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Abstract 

Flexible Job shop scheduling is very important in production management and 

combinatorial optimization. It is NP-hard problem and consists of two sub-problems: 

sequencing and assignment. Multiobjective Flexible Job-Shop Scheduling Problems (MFJSSP) 

is formulated as three-objective problem which minimizes completion time (makespan), 

critical machine workload and total work load of all machines. In this paper a Multiobjective 

Artificial Immune Algorithm (MAIA) for FJSSP is presented. The proposed algorithm 

increases the speed of convergence and diversity of population. Kacem and Bradimart data 

are used to evaluate the effectiveness of MAIA.  The experimental results show a better 

performance in comparison to other approaches. 

   

Keywords: Flexible Job Shop, Artificial Immune Algorithm, PPS mutation, Hypermutation, 

Clonal Selection 
 

1. Introduction 

Task scheduling is one of the most critical problems in the economic domains and planning 

of manufacturing processes. Most scheduling problems are complex and solve difficulty. 

Scheduling may be defined as assignment of resources to tasks in such a way that a 

predefined performance measure is optimized. 

One of the most common scheduling problems is job shop scheduling problem (JSSP), 

where a set of independent jobs must be processed on a set of available machines. This 

problem is one of the important optimization problems because it is used in the most planning 

and managing of manufacturing processes. Each job is a sequence of operations, each 

operation requiring a predefined machine. The problem is how to sequence the operations on 

the machines (sequencing) so that a predefined performance measure is optimized. 

The Flexible Job-Shop Scheduling problem (FJSSP) is a special kind of classical JSSP, 

where operations are allowed to be processed on a subset of the available machines. Thus, 

FJSSP is more difficult than the classical JSSP because it has routing problem in addition to 

sequencing problem. The problem is NP-hard and consists of two sub-problems that need to 

be solved simultaneously. These sub-problems are as follows: 

Sequencing problem: This problem is to sequence the operations on the machines over 

time. 
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Routing problem:  it is to assign each operation to a suitable machine among of all 

machines. 

To date, many approaches have been used to solve FJSSP, such as Tabu Search (TS)[1, 4, 

5], Artificial Immune Algorithm (AIA)[7, 8, 9, 10, 13, 20], Branch-and-Bound (B&B), 

Genetic Algorithm (GA)[7,19], Simulated Annealing (SA) and hybrid of these methods [12, 

17]. These available methods can be classified into two main categories: hierarchical 

approaches and integrated approaches. 

In hierarchical methods, the sequencing of operations on the machines and routing are 

treated separately. Hierarchical methods decompose the original problem to sub-problems in 

order to reduce its complexity. In 1993, Brandimarte [1] first used   this approach for the 

FJSSP. He solved the routing problem using dispatching rules and then solved the sequencing 

problem by TS heuristic. Kacem et. al., [18] presented a GA to optimize by the assigned 

model which was generated by localization approach localization. Xia and Wu [3] proposed a 

hybrid algorithm for the multi-objective FJSSP. They used Particle Swarm Optimization 

(PSO) for the routing problem on the machines and SA algorithm for the sequencing problem. 

In contrast, integrated approaches solve sequencing and routing problems simultaneously. 

They are shown to reach better results than hierarchical methods, but are more difficult                                                                                                                                                                                                             

to solve. In 1994, Hurink et. al., [4] presented a TS algorithm in which reassignment and 

rescheduling are considered simultaneously. Dauzere-Peres and Paulli proposed a TS 

heuristic based on neighborhood structure solving problem [5]. In 2002, Mastrolilli and 

Gambardella [6] improved Dauzere-Peres’ TS approaches and proposed two neighborhood 

functions. 

Pezzellaa et. al., [7] solved the FJSSP using Genetic algorithm with the objective of 

minimizing makespan (maximum completion time). They presented multi-type individual to 

enhance efficiency of their method for solving problem. Xia et al. [3] proposed hierarchical 

approach for solving MFJSSP. They used particle swarm optimization (PSO) for operations 

assignment on machines and simulated annealing (SA) algorithm for operations scheduling 

on each machine. Objectives were minimizing makespan (maximal completion time), the 

total workload of all machines and the workload of the critical machine. Thomalla [26] has 

proposed a discrete-time programming model for FJSSP to minimize total weighted tardiness 

of all jobs. Choi [27] has proposed a MILP model for the problem with sequence-dependent 

setups. They used local search algorithm and dispatching rule to obtain an upper bound on the 

makespan of a sub-problem. 

