
International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

157

Towards Privacy-Preserved Query Optimization on Microblog Data

Jie Zhao

School of Business, Anhui University

zj_teacher@126.com

Abstract

Microblog platform, such as Twitter and Sina, has been one of the major ways of

information diffusion in modern society. However, although microblog has been proven to

contain lots of information, it is really hard for people to find useful information on it.

Besides, some information in microblog such as user IDs is not allowed to publish due to

privacy policies. Thus the queries on microblog data can be regarded as privacy-preserved

queries. One of the challenged issues is the poor performance of answering privacy-

preserved queries over microblog data, which owes to the large and increasing volume and

the complex social network structure of microblog data. In this paper, we propose a basic

idea to optimize the privacy-preserved queries on microblog data. We use a query-specific

approach to treat the queries, i.e., the microblog data is first preprocessed according to the

specific requirements of different types of queries, which are then organized through some

indexing structures. Our preliminary experiments on real microblog data show that this

approach has reasonable performance.

Keywords: microblog data, query, optimization, privacy preservation

1. Introduction

Nowadays, microblogging service such as Twitter [1] and Sina Weibo [2] has been widely

used all over the world. It has been demonstrated that microblog usually has a big impact on a

lot of social and political events. Therefore, recently research on microblog data has been a

hot topic.

While microblogging services can continuously produce a huge amount of data, how to use

those data is still a challenging problem. The hardest issue is the data volume, which makes

traditional query processing techniques difficult to answer queries over microblog data.

Another issue is the privacy problem. As microblog data contains a lot of personal private

information about users as well as their social network, many countries have laws that

disallow people to directly use the microblog data. From this perspective, we can only

perform privacy-preserved queries over microblog data, which means a query can not reveal

any private information about users.

However, even though the privacy-preserved queries can not retrieve user names as well as

their personal messages, we are still able to find lots of useful information from microblog

data, which can be further used to server many applications including event prediction,

sentiment analysis, and so on. This is because microblog data contains rich information about

social network structure.

In this paper, we focus on the optimization issues for the privacy-preserved queries over

microblog data. We will first state the problem regarding privacy-preserved queries, and then

propose a query-specific approach to optimizing those queries. We also introduce some index

structures to improve the query performance.

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

158

2. Problem Statement

Microblog platform now has a big impact on people’s daily life. Typical microblog service

providers, such as Twitter (U.S.A.) and Sina Weibo (China) allow users to get the original

data via some APIs. Thus we can build a spider to continuously obtain microblog data and

therefore construct a real-time database for microblog data. However, due to privacy

preservation policies in most countries, we are not allowed to directly use the contents as well

as user identifiers information in our research. We name such search behaviors on microblog

data as privacy-preserved queries.

In this paper, we mainly focus on the optimization techniques for privacy-preserved

queries over microblog data. It should be noted that privacy-preserved queries can also bring

a lot of new insights to many applications, due to the rich information introduced by the

social network information among microblog data. For example, we can predict the retweeted

count of a specific tweet based on the followers and followee list, which can be used to

conduct micro/macro economics analysis, e.g., car sales, consumers’ confidence, and so on.

To answer privacy-preserved queries, we can create some relational tables to store the

acquired microblog data except the private parts in them. Figure 1 shows a design of such a

database, where we use five tables to represent microblog data.

(a) microblog (b) friendlist

(c) event (d) mention

(e) retweet

Figure 1. Tables used to Store Crawled Microblog Data

Based on the database design shown in Fig.1, now we can formulate the typical privacy-

preserved queries over microblog data. Table 1 summarizes those queries.

How to answer the above queries over microblog data? This paper is mainly aimed at this

issue. The biggest challenge is due to the large data volume. Hence we have to design

efficient techniques to optimize the queries over microblog data.

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

159

Table 1. Typical Privacy-preserved Queries over Microblog Data

Query Description

Q1 Find top-x suggested followees for user A.

Q2 Find top-x users for user A, who are A’s followees and have top-x followers’ count.

Q3 Find top-x users for user A, who are A’s followees and have top-x followees’ count.

Q4 Find out users followed by User A and B together.

Q5 Find out users who are B’s followers and A’s followees.

Q6 Find top-x users who are mentioned in all microblogs in a time range.

