
International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

9

An Efficient Algorithm for AS Path Inferring

Yang Guoqiang and Dou Wenhua

National Univernity of Defence Technololy, China
yanggq@nudt.edu.cn

Abstract

Discovering the AS paths between two ASes are invaluable for a wide area of network
research and application activities. The traditional techniques for path discovery require
direct access to the source node. Recently with more accurate AS relationship inferring
algorithm and publicly available AS topology data, it is possible to infer AS paths without
accessing the source. This paper proposes an efficient algorithm for inferring all pair shortest
AS paths in a relationship annotated AS graph. The running time of the algorithm is O (NM),
where N is the number of nodes and M is the number of edges in AS graph. The algorithm
bases on the bread-first-search (BFS) algorithm, and experimental results show that it
reduces running time dramatically compared with the existing algorithm whose running time
is O (N3).

Keywords: AS-level path, Network Topology, AS relationships, Internet Routing

1. Introduction

The Internet is composed of thousands of Autonomous Systems (ASes) controlled by

different administrative domains. Examples of administrative domains range from
college campuses and corporate networks to large Internet Service Providers(ISPs).
Discovering the AS paths between two ASes is invaluable for a wide area of network
research and application activities like network diagnosis, routing behavior analysis,
proper server siting and high-performance overlay routing designing. One solution to
this problem is to launch AS level traceroute tool [1] from the source or to directly
access the BGP tables where the source situates. The problem with this solution is that
in most cases we do not have privileged access to the source or the BGP tables. The
other problem is that, due to asymmetric routing and multihoming, it will be difficult
for the solution to find the accurate AS paths[2].

The routing path between two ASes is determined by the interdomain routing
protocols such as Border Gateway Protocol(BGP). Interdomain protocols allow each AS
to select its own routing policy, and the most important factor in determining routing
policies is the commercial relationships between administrative domains. These
relationships result in the valley-free routing model which states that every AS path has
a hierarchical structure[3]. It means that, provided the AS graph annotated with AS
relationships, the AS paths between two ASes can be inferred by finding all shortest
policy paths that follow the valley-free model[3]. With this approach, the AS paths can
be figured out without having to access the source.

Mao[2] proposes the first algorithm in terms of this idea, which is a modified version
of Dijkstra's algorithm. To find the shortest policy paths between a given node pair, the
algorithm enumerates all intermediate nodes that can bridge the two endpoint nodes to

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

10

form valid AS paths. Therefore, its running time to discover all pair shortest policy
paths in the graph is O(N3), where N is the number of nodes in AS graph.

In this work, we introduce an efficient algorithm for inferring all pair AS paths,
whose running time is O(NM), where M is the number of links in AS graph. Unlike
Mao's algorithm, our algorithm bases on the bread-first-search(BFS) algorithm. There
are two steps in our algorithm: traversal and traceback. In the traversal step, the
algorithm traverses the graph from a given source in BFS order, and forms a subgraph
which only contains links that are in one of the shortest AS paths from the source. And
in the traceback step, the algorithm traces from each node back to the source in the
subgraph to find all shortest AS paths from source. We evaluate our algorithm using the
AS data from CAIDA [4], and find that it achieves comparable accuracy with Mao's
algorithm in less time.

The rest of this paper is structured as follows. Section 2 gives a brief introduction to
related work. We detail our algorithm in section 3 and evaluate it in section 4. Finally
we conclude this paper in section 5.

2. Related Work

The Internet has experienced a tremendous growth since its commercialization.

Understanding Internet topology is important for network researchers to study routing
behavior, evaluate networking protocols and optimize network performance. The
previous work can be classified into two categories: path discovery and topology
discovery. In this work, we focus on the AS level path discovery.

The most widely used tool to obtain network path is traceroute [1]. To determine the
network path from source node to target node, it sends a sequence of TTL-limited
packets to target node at source node. The paths obtained by traceroute are route level
paths. [1] provide an algorithm for converting the route level paths to AS level paths by
mapping IP to AS number. [5] proposes a more accurate algorithm to map a given IP to
AS number by identifying AS border routers. The main problem with traceroute is that,
it has to access the source node when obtaining network path.

