
Data Extraction from Damage Compressed File for Computer
Forensic Purposes

Bora Park†, Antonio Savoldi‡, Paolo Gubian ‡, Jungheum Park†, Seok Hee Lee† and
Sangjin Lee†1

†Center for Information Security Technologies, Korea University, Seoul, Korea
‡Department of Electronics for Automation, University of Brescia, Via Branze 38, Brescia, Italy

†{danver123,junghmi,gosky7,sangjin}@korea.ac.kr, ‡{antonio.savoldi,paolo.gubian}@ing.unibs.it

Abstract

Nowadays compressed files are very widespread and can be considered, without any doubt, with
regard to the Digital Forensic realm, an important and precious source of probatory data. This is
especially true when in a digital investigation the examiner has to deal with corrupted compressed
files, which have been gathered in the collection phase of the investigative process. Therefore, in the
computer forensic field, data recovery technologies are very important for acquiring useful pieces
of data which can become, in a court of low, digital evidence. This kind of technology is used not
only by law enforcement, but also by the multitude of users in their daily activities, which justify the
relevant presence of tools in the software market which are devoted to rescue data from damaged
compressed files. However, state-of-the-art data recovery tools have many limitations with regard
to the capability of recovering the original data, especially in the case of damaged compressed
files. So far, such recovery tools have been based on a schema which controls the signature/header
of the file and, thus, provides the offset to the raw compressed data block. As a result, they cannot
recover the compressed files if the first part of the raw compressed data block, which pertains to
the header, is damaged or the signature/header block is corrupted. Therefore, in order to deal with
this issue, we have developed a new tool capable of rescuing damaged compressed files, according
to the DEFLATE compression scheme, even though the header block is missing or corrupted. This
represents a new interesting opportunity for the digital forensic discipline.

1: Introduction

Recovering damaged files is a very important and fundamental topic in computer forensic disci-
pline. This fact can be easily understood by having a look at the field of digital forensics [5] and
by considering that every source of potential digital evidence need to be examined, even though we
are dealing with corrupted digital compressed files. Hence, plenty of different methods for recov-
ering data from damaged files, compressed and not, have been presented. Undoubtedly, it is quite
tough to recognize the original uncompressed file type starting with the analysis of the corrupted
one. This fact rises from the high level of entropy which is a well-known feature for the category
of compressed files. So far, in the field of proprietary as well as in the open source market there
are some recovery tools, which are able to rescue damaged compressed files, even though, as will
be made more clear later, only for a specific subclass of cases. Indeed, these tools cannot deal with
corrupted files whose header section block is damaged. Thus, they do not allow the determination

1Corresponding author: Sangjin Lee. Email: sangjin@korea.ac.kr, PhoneNumber: +82-19-328-5586

1

89

of the offset to the so-called raw data block, which defines the compressed block within the com-
pressed file. Interestingly, as will be clearer in the following sections of this paper, we managed
to solve, at least partially, this problem, by implementing an innovative solution which permits the
recovery of a damaged compressed file even though the first block is corrupted. Our approach,
which has been named bit-by-bit processing, acts at the level of the raw compressed data block,
by removing, gradually, the corrupted header, thus permitting to regain the data block which can
be subsequently decompressed. In this paper, a new data recovery method, which can be used to
recover damaged compressed files, is proposed.
The remaining part of the paper is organized as follows. Firstly, a detailed and comprehensive

explanation of common compression and decompression algorithms will be provided, giving at the
same time information about the structure of the compressed blocks. Secondly, a review of state-
of-the-art data recovering algorithms for rescuing damaged compressed data will be described.
Afterwords, our original method for recovering corrupted compressed files, especially those having
a damaged header, will be discussed, also detailing the advantages and disadvantages of the solution
and proving the effectiveness of the method. Finally, we will sketch our future work plans.

2: Related Work

Before describing the related work and going ahead with the main topic of this paper, some
fundamental terminology has to be introduced.

• Raw compressed data: it refers the purely compressed data, without any header block and
which can be obtained with a specific compression algorithm.

• Compressed data: it indicates generic compressed data which has been obtained by using
a specific algorithm (tool). The resulting file has its own structure with a header which is
normally required by the decompressor to reconstruct the original data.

• Decompressor: it defines any algorithm for reconstructing the uncompressed original data.
• Damaged data: it refers to any compressed file which has been altered in some part.