Q7 Find top-x users who are mentioned in user A’s microblogs in a time range.

Q8 Show top-x latest microblogs from user A’s followees or the followees of them.

Q9 Find out top-x users most interested the tag “?”.

Q10 Find out top-x users order by the num. of their microblogs being retweeted by others in a time

range.

Q11 Find out top-x users order by the num. of their microblogs retweeting A’s microblogs in a

time range.

Q12 Find out top-x microblogs which are from A’s followees or followees of them and ordered by

num. of being retweeted by others in a time range.

Q13 Find out top-x users (not A’s followees) order by num. of tags being mentioned by A’s

microblogs and their microblogs in a time range.

Q14 Find out top-x tags order by the num. of being mentioned by the microblogs in a time range.

Q15 Find out top-x users order by num. of their microblogs containing tag “?” in a time range.

Q16 Find out top-x users order by num. of microblogs being retweeted by user A’s followees in a

time range.

Q17 Find out top-x users (of A’s followees) order by num. of being mentioned by all the

microblogs in a time range.

Q18 Find out top-x users(of A’s followers) order by their microblogs mentioning A in a time range

Q19 Find out top-x trending tags, which are came from A’s followees or followees of them and

ordered by num. of being mentioned by the microblogs of A’s followees or followees of

them.

3. Rules for Query Optimization

3.1 Classification on Privacy-Preserved Queries

We analyze the original dataset and queries carefully and find that we can group the

queries into several classifies according to the disparate attributes they need while

processing queries.

(1) User-based queries: this group includes Q1, Q2, Q3, Q4, Q5. Those queries only

use the user followship data to obtain result.

(2) Mention-based queries: this group includes Q6, Q7, Q17, Q18. Those queries are

the only ones that need the mention information. Besides, they may need user

followship data as well.

(3) Retweet-based queries: this group includes Q10, Q11, Q12, Q16. Those queries

are the only ones that need the retweet information. Besides, they may need user

followship data as well.

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

160

(4) Event-based queries: this group includes Q9, Q13, Q14, Q15, Q19. Those queries

are the only ones that need the event information. Besides, they may need user

followship data as well.

(5) All Microblog-based Queries: this group only contains one query, Q8. We cannot

put it into any of the groups above, so it is handled individually in our system.

3.2 Data Preprocessing Rules

The original microblog data is not efficient to answer most of the given queries. For

example, the user followship network data contains user information like

“USERID\tFOLLOWEEID\n”, so if we want to search for the friends of a user’s

friends, we might traverse the dataset twice and result in poor performance. Besides, the

tweets dataset contains different kinds of information, e.g., event tag, mention tag, and

retweet tag. However, those information is not necessary for all the queries. So in the

data preprocessing step, we make preprocess for each group of queries. Our

preprocessing mainly contains two parts: general preprocessing and query-specific

preprocessing.

3.2.1 General Preprocessing

The general preprocessing rules are as follows.

(1) We first split the original microblog data into many small files according to

different time frames. After considering about different time span of queries, we chose

one day as the time frame. Therefore, the original data set is partitioned into a set of

files, each of which contains tweets posted in a specific day.

(2) In the original tweets dataset, a tweet may have ten tags at most, and each tag

contains distinct attributes. For each group of queries, it is not necessary to scan the

whole dataset because only a part of data may be involved. So we first extract tweets

with specific attributes (e.g. mention, retweet or event) for each group of queries, then

create different data formats for tweets with different attributes.

(3) In the original tweets dataset, many tags have extra information that is redundant

for querying (e.g. the tag name “time:” is redundant in the tag “time: 2009-09-09

09:09:09”), so we simply remove those information. Besides, as we have partitioned the

original dataset by one day granularity, the time information we need is only the hour

time “09:09:09”, so we only retain the hour time information in the partitioned file.

Furthermore, we transform the string formatted hour time into an Integer (e.g.

“09:09:09” into 90909) to accelerate querying.

3.2.2 Query-Specific Preprocessing

The general preprocessing is not enough for query accelerating because the queries in

different group varies a lot, and even queries in the same group may need different

kinds of data formats. So we need to employ extra preprocessing based on different

queries, which is called query-specific preprocessing in this paper. As a result, we

design different preprocessing rules for different types of queries.

