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Abstract 
 
    The localization requirements for mobile nodes in wireless (sensor) networks are 
increasing. However, most research works are based on range measurements between nodes 
which are often oversensitive to the measurement error. In this paper we propose a location 
estimation scheme based on moving nodes that opportunistically exchange known positions. 
The user couples a linear matrix inequality (LMI) method with a barycenter computation to 
estimate its position. Simulations have shown that the accuracy of the estimation increases 
when the number of known positions increases, the radio range decreases and the node 
speeds increase. The proposed method only depends on a maximum RSS threshold to take 
into account a known position, which makes it robust and easy to implement. To obtain an 
accuracy of 1 meter, a user may have to wait at the same position for 5 minutes, with 8 
pedestrians moving within range on average. 
 
1. Introduction 
 
    Nowadays wireless networks are going deep into people’s everyday life. And a lot of 
mobile nodes are carried by pedestrians for communication needs. Therefore how to have 
accurate knowledge of geographical positions of wireless nodes is becoming more and more 
important for the pedestrian users [1]. GPS-based solutions perform very well in outdoor 
environments but not in indoor or urban environments. Alternate solutions have been 
investigated in the context of Wireless Sensor Networks. However, at the present time most 
research about wireless sensor localization concentrates on triangulation approaches which 
estimate the user node’s position with respect to a few beacons by means of received signal 
strength (RSS), time of arrival (TOA), angle of arrival (AOA) or hop count method [2] [3] [4] 
[5]. However, these methods either lack of localization accuracy (such as RSS) or are very 
sensitive to environment (such as TOA, AOA and hop count method) [6]. 
    In this paper we simply exploit the information that a user node is located within radio 
range of other nodes or not. By using the linear matrix inequality (LMI) method, we compute 
the optimum value of the range intersection that the user lies in rather than estimate the 
geographic distance between nodes. To achieve precise enough location estimation, we 
assume the user has the ability to wait for a period of time at the same place. Furthermore, in 
the process of localization, this paper introduces a barycenter-based method: the barycenter of 
a set of optimum values collected by the user during the waiting time is regarded as the final 
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location estimation. Our method is tested using Matlab simulation based on a specific 
pedestrian random mobility model. 
    The paper is organized as follows. In Section 2 we describe the main idea of our 
localization method involving corresponding mathematical model and error expression. The 
detailed description of our simulation is given in Section 3. We perform our analysis on the 
simulation in Section 4. Conclusions and future work are presented in Section 5. 
 
2. Localization algorithm 
 
    In this paper we consider that the coverage of a node’s signal in two dimensions can be 
bounded by a disc of radius . Let’s consider the following situation. If the user can detect the 
signals from two different nodes at the same time, the user can ensure that he is lying in the 
intersection of the two nodes’ coverage, as shown in Figure 1. The more intersecting circles 
there are, the smaller the intersection is. So if a sufficient amount of nodes know their exact 
position and can be detected by the user, the possible area the user lies in will be small 
enough.  
 

 
 

Figure 1. Black dots represent moving nodes knowing their exact position; the white dot 
represents the user who wants to know his position. Circles represent the maximum range of 

the moving nodes radio signal. 
 
    Throughout the remainder of this paper we will denote the position of the user 
as , the position of moving node  as . The geometry relations among 
the nodes can be expressed in mathematical form as the following set of constraints for N 
moving nodes: 
 

 
 
    Looking at Figure 1, the optimum of the shaded area appears to be a good estimation of the 
user’s position. Searching for such an optimum can be taken as a linear optimum program 
which satisfies a series of constraints . In [7] and [8], a method is introduced to 
deal with the optimum question. The preceding constraint is firstly transformed into a form of 
linear matrix inequality (LMI):  
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    Let be the user location estimation computed by solving the above set of inequalities 
for  with a LMI solver. 
    In fact, when the user waits at the same place and nodes move around him, he 
progressively collects a set of optimum values. After a while, the barycenter of the previously 
collected optimum values provides an even better estimation. Let  be the barycenter 
estimation at time : 
 

 
 
    We also define  and  as the estimation error for the LMI and the barycenter 
estimation respectively: 
 

 
 
3. Simulation setup 

3.1. Simulation introduction 

    All our simulations are executed in the Matlab 2007b environment. Matlab provides the 
LMI Lab toolbox to solve LMI problems. Though some other efficient algorithms have been 
proposed to solve similar optimum problems, e.g. [9] which is based on an efficient SDP 
relaxation method, this paper will not adopt them here, since time-efficiency is not an issue 
for our simulations and the optimum toolbox in Matlab is convenient to use.  
In all following simulations, we assume that the user locates at the origin point of the 
coordinate system while other nodes move around him. We assume the user can wait at the 
same position for a period of time long enough to obtain good location estimation, i.e. the 
final error can meet his requirement. In this paper the waiting time is set to be 5 minutes.  
 

