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Abstract 
 

Sequence similarity in biological databases is used to characterize a newly discovered 

protein and confirming the existence of its homologs. This is often computationally very 

expensive. We have implemented a new algorithm that performs sequence similarity search 

using a pre-search phase. The proposed algorithm works in three phases. As a pre-

preparation for Pre-Search, we locate a sequence, similar to the query sequence to extract all 

common words between the former and the latter. In the second phase, the pre-search phase, 

we locate all sequenes containing any of the randomly chosen common words. The list is 

further scanned in the third phase and the results obtained from the second phase are refined 

using Similarity Search (SS) algorithm, described in the paper. We have preprocessed the 

Uniref100.FASTA protein database containing 9,757,328 records downloaded from 

uniprot.org, to suit our application of sequence similarity search. The algorithm is simple 

and can be applied in various perspectives. These include searching in DNA and protein 

sequence databases, motif finding, and gene identification search. Pre-Search reduces the 

search space using much faster simpler algorithm. In large database search, its effect could 

be phenomenal. 
 

Keywords: UniRef100 protein database, sequence similarity, sequence alignment, Pre-search, 
sequence similarity, similarity score, randomized algorithm 
 

1. Introduction 
 

―Members of the 1000 Genomes Project plan to sequence as many as 1,100 samples by the 

end of this summer as part of the project's main sequencing effort‖ [17] as heard by the attendees 

of the Biology of Genomes meeting on May 14, 2010. Genome sequencing leaves a plethora of 

sequence information, both protein and DNA. More important is the manner in which these large 

repositories are managed and used to access information. It is common in molecular biology to try 

to discover the function of a DNA or protein sequence by relating it to other sequences [8]. 

Proteins function through their conformation. It is theorized that proteins that share a similar 

sequence generally share the same basic structure [14]. Similarity is defined as the extent to which 

nucleotide or protein sequences are related. Similarity is relative in nature and depends on the 

application or researchers‘ needs. With increase of similarity criteria, group size reduces. Protein 

sequence similarity typically implies homology, which in return may imply structural and 

functional similarities. Homology modeling approaches have used similarity measures as one of 



International Journal of Hybrid Information Technology  

Vol. 4 No. 3, July, 2011 

 

 

32 

 

the parameters deciding homology. Hence sequence similarity remains the most demanding and 

widely addressed problem so far. Being able to quickly identify the similar sequences from very 

large databases for a newly obtained sequence can provide significant clue to its function. In this 

paper, we propose a new similarity search (SS) algorithm along with a short literature review 

discussing popular sequence similarity algorithms, both in the alignment and alignment-free 

category. In spite of the fact that the processing speed is increasing, the speed of the algorithms 

remains an important consideration because the databases are also increasing in size [15]. It is 

very obvious that use of heuristics in guiding the similarity search can probably yield promising 

results. Although, there do exist standard and popular algorithms for sequence similarity, we have 

found a need for development of algorithms that take into account the growing database sizes. We 

attempt to generate an exhaustive search on the Uniref100.FASTA protein database downloaded 

on 31
st
 Jan 2010 and contain 9,757,328 records. 

The proposed method of sequence similarity works in three phases. In the first phase, we 

locate a sequence, similar to the query sequence to extract all common words between the 

former and the latter. This search is performed in nearby locations of the query sequence 

location. The justification for the same is provided in Section 5. The heuristics used in this 

method is to use these two sequences for finding similarity between the query sequence and 

the sequences in the databases. We have used two algorithms. One is accurate in finding the 

similar sequences, but computationally expensive. The other is approximately accurate but is 

an order of magnitude faster than the first one. The motivation behind the development of this 

algorithm is the simple fact that there exists more number of dissimilar sequences in the 

database than the similar ones. Hence, computationally intensive exhaustive searching should 

be avoided. The speed is achieved at the cost of accuracy, but the accuracy can be further 

increased by suitably modifying the heuristics. With large databases like the 

UniRef100.FASTA, any saving through the search algorithm has substantial gain. The 

flowchart of the entire similarity search method is shown in Fig. 1. 

The paper is organized as follows. Section 2 briefs about the public protein databases and 

the need for sequence analysis. A brief literature review on the current state of the art 

sequence comparison methods is presented in Section 3. Section 4 describes the algorithm 

proposed for sequence similarity. This section also presents a theoretical analysis of the 

algorithm. Section 5 covers experimental results for sequence similarity. Section 6 has 

concluding remarks and an idea of the ongoing work. 