Among the above approaches, Artificial Immune Algorithm (AIA) is a well-known meta-

heuristics which have been used for many optimization problems. Many Immune Algorithms 

have been proposed for solving Scheduling problems [7, 8, 9, 13, 20]. Ong et. al., [10] 

proposed an AIA called ClonaFLEX which was based on the Clonal selection principle, to 

solve FJSP. Bagheri et. al., [13] have proposed an Artificial Immune Algorithm for solving 

problem to minimize maximum completion time. A novel approach multi-modal Immune 

Algorithm is proposed for finding optimal solutions to JSSP by Guan et al. Chueh[24]. Zhang 

and Cheng [11] have proposed a hybrid simulated annealing algorithm. Their algorithm is 

based on immune mechanism with the objective of minimizing total weighted tardiness. 

Engin and Döyen [25] proposed a method based on clonal selection principle and affinity 

maturation mechanism for solving the flow shop scheduling problems. 

 In this paper to highlight the significant features of the Immune Algorithm, a 

Moltiobjective Artificial Immune Algorithm (MAIA) based on an integrated approach is 

proposed to solve a stochastic multiobjective FJSSP. This problem is formulated as a three-

objective problem which minimizes completion time (makespan), workload of critical 

machine (machine with maximum load) and total work load of all machines.  
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The remainder of this paper is organized as follows: problem definition is given in section 

2. Section 3 introduces main concepts of MOPs. Section 4 describes Artificial Immune 

Algorithm. The proposed algorithm is given in section 5. The computational results are given 

in section 6.  

 

2. Definition of Flexible job-shop Scheduling Problem 

The problem is to execute N= {J1… JN} jobs on U= {M1… Mm} machines. Each job Ji is a 

set of ni operations {Oi,1…Oi,ni}. Each operation Oi,j can be processed on any subset Ui,j ⊆ U of 

available machines. Each job is completed when its operations are executed one by one in a 

given sequence. 

FJSSP consists of the following two sub-problems that need to be solved simultaneously. 

The first subproblem is the routing problem which is defined as determining the suitable 

machine from among the available machines for each operation, and the second problem is 

the problem of sequencing where the sequence of the assignment of operations to machines is 

determined over a required time span. 

We wish to solve these sub-problems simultaneously in order to achieve the objectives 

which are minimizing makespan (i.e., the maximum job completion time), workload of 

critical machine (the machine with the highest workload) and workload of all machines. 

FJSSP is classified into two sub-problems of: Partial FJSSP (P-FJSSP), and total FJSSP 

(T-FJSSP). We have partial flexibility if there exists a proper subset Ui,j of U, for at least one 

operation Oi,j , while we have Ui,j =U for each operation Oi,j in the case of total flexibility [7]. 

Assumptions of this paper are as follows [4]: 

1. Every machine processes only one operation at a time. 

2. Machines are independent from each other. 

3. Jobs are independent from each other. 

4. There are no precedence constraints among the operations of different jobs. 

5. Every operation is processed on only one machine at a time. 

6. All jobs and their operations are available initially. 

   Table 1 presents the notations of this model. 
 

Table 1. The Notations of Conceptual Model 

M       Number of machines 

N        Number of jobs 

Oi,j       jth operation of job i 

Ti,j       Processing time of Oi,j 

Fi,j        Finish time of Oi,j            

Ci        Completion time of job i 

ni         Number of operation of job i 

ym,i,j      assigned machine to operation Oi,j   

Wj       workload of machine j 

Wmax   Total workload of all machine 

Cmax    Maximum completion time of all job 

 

According to the notations above, model of FJSSP model can be defined as follows: 

                                                                                                                       (1)  
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                                                                                                              (2) 

                                                                                                                    (3) 

∑     
 
                                                                                                                                       (4)  

 

Constraint (1) indicates precedence constraints among the operations in each job so that 

operations can be executed when its precedence operation is executed. Constraint (2) defines 

the makespan        and Constraint (3) indicates that each operation can be assigned to just 

one machine from among the given machines. Eq (4) shows that only one machine from the 

available alternatives can be assigned to each operation. In this paper, the following criteria 

are to be minimized: 

                                                                                                      (5) 

   ∑   
 
               (6) 

                                                                                                                                (7) 

Eqs (5-7) indicate makespan or maximal completion time of machines, total workload of 

the all machines and workload of critical machine. Table 2 shows data related to a sample 

problem. In this table, rows and columns represent operations and machines respectively. 

