding dimension 15n  and the time delay 1 . 

The parameters of G-P algorithm are as follows, the embedding dimension 7n  and the 

time delay 2 . 

The log-log plot of correlation integrals and local slope [11] curve for noisy signal are 

shown in Figure 3. The curves by ISVD are shown in Figure 4. 

According to the local slope curve, we can determine the scaling region of the log-log plot 

of correlation integrals. The correlation dimension is the slope of the scaling region which can 

be determined by using the least squares fit. 

From Figure 3(b), we can see that for noisy Lorenz signal there is no range over which the 

slope is constant, so the scaling region doesn’t exist in Figure 3(a). The correlation dimension 

estimated tends to be infinite. 
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From Figure 4(b), we can see that when the value of )(ln r is between -2.7 and -3.8, the 

slope is constant, so the scaling region in Figure 4(a) is also between -2.7 and -3.8. By the 

least squares fit, the correlation dimension estimated is between 2.06 and 2.12. It is in 

accordance with the theoretic correlation dimension 2.06. 

 

 

Figure 3．(a) Log-log plot of Correlation Integrals for Noisy Lorenz Signal (10% 

white noise added). Correlation Dimension tends to be Infinite. (b)Slope of 

Curves in (a)  

 

 

Figure 4．(a) Log-log Plot of Correlation Integrals for Lorenz Signal by ISVD 

De-nosing. Correlation Dimension D=2.06~2.12. (b) Slope of Curves in (a) 
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4. Actual Application  

In this section, the ISVD de-noising method is applied to the centrifugal compressor signal 

analysis. We collect vibration signal when the centrifugal compressor is testing. The sampling 

frequency is 16000Hz and the sampling number of data is 40960.  

Firstly, the ISVD de-noising method is applied to the signal to reduce the noise. The 

iteration number is 2, the embedding dimension 15n  and the time delay 1 . Then the 

correlation dimension is estimated according to the modified G-P algorithm. The parameters 

of G-P algorithm are 3n  and 25 . The log-log plot of correlation integrals and local 

slope curve for noisy signal are shown in Figure 5.The curves by ISVD are shown in Figure 

6. 

 

 

Figure 5．(a) Log-log Plot of Correlation Integrals for Data of Centrifugal 

Compressor. Correlation Dimension tends to be Infinite. (b) Slope of Curves in (a) 

 

 

Figure 6．(a) Log-log Plot of Correlation Integrals for Centrifugal Compressor 

Signal by Two Iterations of the ISVD De-nosing. Embedding Dimension is Fixed 

at n=31.Correlation Dimension D=1.53~1.57. (b) Slope of Curves in (a) 
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From Figure 5, we can see that there is rarely scaling region and the correlation dimension 

tends to be infinite for noisy signal. From Figure 6, we can see that when the value of 

ln( )r is between -1.9 and -3.2, the scaling region exists. Then the correlation dimension is 

estimated between 1.53 and 1.57. 

By spectrum analysis, it is estimated that this centrifugal compressor has the fault of rotor 

unbalance. Wang et al. [10] pointed out that the rotor unbalance belongs to the fault whose 

characteristic concentrated on the power frequency, and their correlation dimension should be 

near to 1. Therefore, the correlation dimension estimated in the above is reasonable.   

              

5. Conclusion  

Noise is always contained in the measured vibration signal of centrifugal compressor. It 

has great influence on the signal analysis. To reduce the noise, the iterative singular value 

decomposition (ISVD) de-noising is applied in this paper. Its algorithm is simple and it’s easy 

to implement. Numerical experiment and actual application show that, its de-noising effect is 

obvious. The pseudo-phase portrait by ISVD de-nosing is more regular, and the correlation 

dimension is estimated accurately. The ISVD de-noising method can improve the nice rate of 

signal analysis. 
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