The fact that commercial AS relationship plays a significant role in shaping the
Internet structure motivates the efforts for AS relationship inference. Gao's work [3] is
the first to define AS relationships and valid AS path pattern. She also proposes a
heuristic algorithm to infer AS relationships based on the AS paths derived from BGP
table. After that, many efforts have been made to more accurately define [6-9] and infer
[10-14] AS relationships.

Inspired by the AS relationship inference efforts, Mao [2] proposes an algorithm to
inferring AS paths without accessing the source node. The algorithm infers AS paths
based on the AS relationships and the valid AS path pattern. The running time for
discovering all AS paths in the AS graph is O(N3), where N is the number of nodes in
AS graph. The drawback of the algorithm is that it dose not take into account the
sibling-sibling edges.

3. AS Path Inference Algorithm

In this section, we propose an efficient algorithm to infer AS paths. There are two

stages in our algorithm: traversal and traceback. In the traversal stage, the algorithm
traverses the graph from a given source in BFS order, and forms a subgraph which only
contains edges that are in one of the shortest AS paths from the source. And in the

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

11

traceback stage, the algorithm traces from each node back to the source in the subgraph
to find all shortest AS paths from source.

3.1 AS Relationships and AS Path

AS relationships can be categorized into three types to reflect different business

agreements between ASes.

 Customer-provider(c2p): a customer AS pays a provider AS for transiting traffic from

the customer and also for delivering traffic to the customer.
 Peer-peer(p2p): two ASes exchange traffic between their customers but do not

exchange traffic from or to their providers or peers.
 Sibling-sibling(s2s): two ASes exchange traffic from or to any ASes.

AS relationships can be represented by an annotated AS graph. An annotated AS graph is a

partially directed graph in which nodes represent ASes and edges represent the relationships
between ASes. Fig. 1 shows an example of an annotated AS graph.

Figure 1. An annotated AS graph

According to the definition of AS relationships, a valid AS path must comply with

the following hierarchical pattern: an uphill segment of zero or more c2p or s2s links,
followed by a flat segment of zero or one p2p link, followed by a downhill segment of
zero or more p2c or s2s links.

For example, in Fig. 1 AS3-AS1-AS4-AS7 is a valid AS path. But AS3-AS6-AS4-
AS7 is not a valid AS path, because AS6 is a customer of AS3 and AS6 do not transit
traffic from AS3.

We can categorize AS paths into two types: uphill and downhill paths.
1) uphill path, empty or containing only c2p or s2s edges;
2) downhill path, containing at least one p2c or p2p edge.
When we explore the AS graph, the AS path type changes with the type of the edge

explored. The transition of AS path type is a state machine illustrated in Fig. 2. For
example, if current AS path type is uphill, and the edge type we explored is p2p, then
the type of AS path changes to downhill.

Figure 2. Transition state machine of AS path type, and the initial state is uphill

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

12

3.2 Traversal Stage

There are two stages in our algorithm: traversal stage and traceback stage. In the

traversal stage, the algorithm traverses the graph from a given source in BFS order, and
forms a subgraph which only contains edges that are in one of the shortest AS paths
from the source. And in the traceback stage, the algorithm traces from each node back
to the source in the subgraph to find all shortest AS paths from source.

To simplify the description of the algorithm, we introduce some notations here. We
use dup(s, u) to denote the length of the shortest uphill AS path from source node s to
node u. We use ddown(s, u) to denote the length of the shortest downhill AS path from
source node s to node u. We use predecessor(u, s) to denote set of nodes such that for
any node p in predecessor(u, s), there exists a shortest AS path (s,...,p,u).

In the traversal stage, we explore AS graph in several steps. In the Nth step, we
explore nodes that the length of the shortest AS path from source to them is N.

We use two node sets Sup and Sdown to store the nodes to be expanded each step. The
uphill node set Sup stores nodes that one of the shortest AS paths from source to them is
uphill path. And the downhill node set Sdown stores nodes that one of the shortest AS
paths from source to them is downhill path. One node can be in both sets
simultaneously. In the initial state, node set Sdown is empty, and node set Sup contains
only one node: the source node s.