Symbol ‘∞‘means that a machine cannot process the corresponding operation. In other words, 

it does not belong to the subset of compatible machines for that operation.  

 

Table 2. A Problem with Size 3*3 

Job                             m1               m2             m3 

J1     O1,1                       1                  2               2                                  

        O1,2                      2                  2              ∞ 

        O1,3                      3                  3               2           

                                          

J2     O2,1                      4                  3               2 

        O2,2                      2                  ∞              2 

        O2,3                      3                  2               3  

 

J3    O3,1                      2                  2               5 

        O3,2                     ∞                 2               3 

 

3. Multiobjective Optimization Problem 

 
Definition1. MOP has a number of objective functions which are maximized or minimized. 

Without loss of generality, a multiobjective minimization problem with m decision variables 

(parameters) and n objectives is defined as follows: 

                   (                   )                                                                        (8) 
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Where x the decision vector with n components, X decision space, y decision vector and Y 

is called the objective space.      determines the set of feasible solutions [22]. 

 

Definition 2. (Pareto dominance). A solution      is said to Pareto-dominate another 

    (written p <n q) if two equations Eq. (9), (10) are true: 
 

{           |      {                      and                                                                                      (9)              

{           |    {                                                                                                                   (10)           

 

Definition 3 (Pareto-Optimal Set). For a MOP, The Pareto optimal set (PS) is defined as 

follows: 

   {    |           
 

Definition 4. (pareto front). For a given MOP and the Pareto-optimal set, the pareto front is 

defined as follows: 

   {                   |                                                                                      (11) 

 

4. Artificial Immune Algorithm 

The immune system is an adaptive, self organizing and distributed system. In addition, it is 

a complex functional system that defends the human body from foreign agents such as viruses 

or bacteria called pathogens. It categorizes all cells or molecules into two kinds within the 

body: First are those that belong to its own kind (self-cell) and the second are that have a 

foreign origin (non-self-cell) [23]. 

Patterns expressed on pathogens are called antigens. The immune system contains cells for 

recognizing them. These cells are called antibodies. The disease procedure involves the attack 

of an antigen and its proliferation within the human body. After the proliferation of the 

antigen, antibodies are randomly distributed throughout the immune system. 

AIS has two important processes: Cloning and affinity maturation. The combination of 

them is known as the Clonal Selection Principle. This principle is used to explain how the 

immune system reacts to infection of antigens [2]. Moreover, this theory is one of 

methodologies in AIS for solving optimization problems and is a meta-heuristic which is 

developed based on such a system. Fig1 shows this principle. 

When a pathogen invades the human body, a number of cells that recognize pathogens 

proliferate. These cells can be classified into two kinds: First are effecter cells and second are 

memory cells. The effecter cells secrete antibodies in large numbers and the memory cells 

have long life spans so as to act faster and more effectively in future exposures to the same or 

a similar pathogen [13]. During cellular reproduction, the cells suffer somatic mutations at 

high rates, together with a selective force; the cells with higher affinity to the invading 

pathogen differentiate into memory cells. This whole process of somatic mutation plus 

selection is known as affinity maturation [14].  
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Figure 1. Clonal Selection Principle 
 

5. Proposed Algorithm  

In this section, we present a novel Multiobjective optimization algorithm called 

Multiobjective Artificial Immune Algorithm (MAIA). There are a set of antibodies Ab= {ab1, 

ab2,…,abN} in the population where N is the size of population. Each antibody represents a 

solution to the optimization problem. The proposed algorithm is given in Figure 2. 

 

 

Figure 2. The Flowchart of the Proposed Algorithm 
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5.1. Antibody Representation 

The main issue in applying AIA to FJSSP is to develop a method for finding an effective 

map between problem and solution generation. If this map is designed successfully, it is 

possible to find good solutions for an optimization problem. 

In this paper, job sequencing provided by Kacem et. al., [16] is used to represent antibodies. 

Each antibody is a feasible solution that consists of many genes. Each gene represents an 

operation and consists of three parameters is formed by (i, j, k), where 

 i is the job that operation belongs to. 

 j is the number of operations within job i. 

 k is the machine assigned to that operation j of task i. 