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

161

(1) User-based queries

The data format the original user followship dataset provides is not enough for

efficiently querying. We observe the queries in this group and found that there are

mainly three targets we need to achieve: finding a user’s followee, follower and r -friend.

So we first statistic a user’s follower, followee and r-friend information and create three

files with specific formats that contains the three information accordingly. This data

formats are shown in Table 2.

We take userfile1 as an example to illustrate the new data format. In userfile1, each

line of the file contains a user’s followers information, The userID, number of followers

and follower list are separate by tag “%”. Different followers in the followers list are

separate by tag “#”. In this paper we call such a line of data a “record”. With an

efficient indexing mechanism we will discuss in 3.3, we could obtain a user’s record in

millisecond level time, so this data format could accelerate user-based queries a lot.

Table 2. User-based Query Preprocessing Rules

Rule Data Format (each line) File Type

1 UserID % Follower count % follower1# follower2# follower3#...
UserFile1

(Follower)

2 UserID % Followee count% followee1# followee2# followee3#...
UserFile2

(Followee)

3 UserID % R-friend count% r-friend1# r-friend 2# r-friend 3#...
UserFile3

(R-friend)

(2) Event-based Queries

There are microblogs that contain event tags in the tweets dataset. We first extract all

these microblogs then group them by tag name. Each group of event microblogs is

splitted into small files by one day granularity. After observe the queries, we build three

kinds of files with distinct data forma.

The data formats of the three files are shown in Table 3.

Table 3. Event-based Query Preprocessing Rules

Rule Data Format (each line) File Type

1 UserID % Mention count%time1# time2 #time3#… Event -User File

2 UserID \t Time \t Event tag User-Event File

3 UserID \t time User-Time File

Event-User File: We found that most queries required us to find out the count of a

user mentioning an event, from this point we build event-user file which contain

information about which users mention an event tag in one day, as shown in Table 3.

The value “count” represents how many times a user mentioned the event tag in one

day, and “time1#time2…” is the timestamp of each mentioning action.

User-Event File: In order to find out what events a user mentioned in a time period,

we create the event-user file. We first employ a simple hash function to hash user into

small files, than for each file we store the information of a user microblogs with event

tag. Each line in the file contains user id, timestamp and the event tag name.

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

162

User-Time File: Since some of the queries may be related to large amount of users,

searching by user may cost much time, so we create a User-Time file for each of the

events by one day granularity, it’s alight-weight file that only contains the timestamp

and user id for each microblog mentioning the event, and the file is sort by timestamp.

(3) Retweet-based and Mention-based Queries

After observing the queries and attributes in the two groups of queries, we found that

the two groups have a lot in common. Both groups of queries mainly focus on two

actions: user A mention/ retweet user B or user A is mentioned/ retweeted by B. So in

this part we illustrate the two groups together. We take retweet -based query as a

representative. There are four queries (Q10, Q11, Q12, and Q16) in the retweet group.

We find two features to describe a query: user set (one/ multiple/ all user) and retweet

type (retweet/ being retweeted). User set means the least number of users we need to

traverse in order to obtain the result. Retweet type means the information we need to

find is about a user (in the user set) retweeting others tweets or a user’s tweets being

retweeted by others. Take Q11 for example, Q11 requires us to find out top-X users

ordered by the number of their tweets retweeting user A’s microblogs. So the least

number of users we need to traverse is only one (A), and the retweet type is being

retweeted. We list those features in Table 4.

Table 4. Features of Retweet-based Queries

Mention Type User Set Query

Being Retweeted All Q10

Being Retweeted One Q11

Being Retweeted Multiple Q12

Retweet Multiple Q16

According to the features listed in Table 4, we create three files with distinct format:

user-retweeted file, user-retweet file and user file. User-retweeted file is aiming at

handling queries which retweet type is being retweeted and user set is one or multiple.

Each line of the file contains information about whom and when a specific user’s tweets

are retweeted by in a day. User-retweet file is aiming at handling queries which retweet

type is retweet and user set is one or multiple. Each line of the file contains information

about whose tweets a specific user retweets in a day. Source file contains only userID

and time in one line, and the total count of a user appearing in the file is stored in the

count file, the total count includes one day granularity and one month granularity. We

create this file to handle queries which user set is all or multiple, such as Q10. The data

formats of the three files are listed in Table 5 and Table 6.

