
International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

55

Gaining Flexibility and Performance of Computing Using
Application-Specific Instructions and Reconfigurable Architecture1

Tian Hangpei, Gao Deyuan, and Zhu Yian
Aviation Microelectronics Center,

Northwestern Polytechnical University, Xi’an, China
dream_hunter@163.com

Abstract

As data transfer rates become higher, general processor is not competent for works with
high computing intensity in wireless communication area. The other hand, existing baseband
processors lack adaptive ability to support new applications and newer versions of existing
application. Thus the paper puts forward a novel architecture of reconfigurable stream
processor along with application-specific instruction set for software radio. The main goal of
the processor is to point out an effective way to designing hardware of software radio with
high computational performance and adaptive ability. We achieve this by analyzing multi-
stream modalities of advanced wireless communication standards, such as 3G and WLAN.
Simulation results show that the processor with powerful calculation capability can adapt to
applications of wireless communication area easily.

1. Introduction

Software radio, which performs multi-communication standards on a platform, moves huge
signal processing works on processors and challenges general processors’ computing
capabilities.[1] Although performance of general DSP is improving, it can’t catch up with
increasing paces of processing demands in new applications. Novel processor architectures
and specific instruction set should be researched.

Some groups and individuals have researched on the subjects. Research group of Stanford
University designed a super stream processor named Merrimac. The processor processes
general stream signals including wireless signals with high speed [2][10][5]. [6] and [12]
proposed a DSP architecture optimized for performing Viterbi calculation. [7] presented an
instruction set which can accelerate some important coding and encoding algorithms.
Baseband processor presented by researchers of Linkopings Universitet supports multiple
communication standards via integration multiply accelerators [8][9][4]. All of above
researches have some problems in different degrees. These problems include high cost, low
level flexibility, only supporting certain kinds of algorithms and poor capability adapting to
new applications. In order to improve the situation, this paper proposes an application-
specific stream processor and application-specific instruction set. Simulation results show that
storage structure of the processor can hide memory cost successfully, specific reconfigurable
data path with three-level parallel speeds up executions of important algorithms effectively
and configurable instruction set provides stronger adaptive capability than general baseband
processor.

Our research methodology consists of following steps: (1) Analyzing stream processing of
algorithms used in 3G and WLAN and extracting kernels of algorithms. (2) Designing basic
reconfigurable data paths to accelerate executions of kernels. (3) Constructing configurable

1 This paper is supported by National Natural Science Foundation of China (NSFC) (No. 60573101,60736012）

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

56

instruction set and stream processor architecture. (4) System simulation. The organization of
the paper accords with the above steps.

2. Algorithms analysis

We write program of each algorithm manually and analysis these programs by GCC tools,
such as Gcov and Gprof. The executing time of each basic block of a program is estimated
and kernels of algorithms are extracted. At last, we construct specific computing paths to
accelerate kernels’ executions. The hardware cost of each algorithm is also estimated.

2.1. FFT

We use radix-4 decimation in frequency FFT. The reason why we choose radix-4 but
not radix-2 is that radix-4 requires fewer stages. And also, researchers have done good
job on Real FFT, which reduces the cost both in processing stages and memory and
improves scalability of radix-4 FFT [3]. But radix-4 FFT still have higher data
communicational overhead compared with radix-2 FFT. From experiment we found that
the basic butterfly computing of radix-4 FFT illustrated in formula 1 is the kernel
operations. In this data path, two ALU needed to complete plural additions and two
MAC complete plural multiplications. When computing, a and c are needed at first step.
Then b and d are computed by two ALU. n

NW , 2n
NW and 3n

NW are needed to computing
plural multiplications. This strategy can release pressure of bandwidth.

2.2. Rake Receiver

Rake receiver is one of the most important parts for baseband processing of DS-CDMA. It
is used for de-spread and channel compensation. Figure 1 is a classic M-way Rake receiver
composed by M fingers. Fingers’ number in a Rake receiver is the same as the tap number of
channel impulse response. When computing a figure, scrambling and de-spread can be
achieved by two ALUs separately, integral is completed by a MAC and Phase estimate and
figure addition need another MAC.