3.2. Random pedestrian mobility model  

    In this Section we introduce the Random Pedestrian Mobility Model to predict the 
positions of nodes carried by pedestrians at simulation time. This model does not aim at being 
a realistic model such as social mobility models [10] but rather it provides a simple random 
model with speed and direction properties closer to a pedestrian than a free particle.  
In all our simulations, nodes are assumed to be carried by pedestrians. The user’s 5-minute 
waiting time is divided into 300 small time slots of one second. During each time slot, the 
trajectory of the pedestrian carrying node  is considered as rectilinear and uniform: speed 
and direction do not change. At time slot   the position  of node  is a function of 
its previous position and its current walking speed and direction : 
 

 
 
    Now the critical point lies in how to adjust the speed and the direction  of every 
time slot automatically and randomly. According to statistical data about pedestrians in [11], 
a person’s walking speed obeys to a normal probability distribution . In this paper we 
set the mean value of walking speed  equal to 1.2 m/s and its standard deviation is 0.2 m/s. 
A new speed  is produced at each time slot  according to the normal law: 
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    Nodes could simply choose their next time’s direction  uniformly in  as in the case 
of a free particle movement. However, this would result in a very erratic trajectory. To obtain 
smoother pedestrian trajectories, we take into account the fact that in most cases a person 
moves forward with a field of vision of approximately . This means a person going forward 
has a very large probability to choose his next step’s direction in a small sub-range of  in 
front of him. We propose to derive a new mobility model where the next time’s direction is 
tightly related to the former time’s direction and obeys to normal law. In such a model, the 
direction used during time slot  is centered on the direction at time slot : 
 

 
 
    By definition of the normal law, in our mobility model the probability that the user chooses 
his next direction  in the range of  in front of him is about 0.95. 
After some experiments, we decided to set  to π/6 which gives smoother trajectories as 
shown in Figure 2.  
   We will hereafter refer to the mobility model described above and built by periodically 
drawing a new pedestrian speed in a normal law and a new direction in a normal law centered 
of the previous direction as the Pedestrian Random Mobility Model. We will use this model 
with the parameters of Figure 2. 
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Figure 2. Three 5-minute trajectories generated with the Random Pedestrian Mobility Model 

(μ = former direction; σ = π/6). 

3.3. Bounding the movements 

    In order to observe the variation of error conveniently when nodes move, each simulation 
uses the same number of nodes in the circle of the user’s range. If at some time a node 
reaches the boundary of the range of user, it will be obliged to randomly draw its direction 
again and again to ensure it only moves in the range of user. In fact, here the circular 
boundary of the range plays a role of wall. 
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4. Simulation results 

4.1. LMI location estimation 

    In this Section we focus on optimum values computed by the Matlab LMI toolbox and do 
not use the barycenter of the collected optimums. At each time step t, the location estimation 

 is the optimum computed by the LMI toolbox. 
The range of nodes and user are both assumed to be 10 meters. At the beginning of the 
simulation, 50 nodes are distributed in the range of the user randomly and uniformly. These 
nodes then move independently for 5 minutes according to the Pedestrian Random Mobility 
Model defined above. 
The user position is estimated every second as shown in Figure 3. The variation of the 
estimation positions are plotted with different RGB values which change from red to blue 
gradually over time.  
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Figure 3. The distribution of LMI location estimations in polar coordinates. The user is located 

at the center. 
 
    We can observe that these estimations are rather close to the user position (< 2m). This is 
further illustrated by Figure 4, which shows that on average the LMI location estimation error 

is less than 0.8 meters and in any case less than 2 meters. 
 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

time (sec)

LM
I 

er
ro

r 
(m

et
er

)

The variation of LMI error over time

 

 

LMI error curve

mean value of LMI error data

 
Figure 4. The LMI error variation curve over time. 
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4.2. Barycenter location estimation 

    As explained in Section 2, the LMI estimations are progressively collected by the user who 
can compute the barycenter of the LMI estimations collected so far. The results of this 
barycenter-based location estimation at each time  are far less scattered than the LMI 
estimations, as shown in Figure 5.  
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Figure 5. The distribution of barycenter location estimations in polar coordinates. The user is 

located at the center. 
 