 
 

Figure 1. Flowchart Showing the Steps Involved in Performing Sequence 
Similarity Search 
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2. Sequence Databases and Sequence Analysis 
 

Biology in the 21st century is being transformed from a purely lab-based science to an 

information science as well [14]. Computational biology [9] tasks such as multiple sequence 

alignment [18], sequence similarity [19], motif finding, and structure prediction [20] have 

attracted many researchers. The biological databases are very rich in nature in terms of content 

and size. The primary public protein databases are Protein Data Bank (PDB) and SWISS-PROT. 

The genomic databases are GenBank in USA, DNA Data Bank in Japan (DDBJ) and European 

Molecular Biology Laboratory DNA database (EMBL) in Europe.  

This availability of free and massive data provides ample opportunities to computational 

biologists to experiment and test their softwares and tools for the tasks of biological relevance. 

This also ensures that machine learning tools that heavily depend on the training data may be used 

effectively. The growth rate of protein and genomic databases can be visualized in [12], [14]. As 

more and more whole genomes are sequenced, the need for a central, publicly available and easily 

accessible archive for deposition, searching and analysis of sequence data continues to grow [5]. 

With the exponential increase in the size of the genomic and proteomic databases, there exists a 

need to hierarchically maintain these databases for fast and relevant retrieval. Sequence similarity 

is also important for classifying the existing proteins and also categorizing the newly invented 

proteins.  

Proteins are polymers of amino acids. Proteins can be viewed as a sequence of strings over 
a 20 letter alphabet; wherein each alphabet corresponds to an amino acid. Each protein has a 

unique sequence of amino acids, which specifies protein shape and function. Proteins are involved 

in various functions of cell. Proteins are complex molecular structures, an important feature, yet 

not well understood, is how they bind to each other and when. We are interested in exploiting the 

string nature of a protein sequence, which allows us to compare sequences, identify substrings, 

and produce a list of similar sequences.  

In a search for similarity in a huge database as UniRef100.Fasta, generally a very small subset 

of the database will be homologous to the query sequence. Therefore, we are normally interested 

in listing those sequences that resemble the query sequence to an acceptable threshold. These 

sequences might have strong similarity with the query or might loosely resemble the query. In 

literature, there exists mention of two types of similarity; Global and Local. The global similarity 

approaches basically try to align the two sequences. While in local similarity, we try to identify 

the substrings or sub parts of the sequences that have a match. Local similarity measures are 

useful for database searches. 
 

3. Literature Review 
 

We, in this paper, discuss the various methods of sequence analysis of biological 

sequences. There are mainly two approaches having mention in literature, for this purpose; 

Sequence alignment based approach and Alignment-free approach.  

Extensive work and research has been done in the alignment based approach. Sequence 

alignment method, though very powerful and popular, leave space for further research, to 

optimize the computational complexity arising out of the alignment process. An example of 

the pair wise sequence alignment and multiple sequence alignment is given below.  

Alignment based methods such as those based on Dynamic programming [Needleman, 

smith] [7], FASTA [10] and BLAST [6] have been developed for identifying sequence 

similarity.  BLAST has been widely used by biologists for sequence analysis [6]. These tools 

are largely dependent on heuristics, and they fail on queries which do not have very similar 

sequences deposited in the database. BLAST gives approximately accurate results and its 
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speed is therefore achieved at the cost of some degree of precision [15]. Also alignment based 

methods suffer from the drawback of the increasing computational complexity with the 

increase in the number of the sequences as well as the size of the sequences. Therefore the 

research into alignment free sequence analysis is emerging at a greater speed than before. 

Also this is necessary to overcome critical limitations of sequence analysis by alignment. In 

[1], it has been mentioned that although the pace of work in this area is increasing sharply, 

the total number of published reports proposing or using alignment-free metrics is relatively 

small, still under the one hundred mark.  

More details and information about the alignment based sequence analysis can be found 

from [8]. Moving further, we mention the current research on the alignment free sequence 

analysis and present our algorithm for the same. The review of various methods used for 

alignment free sequence analysis appears in [1]. One of the approaches makes use of hidden 

Markov models. The method is based on the concept of comparing the similarity/dissimilarity 

between two constructed Markov models. The distances between DNA sequences are 

calculated without prior alignment. The similarity between two sequences is calculated by 

computing the log-likelihood difference between the two Markov models with the same 

observation sequence [2].   

A program, CD-hit [3] was developed that forms clusters of protein sequences and 

efficiently handles large databases. This algorithm works by finding the minimum number of 

identical short substrings, called ‗words‘, such as dipeptides, tripeptides,  and so on, shared 

by two proteins. Sequence similarity is a function of this number [3].  