   


N

nN 1

1  


M

m 1

Figure 1. M way Rake receiver

2.3. Viterbi

Convolutional code can be depicted by grid. When Viterbi decodes, it measures paths in
grid and chooses one which is the most similar to input data. The main process of Viterbi is
reading input data, calculating local distances of possible paths and choosing right paths. By

2

3

()
 (1)

()

()

n
N

n
N

n
N

A a b c d

B a j b c j d W

C a b c d W

D a j b c j d W

   
    


   
    

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

57

examination we found that complicated Add-Compare-Select (cACS) computing spends most
of computing resources. It’s valuable to design ACS logics completing cACS with high
efficiency. When computing, two ACS is needed to complete a cACS.

2.4. Turbo Coding

Turbo coding uses iterative decoding technology to reduce the decoding complexity. We
choose MAX-Log-MAR which is suitable for implementing on processor. By programming,
we found that main operations of the algorithms are simple Add-Compare-Select (sACS).
sACS computing can be accomplished by ACS logic. Data paths of Turbo and Viterbi have
same functions except that Viterbi coding is vector operation and Turbo coding is scalar
operation.

3. Configurable instruction set

In previous section, we analyze basic hardware of configurable instruction. This
section focuses on building a specific instruction set. Four specific configurable
instructions are constructed and optimized.

In order to get appropriate computing capability and hardware overhead of each
instruction, this paper defines reconfigurable instructions by setting parameters about
instruction function (InsF) instruction set independence (InsSI) and Instruction relation
(InsR).

InsF specifics computing function of instruction. It has two sub-parameters as basic
computing path (BCP) and number of parallel basic computing path (NBCP). BCP
represents specific data paths of different algorithms defined in the last sections. NBCP
represents data level parallel. The two parameters are most important for instruction.
Figure 2 shows that instruction computing capability and instruction hardware overhead
can be adjusted mainly by BCP and NBCP. InsSI reflects relations between
configurable instructions and general instructions. InsR illuminates relations between
configurable instructions and showed hardware relations. It can reduce total hardware
overhead.Considering four algorithms need to be accelerated, four specific instructions
are present in Table 1. Each configurable instruction accelerating certain algorithm has
four parameters defined above. These parameters influence instructions with different
degrees.

BCP confirmed in last section determines computing function and hardware cost of
instruction partly. BCP will be illustrated in terms of certain processor structure in the
next paragraph. NBCP, which is the degree of data level parallel, is the hardest
parameters to be confirmed. This parameter influences not only performance but also
hardware cost and bandwidth of configurable instruction. We construct a matlab
estimation model to measures hardware and bandwidth affected by NBCP from one to
eight. We get the most suitable numbers of NBCP in Table 1. InsSI analyses relations
between configurable instruction and general instruction. When considering InsR,
FFT_Ins and Rake_Ins have some crossed functions and Turbo_Ins inherits functions of
Viterbi_Ins. These function relations can facilitate hardware sharing and reduce total
cost.

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

58

Figure 2. Functions of BCP and NBCP

Table 1. Parameters of configurable instructions

Configurable
Instruction

Algorithm
accelerated

InsF InsSI InsR
BCP NBCP

FFT_Ins FFT Figure4(a) 4 Executing
parallel

with general
instruction

cross
Rake_Ins RAKE Figure4(b) 8

Viterbi_Ins Viterbi Figure4(c) 8 inherit
Turbo_Ins Turbo Figure4(c) 8

4. Architecture of reconfigurable stream processor

Stream processing has two outstanding aspects. One is arithmetic, another is bandwidth.
Arithmetic intensity, which is the ratio of arithmetic to bandwidth, should be improved as
soon as possible. One way to raise arithmetic intensity is multi-stage memory structure and
specific computing path [10]. This way has two problems, its need huge amount of registers
to build SRF and flexibility will be poorer while pursuing locality. This section explores not
only locality, but also flexibility of processor by considering processing efficiency and
general aspects of processing. We observe and summarize multi-stream processing of
communication standards at first. Then a reasonable stream storage subsystem and specific
data paths which can accelerate the processing are put up. Lastly we construct a processor by
putting both of these subsystems into a host system.