In this method the length of antibody is equal to ∑   
 
    that N is the number of jobs and ni 

is the number of operations of job i. For example consider the problem in Table 1. The string 

s={ (1,1,3),(2,1,2,),(1,2,2),(1,3,1),(3,1,1),(2,2,1),(3,2,2),(2,3,1)} is feasible solution from the 

solution space.  The representation of antibody s is shown in Figure 3 and its gaunt chart is 

provided in Figure 4. In this example Cmax, Wmaxv and Wtd are 10, 9 and 19 respectively. 

 

 

Figure 3. Antibody Representation 
 

 

 

Figure 4. Gaunt Chart of Antibody s ( Cmax =10,Wtd=19, Wmax=9) 
 

5.2.  Non Dominated Sorting 

In order to calculate the rank of each antibody j, a procedure is used in which the 

population is sorted into different nondomination levels. This procedure is proposed by 

Kalyanmoy [15] that is described in Figures 4 and 5. In this algorithm any antibody i has a 

Counter equal to zero, a Rank, and a SD. Also Front (index) is a set of antibodies in front 

index. For each antibody i, the counter(i) is the number of solutions which dominate the 

antibody i, and SD(i) is a set of solutions that the solution i dominates them.  

 In the first level, all antibodies have counters equal to zero. For each member SD of 

antibodies with counter=0, theire’s counter is reduced by one. Then, any member with a zero 

counter is placed at the next front. The processed is continued until all levels are obtained. 
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Figure 4. Nondominated Sorting Procedure 
 

 
Input:    Antibodies  population,      Number of antibodies 

SD(i)=   Counter(i) =0       i=,…, number_antibodies 

Output: Nondomination Front 

           For each antibody (a) 

                Compare to all antibody (b) 

                   If    (a dominates b) 

                            SD (a)=SD (a)   b 

                   Else 

                   Counter (a)=Counter (a)+1 

           If Counter (a) =0 

              Rank(a)=1 

              Front(1)=Front(1)    a   

 index=1 

for each antibody a in Front(index) 

    for each antibody in SD (b) 

       counter(b)=counter(b)-1 

    if counter(b)==0 

       Rank(b)= index+1 

        Front(index)=Front(index)   b 

   index=index+1      

Figure 5. Algorithm Fast non dominated Sorting 
 

5.3.  Mutation Operator 

The mutation operator is the main operator in AIA. We use three kinds of mutation 

operator: Assignment mutation, Sequencing mutation and intelligent mutation. 

Assignment operator changes the assignment of an operation to each machine. Sequencing 

operator changes the sequence of the operations. In applying the sequencing mutation, we 

must respect the precedence constrains among operations of the same job. In this paper, As in 

Kacem et. al., [21], the Precedence Preserving Shift mutation (PPS) operator is used.  

Figure 6 shows assignment operator. In this antibody, positions 4 are selected randomly. 

Operation O3,1 is in this position. This operator can be processed on machine {m1, m2, m3}. 

m3 is selected randomly and O3,1 is assigned to it. 

In Figure 7, an example is considered that shows the PPS mutation. In this figure, O1,2 is 

chosen randomly among all of operation in the antibody. Feasible position for this operation, 

is 2, 3, 4 and 5. Position 5 is selected randomly and this operation is shift there. 

In the intelligent mutation, we randomly choose an operation on the machine with the 

maximum workload (critical machine) and assign it to the machine with the minimum 

workload. For example in Figure 4, critical machine is m3 and machine with minimum 
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workload is m2. O3,2 can process on m2 with processing time 2. Therefore it is assigned to m2 

with processing time 1. Figure 8 shows this operator. By exerting this operator three objective 

functions improve. 

 

 

Figure 6. Assignment Operator 
 

 

 

Figure 7. An Example of PPS Mutation (sequencing operator) 
 

 

 

Figure 8. Intelligent Operator: Cmax=8, Wtd=8, Wmax=18 
 

 

 

Figure 9. Antibody Inversion 

 

5.4. Diversification Operator 

Traditional immune system often has less diversity of the antibody. In this reason, it causes 

the search to be trapped in local optima. To avoid local optima, a diversification mechanism 

of Guan et. al., [24] is used in this paper that called antibody inversion. In this mechanism, a 

subset of consecutive subtasks is randomly chosen from antibody and inverse their location 

from front to rear. Inversion mechanism is shown in Figure 9. 
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6. Experimental Setup and Simulation 

We implemented the proposed algorithm in MATLAB environment and run it on a PC 

with a 2.1 GHz CPU and 512 MB of RAM. The parameters for proposed algorithm are given 

in Table 3. Three data sets have been considered: 

 (1) Kacem data: This data set consists of three problems with different size: problem 8×8, 

problem 10×10 and problem 15×10 from Kacem et. al., [16]. Problem 8×8 has partial 

flexibility that consists of eight jobs with 27 operations which can be processed on 8 

machines, Problem 10×10 has total flexibility that consists of 10 jobs with 30 operations 

which can be implemented on 10 machines, and Problem 15 ×10 has total flexibility that 

consists of 15 jobs with 56 operations which can be performed on 10 machines.  