Table 5. Mention-based Query Preprocessing Rules

Rule Data Format (each line) File Type

1
UserID%Mention

count|uid1#time1|uid2#time2|uid3#time3|…
User-Mention-File

2
UserID%Mentioned

count|uid1#time1|uid2#time2|uid3#time3|…
User-Mentioned-File

3 UserID \t time Source-File

4 UserID \t count Count-File

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

163

Table 6. Retweet-based Query Preprocessing Rules

Rule Data Format (each line) File Type

1
UserID%Retweet

count|uid1#time1|uid2#time2|uid3#time3|…
User-Retweet -File

2
UserID%Retweeted

count|uid1#time1|uid2#time2|uid3#time3|…
User-Retweeted-File

3 UserID \t time Source-File

4 UserID \t count Count-File

(4) All Microblog-based Queries

Since there is only one query in this group, we do not build index on the whole

microblog dataset, instead we create a light-weight file that only contain user id and

microblog id for each microblog, and the file is sorted by time.

3.3 Indexing

Preprocessing is done to provide well-designed data format for efficiency queries,

but in order to obtain those data while querying efficiently, we need to employ a series

of indexing mechanisms. We build various indexes for each group of queries. After

experiments we found that different index performs different on different queries. So

we choose the best index for each query based on experiment result. Here is the

summarization of our indexes:

(1) Use-Based Queries: A modified B-tree index and an inverted index are

constructed. As we knew, the B-tree index [3] is widely used in many DBMS, we first

introduce the modified B-tree index used in user layer. The index is based on the

lexicographic order of user ids and we modify the format of the leaf nodes. Figure 2 is

the format of a B-tree index.

PT1UID14KB % UID2 # %PT2 % UIDN # PTN

PTUID4KB % % UID # PT # PTUID4KB % % UID # PT # PTUID4KB % % UID # PT

LEAF LEAF LEAF LEAF LEAF LEAF

...

ROOT NODE

LAYER NODES

LEAF NODES

...

Figure 2. The modified B-tree index Structure

(2) Event-based Queries: A three-layer index (event - time - user) is built. The user

layer is the same as in user-based queries and no index is used.

(3) Retweet based & Mention based Queries: A two layer index (time - user) is

constructed for both user-retweet/ user-mention and user-retweeted/ user-mentioned file.

The user layer is the same as in user-based queries and no index is used. There are 46

events and 916 days (from 2009-8-14 to 2012-2-17) in the dataset, we index the events

by event name and index time by one day granularity, those are easy to understand.

Here we introduce the user layer index in detail.

The basic data size in our index is 4KB. In particular, all the non-leaf files are

organized as 4KB files. In order to minimize the time spent in open/ c lose files, we put

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

164

data into the leaf node. The first 4KB of the file is the file header which contains

information of the offset and size of a data block, here offset represents the i-th 4KB in

the file, and size represents how many 4KBs the data block contains, and a data block

represents one specific line in the files described in 3.2. The non-leaf nodes could be

loaded into RAM.

The general querying algorithm of the modified B-tree index is shown in Algorithm 1.

This algorithm may be used in most of the 19 queries.

Algorithm. 1. Querying Algorithm of Modified B-tree index

For a specific user id A.

1. Read root node, get A’s layer node number through pointer.

2. Read layer node, get A’s leaf node number through pointer.

3. Read the file header of the leaf node, get the offset and size

of A’s data block.

4. Skip to the offset address, read the data block into RAM.

We use Lucene 3.5 [4], an open source search software developed by Apache

software foundation to build a <line number, user id> inverted index [5] for the files

describe in 3.2. We first employ a simple double hash function to hash users to smaller

files. Then we build inverted index for each of those files. The querying algorithm is

described in Algorithm. 2.

Algorithm. 2. Querying Algorithm of Inverted index

For a specific user id A.

1. Get the file number of A through the hash function.

2. Get the line number of A through inverted function.

3. Read the file by line until reach the A’s line. Read the data

block into RAM.

4. Execution of Privacy-Preserved Queries over Microblog Data

In this section we describe the query processing of each query by providing the

pseudo-code. Limited by the length of article, here we just list the pseudo-code of some

representative queries. Algorithm 3 to Algorithm 7 describes the process of those

queries.