Another method that falls under the alignment free sequence analysis is based on 

comparing the frequencies of all fixed-length words in the two sequences. A sequence 

similarity score, the D2z score, is used to detect functional and/or evolutionary similarities 

among regulatory sequences, in an alignment-free manner. The score is ‗normalized‘, under 

the commonly used assumption of sequences being generated by Markov chains, and can 

hence be compared across different sequence pairs [4]. 
As demonstrated in this document, the numbering for sections upper case Arabic 

numerals, then upper case Arabic numerals, separated by periods. Initial paragraphs after the 

section title are not indented. Only the initial, introductory paragraph has a drop cap. 
 

4. Materials and Methods 
 

4.1 Database 
 

We have downloaded the UniRef100 database of protein sequences from uniprot.org [13] 

in the FASTA format. We have preprocessed the database and extracted all the protein 

sequences to suit the application. The preprocessed database consists of 9,757,328 protein 

sequences and the total size is 3.21 GB. This database is used for testing the SS algorithm 

proposed here. We have observed that the sequences are clustered but some members of the 

cluster are located far away from the clusters. We have used this feature of the UniRef100 

database in the fasta format to test our algorithm. Our algorithm is able to locate the remotely 

located cluster members in the database. 
 

4.2   Algorithm – Pre-Search 
 

We describe the pre-search algorithm that operates on the query sequence and the 

database containing 9,757,328 million sequences. The resultant output is a short list of 

sequences that resemble the query sequence. The algorithm is described in Fig. 2. 
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Figure 2. Algorithm – Pre-Search which reduces the search space 
 

We explain the working of the algorithm with the following example:  

Suppose that we want to find similar sequences to the query sequence A = 

―IYSLAHYHSFNSLIFYEPVEIIGYDNKSSLVLVKRLITRMYQQKSLISSVNDSNQNES‖.  

We run Pre-Search algorithm and find 10 substrings of this sequence. Let the set of such 

substrings be S = {IYSLAHYHSFN, SFNSLIFYEPVEI, VEIIGYDNKSSL, 

LISSVNDSNQN…}. 3 words from this list are randomly chosen and all the sequences that 

contain two of the three strings in S are listed. This list is much smaller in size as compared to 

the main database. The SS algorithm is executed on this list.  

We explain our notion of selecting 3 words, in Pre-Search Algorithm (Fig. 2). Probability 

of a word of length say 15, occurring in a database of 3 Giga characters is 1/(11*10
9
). 

Therefore, ideally one word is sufficient for searching for near similar sequences. However, 

we are dealing with biological databases. Assuming a 0.1% mutation, it is possible that this 

15-character word is mutated at some location. In such a case, we will not be able to retrieve 

the sequence containing the 15 character mutated word. But, if we select, two words, the 

probability that both the words are mutated in the same sequence is far less. And moving 

further, if we consider 3 words, probability that all the three words are mutated together in the 

same sequence is very rare.  
 

4.3   Algorithm: Similarity Search (SS) 
 

The SS algorithm is described in Fig. 3. The sequences obtained from Pre-Search are 

given as input, one at a time, to the SS Algorithm. The output of the SS algorithm is a list of 

sequences that resemble to the query sequence and have similarity score above a certain 

threshold. 
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Figure 3. Algorithm – Similarity Search (SS) 
 

We explain the working of the above algorithm with an example.  

If A= SLVLVKRLITRMYQQK, and B= IIGYDNKSSLVLVKRLITR. The algorithm 

starts with comparing S with N, then KS with NL, then LKS with NLK and so on. The 

maximum score will be obtained when SLVLVKRLITR is compared with SLVLVKRLITR. 

Continuing with the procedure, SL will be compared with TR, and lastly, S will be compared 

with R.  
 

4.4   Scoring Method 
 

The scoring method to assign similarity scores to the sequences is simple yet effective. 

The scoring method is explained in Fig. 3. 
 

4.5    Algorithm Analysis 
 

Randomized algorithms are the ones that involve some sort of randomness in the 

algorithm. This also means that the output is dependent on the value of the random variables. 

Hence, for the same input, randomized algorithms may produce different output on 

independent executions. Given a computational problem, it may be difficult to formulate a 

deterministic algorithm with good running time [11], [16]. The solution to this problem is the 

use of efficient heuristics or opting for randomized or approximation algorithms. The 

problem of sequence similarity search in a database of over 9 million sequences, each of 

variable length from 50 to 5000 amino acids, is expected to take considerable time with a 
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deterministic algorithm. Randomized algorithms are preferred over the deterministic ones 

because they are simple, fast and provide optimum output with a very high probability. 

Executing the algorithm several times may increase the probability of achieving correct result. 