In the Nth step, we expand nodes in two sets according to the state machine
illustrated in Fig.2. The detailed process is illustrated in Procedure 1. We execute
Procedure 1 for several steps until all nodes in AS graph are explored.

Procedure 1:

clear node set Tup and Tdown
for each node v in Sup do
 for each neighbour u of v do
 if u has not been added into Sup yet then
 dup(s, u)←N
 end if
 if (dup(s, u)=N) then
 add node v into node set predecessor(u,s)
 if type of edge (v,u) is c2p or s2s then
 add u into node set Tup
 else
 add u into node set Tdown
 end if
 end if
 end for
end for
for each node v in Sdown do
 for each neighbour u of v do
 if u has not been added into Sdown yet then
 ddown(s, u)←N
 end if
 if ddown(s, u)=N then
 if type of edge (v,u) is p2c or s2s then
 add v into node set predecessor(u,s)

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

13

 add u into node set Tdown
 end if
 end if
 end for
end for
Sup←Tup, Sdown←Tdown

After the traversal stage, for each node u in AS graph, dup(s, u) and ddown(s, u) have

been calculated, and we get a subgraph stores in form of node sets predecessor(u, s).
The subgraph only contains edges that are in one of the shortest AS paths from the
source. For example, if we apply the traversal stage to the AS graph shown in Fig.1,
and the source node is AS1, then Fig.3 shows the traversal steps and the subgraph we
get.

Figure 3. The traversal steps and the sub graph we get after

the traversal stage

3.2 Traceback Stage

After the traversal stage, for each node u in AS graph, dup(s, u) and ddown(s, u) have

been calculated, and we get a subgraph stores in form of node sets predecessor(u,s).
The subgraph only contains edges that are in one of the shortest AS paths from the
source. Then in the traceback stage, we trace from each node back to the source node s
in the subgraph to find all shortest AS paths from s. The detailed process of the
traceback stage is illustrated in Procedure 2.

Procedure 2:

for (each node v) do
 clear stack path
 depth←min(dup(s, v), ddown(s, v))
 tracenode(s,v,path,downhill,depth)
end for

Procedure tracenode(source, target, path, pathtype, depth)
push target→path
if (source is target) then
 output path
 return
end if
depth←depth -1
for each node u in predecessor(target,s) do
 if dup(s, u)≠ depth and ddown(s, u)≠ depth then
 continue
 end if
 if pathtype=uphill then

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

14

 if type of edge (u,target) is p2c or p2p then
 continue
 end if
 else
 if type of edge (u,target) is p2p or c2p then
 pathtype←uphill
 end if
 end if
 tracenode(source, u, path, pathtype, depth)
end for

4. Simulation and Validation

To evaluate the accuracy and performance of our algorithm, we use the data sets

provided by CAIDA[15] to construct AS graph and annotate AS relationships. CAIDA
uses the RouteView[16] daily data to extract AS links and the algorithm proposed by
Dimitropoulos[13] to infer AS relationships.

First, we use the data set of 2007-8-6 provided by CAIDA to evaluate the accuracy of
our algorithm. The data set contains 25697 nodes and 105524 edges. We apply our
algorithm on the data set to infer all pair shortest AS paths, and compare them with the
AS paths inferred by MAO's algorithm. We find that the AS paths inferred by the two
algorithms are all the same.

Then, we select seven data sets from 2004-02-02 to 2007-02-05 provided by CAIDA
to evaluate the performance of our algorithm. We apply the two algorithms on the seven
data sets separately on the same computer and compare the time they use in Table 1.
From Table 1, we can see that our algorithm uses much less time to infer all pair
shortest AS paths.