    The barycenter error  converges to a very satisfying value of less than 0.2 meters after a 
period of time smaller than 2 minutes, as shown in Figure 6. The accuracy of the barycenter 
estimation is better than the LMI estimation. 
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Figure 6. The barycenter error variation curve over waiting time. 

 
    To further survey the barycenter error, we carried out another 49 simulations which are 
also based on 50 nodes and use the same parameters but use different random seeds. All of 
these experiments achieve similar results as the first experiment. Figure 7 gives the mean 
values of the LMI and barycenter errors in the 50 experiments. We observe that the 
barycenter method systematically gives better location accuracy. 
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Figure 7. Comparing LMI and barycenter errors across 50 experiments. 
 

4.3. Impact of the simulation parameters 

    In terms of the above simulation model, there are several parameters that may influence the 
final location estimation accuracy, that is, the node density, the range level of the nodes and 
the moving speed of the nodes. These parameters are varied and discussed separately 
throughout the remainder of this Section. 
 
   4.3.1. Node density impact.  Here, the node density is equivalent to the number of nodes in 
the range of the user. This definition is consistent with [12], in which the network density in a 
region of area  is express as: 
 

 
 
where  is the range of the nodes and  is the number of nodes in the region of area . When 

is the range of the user, the density is equal to the node number. 
    As in Section 4.1 and 4.2, we keep a specific number of nodes moving in the range of user 
all the time so that the node density in the presented simulation doesn’t change. The node 
speed obeys a normal law  as explained in Section 3.2. 
As expected, we can see in Figure 8 that as the number of nodes increase, the mean 
barycenter error decrease gradually. When there are 8 nodes that can be used, most of the 
mean barycenter errors in 50 experiments are below one meter. When there are 50 known 
nodes (typically in a crowded area), almost all the mean barycenter errors are smaller than 
0.5 meter.  
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The variation of barycenter mean error
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Figure 8. Node density impact on 50 experiments: the location accuracy increases with the 

number of nodes within range. 
 
    4.3.2. Node range impact. In order to observe the effect of node range on the location 
accuracy, another 50 experiments were carried out changing the range of nodes to 30 meters. 
The node density is set to 50 and the mean speed is drawn in a  normal law. Figure 
9 compares the results for the original 10-meter range and the new 30-meter range. As shown 
in the figure, the mean barycenter errors increase with the range in every experiment. 
Experiments with different node densities exhibit the same trend. 
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Figure 9. Node range impact on 50 experiments: the location accuracy decreases as the 

range increases. 
 
 
    4.3.3. Node speed impact. We now study the impact of the mean speed of the movement 
model, setting it to 0.6 m/s (a slow pedestrian). The other parameters remain unchanged: a 
speed variance of 0.2 m/s, a range of 10 meters and a node density of 8 known nodes and 50 
known nodes. As shown in Figure 10, the mean barycenter error tends to decrease as the 
nodes move faster. This indicates that the speed of nodes will influence the final barycenter 
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error. If the node moves too slowly, the barycenter error curve will take more time to 
converge to a better result. 
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(b) 

Figure 10. Node speed impact on 50 experiments: on average, the location accuracy 
increases with the speed. (a) is the 8-node case; (b) is the 50-node case. 

 
5. Conclusions and future work 
 
    In this paper we have proposed a location estimation scheme based on collaborating 
moving nodes that opportunistically exchange known positions. Using a linear matrix 
inequality (LMI) method coupled with a barycenter computation, a user can compute an 
estimation of its own position. Simulations have shown that the accuracy of the location 
estimation increases when the number of known positions increases, the radio range decreases 
and (to a smaller extent) when nodes speeds increase.  
The advantage of the proposed method is that it does not need to cope with over-sensitive 
measures such as RSS or TOA. Rather, it can accept a maximum RSS threshold to take into 
account a given position information, which is easy to implement. To obtain an accuracy as 
good as 1 meter with a good probability, a node may have to wait at the same position for up 
to 5 minutes, with 8 pedestrians moving around him on average. 
The method can be applied to situations where nodes are densely distributed and do not have 
specific positioning equipment aside from wireless radios. This includes a wide range of 
social networks involving smart phones or PDAs, as well as mobile adhoc or sensor networks. 
Future work in this direction includes taking into account more realistic pedestrian 
movements, in indoors as well as urban scenarios mixing pedestrians and vehicles (typically 
buses). We also want to relax the “known position” assumption: in the present work, a 
moving node provides its exact position to the user. In practical situations, an exact position 
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may be available from time to time, using well known beacons for instance, but most of the 
time, moving nodes may only be able to send estimates of their positions. 
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