It is also known that analysis of running time or probability of getting a correct answer is 

usually difficult with randomized algorithms. However, we have experimentally verified the 

correctness of the algorithms. 

Pre – search requires computing 10 substrings of random and different lengths from the 

query sequence. This process is trivial and requires constant time. Now enlisting the 

sequences in the database containing any of the 3 randomly chosen substrings, requires 9 

million instructions of the type, if sequence A contains substring B, then keep A. This is 

observed to be fast. 

In Similarity search, we are comparing two sequences by advancing one sequence, 

character by character, over the other. So given the sequences of length m and n, the number 

of comparisons involved is equal to the number of overlapping characters at a particular time. 

This number starts from 1, increases to the min (m, n) and then reduces to 1, which is 

proportional to n
2
, if n < m. This can be considered computationally expensive in terms of the 

size of the sequence and the total number of sequences in the search space. However, we run 

the SS algorithm on those sequences produced as output from the Pre-Search algorithm. 

Hence, this overhead is on a very small subset of the entire 9 million sequences and for the 

sake of accuracy, is acceptable. 
 

5. Results and Discussion 
 

We have tested our algorithm by deriving the query sequence form the database itself and 

noting the location of the query sequence. The program was allowed to run for several hours, 

as a result of which, we have accumulated similar sequences of more than 400 query 

sequences. This process could be continued for extensive testing. However, keeping the space 

constraints in mind, we present here the results of 5 query sequences in Fig. 4. The sequences 

are numbered 1, 2, 3, 4 and 5. Their lengths are 103, 112, 386, 123 and 370 amino acid 

residues respectively. Since the algorithm involves randomness, we provide four different 

execution instances for each query sequence.  

Results of our algorithm suggest that similarity search using Pre-search can be performed 

an order of magnitude faster without significant loss in the accuracy of the search results.  

We have randomly chosen 3 common substrings. We check for the presence of the either 

of them in the sequence database. This number has experimentally proved to suffice our 

requirement of retrieving the sequences for further refinement. We have also justified the use 

of 3 common substrings. However, this heuristic can be further improved upon for higher 

level of accuracy. Also, in the first phase, we are looking for a similar sequence in the 

neighborhood. There is a need for clarification here regarding two points. 1) How to obtain 

the neighborhood information of the query sequence and 2) What if the neighborhood 

information is not available or the query sequence is a new sequence, not existing in the 

database. The first question can be answered as follows. UniRef100 FASTA database has 

been very useful in development of our similarity search algorithms. We have observed that 

the database is organized in a manner so as the similar appearing sequences are clustered 

around. So, in order to achieve speed, we opted to search the first similar sequence around the 

query sequence location. However, we have discovered that there are some members of the 

cluster which are located far away from the cluster. Our algorithms are able to detect these 

members of the cluster. The answer to the second question is rather non-trivial. We have 

listed all 15-character words and their frequencies in the database. We have used this 
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information to guide the similarity search in case the query sequence is a new sequence, not 

existing in the database. However, the detail description of this new algorithm is out of scope 

of this paper.  

The fundamental underlying principle for sequence comparison is that similar sequences 

will share word composition to some extent, which is then assessed by various techniques [1]. 

The Pre-Search algorithm proposed in the paper is length dependent in the sense that the 

sequences are checked to contain substrings of small fixed length words. This could be 

thought of as a weak departure from the idea of alignment since sharing k-words is equivalent 

to recognizing an alignment between identical segments [1]. We still feel that the algorithm 

proposed here falls under the category of alignment free sequence comparison, as there is no 

attempt to do either pair wise or multiple sequence alignment.  We have discussed our method 

to rate the sequences retrieved.  
 

 
 

Figure. 4. Pre-Search results for 5 query sequences and 4 execution instances 
for each. 

 

6. Conclusion 
 

We have proposed a randomized algorithm that rapidly retrieves the relevant sequences 

based on the words in the query sequence. The pre-search algorithm involves randomness, 

produces a short list of sequences for input to the SS algorithm, and is very fast. Making 

multiple runs of the Pre-Search algorithm ensures that it covers all the possible sequences that 

can be input to the SS algorithm. Only these relevant sequences are considered for execution 

in the SS algorithm. This greatly reduces the time complexity of retrieving similar sequences. 

The SS algorithm is a deterministic one, and highly accurate in judging whether a given 

sequence is similar to the query sequence or not. 

We are currently working on enhancing the proposed randomized Pre-Search algorithm 

using 15-character words and their frequencies in the database. These 15 amino acid residue 

substrings are used to fully index the UniRef100 database. 
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