4.1. Wireless communication stream

By observing streams of wireless communication, we summarize some basic
characteristics of them. Such as streams with congruously oriented flow, real time streaming
and coherent operations in one stream step. These characteristics arouse both challenge and
convenience for designing processor. Because streams are congruous oriented, embranchment
and feedback of data paths appear with little chance. As a result, it’s easily to design pipeline
or parallel hardware with simple interconnection. Because streams flow in real time, life
period of data in stream cache can be predicted easily. Stream cache, without complex data
replace strategy and tag for lookup, can be used to hiding memory latency by pre-accessing
data from memory and adjusting original data locality into stream order. Stream order can
promote parallel access and access efficiency. Data level parallel (DLP) can be accomplished

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

59

conveniently by taking advantage of coherent operations. But when execution units operate
on data with same actions simultaneously, “Peak-Bottom” may arouse if concerning storage
accessing. That is to say, because of identical movements, executing unit may access data
from memory at one cycle which pressing the bandwidth of processor and considered as
“peak”, or no one uses memory at all in other cycles which wasting the bandwidth and
considered as “bottom”. All of these conveniences and challenges should be discussed when
constructing specific processor structure.

4.2. Architecture overview

Considering above conveniences and challenges, we design a Reconfigurable Stream
Processor (ReSP) to process wireless baseband signals with powerful computing and
scalability. Figure 3 shows details of ReSP. The processor is consisted mainly by
storage subsystem, configurable subsystem and host unit. We discuss their details
respectively.

Storage subsystem consists of memory, stream cache, data cache and program cache.
Memory is responsible for storing data and context from I/O, which are connected by DMA.
Program cache stores instructions and data cache stores data. Stream cache pre-access data
from memory and adjust original data locality into stream order. In stream cache, cache
controller is a partially configurable block which maps data into appropriate banks and
control data transfer between banks. There are eight banks in the stream cache, each of them
monopolized by a configurable block which has a same serial number as banks. Although
quantity of banks is large, every bank only has 2Kbyte. Eight banks can be accessed
simultaneously by configurable blocks. Furthermore, Banks from zero to three or four to
seven can exchange data under control of cache controller.

Figure 3. Architecture of ReSP

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

60

There are eight configurable blocks (CB) in the configurable subsystem. Each of CB
consist of configurable control block (CCU), register file, and four calculational units
(CU). The 8×32bite register file stores data from stream cache and CUs. CCU is
considered as a state machine and address generator controls all actions of CB. Four
CUs are consisted by ALU, MAC or ACS (Add-Compare-Select) logics compose
specific data path by reconfigure interconnections. Considering concrete algorithms,
Each of CUs from zero to three consist with two ALU and two MAC. Similarly, each of
CUs from four to seven is composed by four ACS. Here we design ALU, MAC and
ACS with sub-word calculational capability. That is to say, CU can accomplish one
32bit OP 32bit operation or two 16bit OP 16bit operations. OP means operations, such
as addition, multiplication, MAC, ACS and so on. Computing results of CBs send back
to memory. If CBs need to communicate with each other, they store their data into
respective stream cache bank at first. Then data will be exchanged between banks in
stream cache. Finally, CBs read data from their own stream cache bank.

Micro controller considered as a host processor is responsible for controlling the stream
processor. It can be conducted as a RISC processor or embedded processor like ARM.
Execute unit (EU) executes general instructions of processor.

4.3. Instruction of ReSP

Instructions of ReSP can be classified as general instruction and stream instruction.
General instruction executed by EU includes basic DSP instructions. Stream instruction
is executed by CB and stream cache. It includes all configurable instructions. Stream
instruction is comprised of stream-store instruction (SSI) and stream-execution
instruction (SEI). SSI and SEI execute parallel, which hides spending of memory access
effectively. SEI supports SIMD structure.Four specific instructions proposed in the last
section are implemented on the ReSP. Figure 4 shows the basic data path of each instruction.

 (a)FFT_Ins (b) Rake_Ins (c) Viterbi_Ins/Turbo_Ins

Figure 4. Configurable data paths of algorithms

5. Results

Main goals of our processor are to provide highly powerful computing and enough
flexibility. In order to evaluate these performances, we build a static-reconfigurable processor
on FPGA and write assemblers manually. We keep simulation results objective by doing
experiments more times. The static-reconfigurable simulator supports two configurable

ALU ALU

Reg File

MUX

MAC MAC

CCU ALU ALU

Reg File

MAC MAC

CCU ACS ACS

Reg File

ACS ACS

CCU

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

61

modes. The first mode supports instruction of FFT_Ins. The second mode supports Rake_Ins.
Both of two modes support Turbo_Ins or Viterbi_Ins.