4.1 User-based Queries

Since the size of files of this group described in 3.2 is quite large and the total

number of users is quite big, we select the modified B-tree index as the indexing

mechanism of this group. We take Q2 as an example to illustrate the query process; the

other queries have a similar process with Q2. The detailed process is shown in

Algorithm 3.

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

165

Algorithm. 3. Query processing of Q2

For a specific user id A.

1. Empty the Result Set.

2. Get A’s followee data block in UserFile2 by index.

3. Extract A’s followees by processing the data block in RAM.

4. For each of A’s followee B

(a) Get B’s follower data block in UserFile1 by index.

(b) Extract B’s followers by processing the data block in RAM.

(c) For each of B’s followers C,

If C is in result set, increase the count of C.

Else put C into result set, set count to be 1.

5. Sort the result set by a quick-sort algorithm and return the top-K

users.

4.2 Event-based Queries

There are many queries in this group which combine query of user with query of

other attributes, as well as in Retweet and Mention query group. Since the size of the

users result set may be quite large (tens of thousand), there are two ways of querying

other attributes: using user index and using user-time file (or source file for retweet/

mention file). For a large user set, using user index may be time-consuming, but for

small user set, it’s a good choice, and the choice is depend on specific query.

There are two ways to process Q9: using User-Event file (for each of a user,

calculate the number of time mentioning the event) and using User-File (traverse the file

and decide whether a user who mentioning the event is in the users result set). Since the

size of the users result set may be quite large, processed with User-File may cost more

than with User-File, the experiment result could prove this, so we use User-File to

process this query. The detailed process is shown in Algorithm 4.

Algorithm. 4. Query processing of Q9

For a specific user id A.

1. Empty the user set.

2. Get A’s followees and followees’ followees using the algorithm

described in 4.1, put them into the user set.

3. Traverse the User File of the event_tag_? in the given time span,

For each user B

If B in User Set, increase the count of B.

Else continue

4. Sort the user set by the count with a quick-sort algorithm and

return the top-K users.

There are three step when processing Q13: 1) find out A’s followees. 2) find out

events that user A mentioned and 3) find out the top-k users that mentioned the most

number of events obtain in 2). We use the User-Event file to process step 2) and use the

User-File to process step 3) because there may be so many users need to process. The

process of this query is shown in Algorithm 5.

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

166

Algorithm. 5. Query processing of Q13

For a specific user id A.

1. Empty the user set.

2. Get A’s followee using the algorithm 3.

3. Get events that user A mentioned using the User-Event file index.

4. For each of the event T obtain in 3

Traverse User File of the eventtagT in the given timespan,

For each user B

If B is not A’s followee,

If B in user set, increase the count of B.

Else put C into user set, set count to be 1.

5. Sort the user set by the count with a quick-sort algorithm and

return the top-K users.

Since Q14 only acquire the number of being mentioned in microblogs, We just

traverse the Time-User file of each event and calculate the number of lines in the given

time span. Since the User file is quite not large, this approach could obtain an

acceptable result.

Since Q15 only relates to one event but may relate to large amount of users, we use

the User file of the event and could also obtain an acceptable result.

There are two step when processing Q19: 1) Find out A’s followees and followeess’

followees. 2) For each of the user B obtains in 1), get the events that B mentions, and

calculate the count of each event being mentioned.

4.3 Retweet-based & Mention-based Queries

Since the there is a high similarity of the two group of queries, we just take the

retweet-based queries as an example to illustrate those two group of queries.

Since the user set of Q10 is quite large, we could not use the user index to process

this query, so we use the user-retweeted source file instead. We have calculated the

count of a user appeared in the file beforehand, as we describe in 3.2, so we just read

the file of corresponding date and complete the query. The detailed process is shown in

Algorithm 6.

Algorithm. 6. Query processing of Q10

1. Empty the user set.

2. If time span=h or time span=d

Read the source file.

Else

If date = first day or date = last day

Read the source file.

Else Read the count file.

3. Read the File obtain from 2 by line,

For each user A

If A in User Set, increase the count of A.

Else put A into user set, set count to be one.