Table 1. Performance comparison of the two algorithms

5. Conclusions

Data set
2004.0
2.02

2004.0
8.02

2005.0
2.07

2005.0
8.01

2006.0
2.06

2006.0
8.07

2007.0
2.05

Nodes 16493 17665 18911 20037 21343 22706 24142

Edges 66744 72140 75982 80948 86850 92826 98400

Time Used
by Our

Algorithm(m
s)

297 344 328 390 422 485 562

Time Used
by Mao's

Algorithm(m
s)

63735 70594 81641 88140 102547 115360 131422

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

15

We propose an efficient algorithm for inferring all pair shortest AS paths from a
relationship annotated AS graph. The running time of our algorithm is O (NM), where
N is the number of nodes and M is the number of links in AS graph. The algorithm
bases on the bread-first-search (BFS) algorithm, and our evaluation shows that it
reduces running time dramatically compared with previous algorithm.

Reference

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title”, Journal, Publisher, Location, Date, pp. 1-10.
[2] Z. M. Mao, J. Rexford, J. Wang, and R. H.Katz. Towards an accurate as-level traceroute tool. In Proceedings

of the 2003 conference on Applications, technologies, architectures, and protocols for computer
communications. ACM Press, 2003, pp. 365– 378.

[3] Z. Mao, L. Qiu, J. Wang, and Y. Zhang. On as-level path inference. SIGMETRICS, Banff, Alberta, Canada,
2005.

Lixin Gao. On Inferring autonomous system relationships in the internet. IEEE/ACM Trans on Networking,
2001,9(6):733-745.

[4] CAIDA. http://www.caida.org.
[5] H. Chang, S. Jamin, and W. Willinger. Inferring as-level Internet topology from router-level path traces. In

Proceedings of the SPIE ITCom, 2001.
[6] R. Cohen, D. Raz. Acyclic Type of Relationships Between Autonomous Systems. In IEEE INFOCOM, 2007.
[7] Giuseppe Di Battista, Thomas Erlebach, et al. Computing the Types of the Relationships between Autonomous

Systems. IEEE/ACM Transactions on Networking. 15(2):267-280. Apr 2007.
[8] Xenofontas Dimitropoulos, George Riley. Modeling Autonomous-System Relationships. In Proceedings of the

20th Workshop on Principles of Advanced and Distributed Simulation. 2006.
[9] T. Erlebach, A. Hall, and T. Schank. Classifying customer-provider relationships in the Internet. In

Proceedings of the IASTED International Conference on Communications and Computer Networks (CCN),
2002.

[10] X. Dimitropoulos, D. Krioukov, B. Huffaker, kc claffy, and G. Riley. Inferring AS relationships: Dead end or
lively beginning? In Proceedings of 4th Workshop on Efficient and Experimental Algorithms (WEA’ 05), May
2005.

[11] J. Xia and L. Gao. On the evaluation of AS relationship inferences. In IEEE GLOBECOM, 2004.
[12] Jian Qiu, Lixin Gao. AS Path Inference by Exploiting Known AS Paths. In IEEE GLOBECOM, San

Francisco,USA, 2006.
[13] X. Dimitropoulos, D. Krioukov, M. Fomenkov, and B. Huffaker, As relationships: Inference and validation.

ACM SIGCOMM Computer Communications Review, vol. 37, no. 1, pp. 29–40, 2007.
[14] S. Kosub, M. G. Maaß, and H. Taubig. Acyclic type-of-relationship problems on the internet. In The3rd

Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN’06), volume 4235 of LNCS,
pages 98–111. Springer-Verlag, July 2006.

[15] The CAIDA AS Relationships Dataset. http://www.caida.org/data/active/as-relationships/.
[16] Route Views Project. http://www.routeviews.org.

International Journal of Hybrid Information Technology

Vol.3, No.1, January, 2010

16

Authors

Yang Guoqiang, born in 1981. Received B.A's and M.A's degree in
computer science from the National University of Defense Technology,
Changsha, China, in 2003 and 2005 respectively. Since 2005, he has
been a Ph.D. degree candidate in computer science from the National
University of Defense Technology. His current research interests
include Internet topology modeling and Internet routing technology.

Dou Wenhua, born in 1946. He is a professor in the National University
of Defense Technology. His main research interests are high
performance computing and advanced computer network .