5.1. Arithmetic intensity and Hardware usage

Improving arithmetic intensity is one of the most critical tasks for ReSP which has
high level data parallel. High arithmetic intensity means high computational
performance and low bandwidth consumption. Two strategies are used to increasing
arithmetic intensity. In one hand, stream cache with multiply banks and register files in
CBs are designed to improve data locality. In another hand, specific data paths
configured by CBs accomplish abundantly consecutive operations. Both of two
strategies decrease bandwidth. Specific data paths also improve computational
performance. By comparing arithmetic intensity between ReSP and general DSP, we
find that arithmetic intensities are improved dramatically. We also find that arithmetic
intensity improving of Rake receiver is lower than other algorithms. This is because the
algorithm is a function of time. As a SIMD processor, ReSP gets data level parallel by
using CB parallel, EU parallel and sub-word parallel, all of which are supported by hardware
parallel. The three-hierarchical data parallel provides high level DLP. Hardware parallel of
the second mode is lower than the first mode. This is because that computing of Rake receiver
is constrained by time which disperses operations of hardware. In the first mode, parallel data
paths and data locality of FFT are explored, which promote hardware parallel effectively.

5.2. Flexibility and adaptive computing

As completing high computing works by fixed accelerators, general baseband processor is
hard to extend functions. In order to get better flexibility, ReSP equipped with configurable
logics which can be reconfigured as suitable data paths. Further, generalities of different
algorithms are extracted and application-specific instruction set with general aspects is
presented. The instruction set can adapt to multiply standards easily. As a result, programmers
can write parametric programs comfortably for existing wireless standards and even new
standards. Table 2 is the comparison of flexibility involving general baseband processor,
general DSP and ReSP. In the table, we can see baseband processor has the poorest flexibility.
Although general DSP can’t extend instructions, it can support new functions by
reprogramming. ReSP can change instruction set to adapt to various applications. The table
also shows that length of program running on ReSP is shorter than TMS320C64. This means
that ReSP is easier to programming and has higher effect.

Table 2. Flexibility Comparison

 Specific
Processor

General DSP Baseband
Processor

Processor ReSP TMS320C64 [9]
Instruction Specific Ins.

General Ins.
General Ins. Accelerator

Parametric
Programming

Yes Yes No

Instruction Extension Yes No No
Application Extension Yes Yes No

Flexibility

FFT 28 73 --
Rake 23 57 --
Viterbi 65 230 --
Turbo 77 563 --

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

62

5.3. Computational performance

In order to evaluate performance of ReSP when processing algorithms in real
environments, we set a benchmark illustrated in Table 3. The benchmark simulates
conditions of real time processing. Figure 5 is the simulation results. Although ReSP
has lower instruction level parallel compared with MIMD processor, it has powerful
performance by equipping high degree DLP. Figure 5 shows speedup of ReSP
compared with general DSP. The figure shows that MIPS costs of ReSP reduce at least
7.5 times compared with general DPS. Figure 6 shows clocks of executing some
algorithms. We can see that our processor is faster than general DSP when executing
FFT and Viterbi.

32 57 340 160

240 430 4600 2010

0%

20%

40%

60%

80%

100%

FFT Rake Viterbi Turbo

ReSP(MIPS) General DSP(MIPS)

Figure 5. Performance comparison for FFT, Rake, Viterbi and Turbo

41 270

165 65

276 3617

604 9804

0%

20%

40%

60%

80%

100%

FFT Viterbi Turbo Rake

ReSP TMS320C64x[15] TMS320C62x[15]

Figure 6. Clocks of Executing FFT, Rake, Viterbi and Turbo

Table 3. Benchmark

Algorithm Benchmark
FFT 40Hz,64point radix-4 FFT
Rake 3.84Mcps, 8 finger Rake Receiver
Viterbi constraint length 9 and coding rates 1/2
Turbo parallel concatenated convolutional code,

constraint length 3 and coding rates 1/3

6. Conclusions

New technologies and new standards of wireless communication area take big
challenges for general processors. This article focuses on the problem and constructs a
reconfigurable stream processor by analyzing representative communication standards.
Stream cache with multi-bank and tailored reconfigurable logics is implemented.
Configurable instruction set for Software radio is presented too. The paper provides a
novel way of designing hardware for software radio.