4. Sort the user set by the count with a quick-sort algorithm and

return the top-K users.

For Q11, since we’ve created the User-Mentioned file and corresponding index, we

just querying the user index in the given time span and obtain the users mentioning A.

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

167

Q12 is similar to Q10, the only different lies in that we need to obtain user A’s

followees and followees’ followees using algorithm 2, and decide whether a user

obtained from the source file is among those users. We do not use user -retweeted index

because a user A’s followees and followees’ followees set may be quite large, it’s time-

consuming to process such a large user set.

For Q16, since the size of a user’s followees set is not very large, we could use the

User-Mention index to complete this query. The detailed process is shown in Algorithm

7.

Algorithm. 7. Query processing of Q16

For a specific user id A.

1. Empty the user set.

2. Get A’s followees using the algorithm described in 4.1.

3. For each of A’s followee B,

Get the users that B retweets using the User-Mention index.

For each user C obtained above

If C in User Set, increase the count of C.

Else put C into user set, set count to be one.

4. Sort the user set by the count with a quick-sort algorithm and

return the top-K users.

4.4 All Microblog Queries

Since there’s only one query in this group (Q8), we just traverse the light-weight file

introduced in 3.2 from the latest date until the microblog count reaches the return count.

5. Experiment

To test the performance of privacy-preserved queries over microblog data, we use a

real data set crawled from Sina Weibo (http://weibo.com), a popular microblogging

service in China, via the API provided. In order to ensure privacy preservation, the

dataset is preprocessed as follows:

(1) User IDs and message IDs are anonymized.

(2) Content of tweets are removed, based on Sina Weibo's Terms of Services.

(3) Some tweets are annotated with events. For each event, the terms that are used to

identify the event and a link to Wikipedia (http://wikipedia.org) page containing

descriptions to the event are given. Each event is identified with an event TAG.

A piece of preprocessed data is shown in Fig.3. The preprocessed dataset contains

two sets of files:

(1) Tweets: It includes basic information about tweets (time, user ID, message ID

etc.), mentions (user IDs appearing in tweets), re-tweet paths, and whether containing

links.

(2) Followship network: It includes the following network of users (based on user

IDs).

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

168

Figure 3. Illustration of the Dataset after Preprocessed

We evaluate the performance of our method on a machine with configuration of

Intel(R) Core(TM) i3-2120 CPU @ 3.30GHz and 4GB RAM. The maximum heap space

of Java virtual machine is 1.5GB.

Fig. 4. The Response Time of Q2 and Q3

Figure 5. The Response Time of Q3 with Different Indexes

Q2

Q3

Q3

International Journal of Hybrid Information Technology

 Vol. 5, No. 4, October, 2012

169

We evaluate our performance based on the response time. The user-based and event-

based queries receive the best performance in our system, while the retweet-based

queries show the worst response time in our experiment. Figure 4 shows the response

time of the user-based queries. In Fig.4 we select some specific users based on their

followees count and show the response time of Q2 and Q3 (since Q1, Q4, Q5 only need

tens of millisecond to execute, we do not show the result here). We also compared two

indexes: inverted index and modified B-tree index in Fig.5.

6. Conclusions

Microblogging service has been a hot topic in recent years. In this paper, we present

a new approach to optimizing the privacy-preserved queries over microblog data, which

is based query-specific preprocessing rules and index-based query algorithms. Our

experiments on real microblog data crawled from Sina Weibo show that the proposed

approach is helpful to improve the query performance of privacy-preserved queries.

Acknowledgements

This work is supported by the National Science Foundation of Anhui Province (no.

1208085MG117), the National Science Foundation of China (no. 71273010), and the Soft

Science Research Program of Anhui Province (grant no. 11020503056).

References

[1] http://www.twitter.com.

[2] http://t.sina.com.cn.

[3] B. Rudolf and M. Edward, “Organization and Maintenance of Large Ordered Indexes”, In Proc. Of

SIGFIDET Workshop, (1970), pp. 107-141.

[4] http://lucene.apache.org/.

[5] N. Chapin, “A Comparison of File Organization Techniques”, Proc. ACM National Conference, (1969),

ACM press, pp. 273-286.

International Journal of Hybrid Information Technology

Vol. 5, No. 4, October, 2012

170