(2) BRdata: this data set consists of 10 problems from Brandimarte [1] that are randomly 

generated using a uniform distribution between two given limits. The number of jobs ranges 

from 10 to 20, the number of machines ranges from 4 to 15, the number of operations for each 

job ranges from 5 to 15, and the number of operations for all jobs ranges from 55 to 240. For 

example, problem 8*8 of Kacem data has been shown in Table 4. In this table, rows represent 

operations of jobs and machines are shown in the columns.  
 

Table 3. Parameters of Proposed Algorithm 

Parameter name  value 

Population size   200 

Number of generation   600 

Mutation assignment probability   0.2 

Mutation sequence probability   0.2 

Diversification probability   0.7 

Number of clone  100 

 

Table 4. Problem 8×8 with 27 Operations (partial flexibility) 
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Tables 5, 6 and 7 indicate the best obtained solutions of 10 runs of the proposed algorithm 

on problems 8*8, 10*10 and 15*10 in comparison to other algorithms respectively. Five 

algorithms are used for comparison, which are Temporal Decomposition refers to Hammadi 

[16], Classic GA that is classical Genetic Algorithm, ‘Approach by Localization’ and ‘AL & 

CGA’ proposed by Kacem et al [18], AIA proposed by Bagheri [13] and Hybrid of PSO and 

SA proposed by Xia [3]. 

In these tables, first row indicates the name of algorithm, second, third and fourth rows 

present Cmax, Wtd and Wmax respectively. In this table deviation criterion represented by (Dev) 

is employed. This criterion is defined as follows: 

   
         

     
                                                                                                                        (12)    

where      the best objective function is obtained among all algorithms and     is the 

objective function of the algorithm that we compare ours to. According to these tables, 

proposed algorithm can get more efficient results than other approaches but it gets the same 

result with hybrid of PSO and SA approach. Also scheduling results for problem 10×10 are 

shown in table 6. This table indicates our algorithm has better results than the approach by 

localization and temporal decomposition. In comparison to the hybrid of PSO and SA, 

Classical GA and the hybrid of AL and CGA approaches, proposed algorithm has better 

results in Wtd and Wmax and has worse Cmax than them. Also, the best solution of problem 

15×10 is shown in Table 7. 

 

Table 5. Comparison of Results on Problem 8×8 with 27 Operations 

 

 
 

Table 6. Comparison of Results on Problem 10×10 with 30 Operations 
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Table 7. Comparison of Results on Problem 15×10 with 56 Operations 
 

 

 

 

 

 

 

 

 

Figure 10. Optimization Solution of Problem 8×8 (Wtd=73, Wmax =13 and Cmax=16) 
 

Table 8. Results of MAIA on BRdata 

 
 

Figure 10 shows the Gaunt chart of problem 8×8. Second data set is BRdata. Table 8 

shows the best results obtained by MAIA. In this table, problem names are presented in the 

first column; the second column is the size of problems. Third, fourth and fifth columns show 

the objective functions are obtained by the proposed algorithm and other columns present 

results are obtained by AIA suggested by bagheri [13]. Their approach was single objective 

and each objective function is obtained separately. As can be seen, the experimental results 

show that the proposed algorithm has better result in the most samples. 
 

  

 AL+CGA[18] PSO+SA[3] MAIA         

Cmax 

Dev% 

23 

91.66 

12 

0 

12 

0 

 

Wtd 95 91 89 

Dev% 6.75 2.24 0 

 

Wmax 11 11 11 

Dev% 0 0 0 
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7. Conclusion 

In this paper, we developed a Multiobjective Artificial Immune Algorithm base on Pareto 

optimality for the Flexible Job-shop Scheduling Problem (FJSSP). The consideration 

objective functions are minimizing maximum completion time of all jobs (makespan), critical 

machine workload and total workload of all machines. The proposed algorithm increases the 

speed of convergence and diversity of population. This algorithm was tested on two data sets 

of Kacem and Brandimart. In comparison to other algorithms, the proposed algorithm was 

shown to be more effective. 
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