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

63

References

 [1] Lin, Y. Lee, H.; Woh, M. et al. SODA: A High-Performance DSP Architecture for Software-Defined Radio,
IEEE Micro, 27: 114 - 123, 2007

 [2] Mattan Erez. Merrimac : high-performance and highly-efficient scientific computing with streams. Ph.D.
dissertation, November 2006, Stanford University, Stanford, California

 [3] Hsiang-Feng Chi and Zhao-Hong Lai. A cost-effective memory-based real-valued FFT and Hermitian
symmetric IFFT processor for DMT-based wire-line transmission systems. In Proc. IEEE International
Symposium on Circuits and Systems, 6:6006-6009, 2005

 [4] Eric Tell, Anders Nilsson and Dake Liu. A Programmable DSP core for Baseband Processing. In Proc.IEEE
Northeast Workshop on Circuits and Systems (NEWCAS), Quebec City, Canada, 403-406, 2005

 [5] Mattan Erez, Nuwan Jayasena and Timothy J. Knightet al. Fault Tolerance Techniques for the Merrimac
Streaming Supercomputer. In Proc. the ACM/IEEE SC Conference, 29-26, 2005

 [6] Jeong H. L., Weon H. P. and Jong H. M. et al. Efficient DSP architecture for Viterbi decoding with small trace
back latency. In Proc.The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, 1:129-132, 2004

 [7] Suman M. and Emly R. B. et al. Instruction Set Extensions for Software Defined Radio on a Multithreaded
Processor, In Proc.International Conference on Compilers, Architecture and Synthesis for Embedded Systems, 24-
27, 2005, San Francisco, California, USA

 [8] Anders Nilsson, Eric Tell, and Dake Liu. A fully programmable Rake-receiver architecture for multi-standard
baseband processors. In Proc.Networks and Communcation Systems, Krabi, Thailand, 2005

 [9] Anders Nilsson, Eric Tell and Dake Liu. An accelerator architecture for programmable multi-standard
baseband processors. In Proc.WNET2004, Banff, AB, Canada, 2004

 [10] William J. D., Patrick H. and Mattan E. et al. Merrimac: Supercomputing with Streams. In Proc.SC’03 ACM,
2003

 [11] Jon W. Mark and Weihua Zhuang. Wireless Communications and Networking. Prentice Hall. 2003

 [12] Jung H. L., Jae S. L. and Sunwoo et al. Design of new DSP instructions and their hardware architecture for
the Viterbi decoding algorithm. In Proc. IEEE International Symposium on Circuits and Systems, 5:561-564, 2002

 [13] Texas Instruments. TMS320C64x DSP Viterbi-Decoder Coprocessor (VCP) Reference Guide, 2004

 [14] Texas Instruments. TMS320C64x DSP Turbo-Decoder Coprocessor (TCP) Reference Guide, 2004

 [15] Benchmarks, Texas Instruments Inc. http://www.ti.com/sc/docs/products/dsp/c6000/benchmarks/ 62x(or
64X).htm#fft

International Journal of Hybrid Information Technology

Vol.2, No.2, April, 2009

64

Authors

Tian Hangpei received the BSc degree in computer science and
technology in 2005 from Northwestern Ploytechnical University (NPU)
of China. Now he is a PhD candidate of NPU. His main research areas
include high-performance processor architecture, stream processing,
dynamical reconfiguration, on-chip memory hierarchy and related topics.

 Gao Deyuan received the BSc degree in 1973 from Northwestern
Ploytechnical University of China. He worked as a research scientist for
University of Southern California of USA, where he conducted the
research of VLSI during the period 1985-1987. Now he is the professor
of NPU. His main research areas include high-performance processor
architecture, VLSI and system

Zhu Yian received the PhD degree in 1991 from Northwestern
Ploytechnical University of China. Now he is the professor of NPU. His
main research areas include system performance evaluation, parallel
computing and network.