2.1: Data Recovery Algorithms: State-of-the-art

Current data recovery tools are able to recover a specific category of damaged compressed files.
Specifically, those compressed files with an integral (not altered) header will be able to be recovered.
Figure 1 illustrates an example of damaged compressed file according to the ‘ZIP archive’ file [10]
format, with the case of a damaged header and with a normal header. As a matter of fact, among
corrupted data blocks, only (F), (G) and (H) will be able to be recovered. This fact is a logical
consequence of the current approach which is used for data rescuing.
We can analyze how the ZIP recovery algorithm works. It tries to find the local header, in the

form 0x504B0304, within the compressed file. If such a signature is found, then the algorithm
will read the offset to the raw compressed data blocks and, consequently, it will rearrange the ZIP
archive to the correct format. As we mentioned earlier, this kind of approach works only for those
files which do not have a damaged header. So far, with regard to Figure 1, if block (A) is damaged
such approach will be certainly not effective, as it is not able to identify correctly the signature or
the offset for the raw data blocks. Thus, it is clear now that current state-of-the-art approach for
damaged compressed data recovery uses the information contained in the header. As a consequence,
to deal with this great limitation, especially from a forensic perspective, we have suggested and

2

90

Damaged header (A)

1st Block (B)

(damaged)

2nd Block (C)

(damaged)

Damaged Raw

Data

3rd Block (D)

Normal header (E)

1st Block (F)

2nd Block (G)

(damaged)

Normal Raw
Data

3rd Block (H)

Figure 1. Data blocks which can be recovered by using current tools.

implemented a new method for extracting raw compressed data blocks, from damaged compressed
files, without having any header information. It is important to point out that after obtaining the
raw compressed data blocks, it will be easy to reorganize them according to a certain compression
scheme. Even though there will be a damaged raw data block, it will certainly be possible to recover
a part of the original file, which is extremely important in a digital forensic context.

2.2: Limitations of Current Data Recovery Tools

As already mentioned, current ZIP recovery tools are not able to recover the (B), (C) and (D)
raw data blocks when the file header is damaged. This is because they cannot find the initial part of
the raw compressed data whose offset, necessary to point to the raw data blocks, is written in. In
addition, even considering the case of an integral header, there could be other problems. Indeed, if
raw data blocks are dependent, as it will be detailed later, it will be impossible to recover the row
data block section (e.g. blocks (G) and (H)). This because of the interdependency features of the
compressor algorithm.
Since the purposes of a computer forensic investigator are to regain the original data or, at least,

a part of that data, which can be used to identify the kind of material under examination, it would
be really useful to be able to decompress some part of the compressed data, even when dealing
with heavily damaged compressed files. Before providing all the necessary details about our data
recovery method, we will illustrate the algorithm for data compression and decompression.

3: Compression and Decompression Algorithms

According to user statistics, among the most common compression tools used by plenty of com-
puter users, we can mention WinZip, Alzip and WinRAR [1]. These applications support various
compressed formats and are mainly used for archiving purposes. Interestingly, the main compres-
sion algorithm for WinZip and Alzip is the so-called DEFLATE whereas WinRAR uses a modified
version of this algorithm. For example, .zip, .gz and .alz are extensions of the mentioned
compression algorithms which use the DEFLATE data compression algorithm. The dual algorithm
for decompression is known as INFLATE. Since the DEFLATE and INFLATE algorithms are very

3

91

common among compression utilities, we have chosen them to test our damaged compressed file
recovery methodology.

3.1: Basic Principle of DEFLATE Compression Algorithm

The DEFLATE compression algorithm [4] is based on a variation of LZ77 [6] combined with an
Huffman encoder scheme. The principle of LZ77 is to use part of the previously-seen input stream
as the dictionary. That is, the stream which is used more than one time is written on compressed
data as an offset of the previous stream and with the length of it. The encoder maintains a window
over the input stream and shifts the input in that window from right to left as strings of symbols are
being encoded. Thus, the method is based on a sliding window. The window is divided into two
parts. The part on the left is the so-called search buffer, which represents the current dictionary, and
includes symbols that have recently been input and encoded. The part on the right is the so-called
look-ahead buffer, which contains text yet to be encoded [1] [6]. It is interesting to mention that
in practical implementations the search buffer is some thousands of bytes long, whereas the look-
ahead buffer is only tens of bytes long. An example of LZ77 compression is shown in Figure 2.

a b c b b a c d e b b a d e a a...

Search buffer Lookahead buffer

Window

Match literal : “bba”
Distance : 3
Length : 3
Next symbol : ’d’
Output : (3, 3, ‘d’)

Figure 2. LZ77 algorithm.

A compressed data set consists of a series of blocks, corresponding to successive blocks of input
data. The block sizes are arbitrary, except that non-compressible blocks are limited to 65,535 bytes.
Each block is compressed using a combination of the LZ77 algorithm and Huffman coding. The
Huffman trees for each block are independent of those for the previous or subsequent blocks; the
LZ77 algorithm may use a reference to a duplicated string occurring in a previous block, up to 32K
input bytes before. Each block consists of two parts: a pair of Huffman code trees that describe
the representation of the compressed data part, and a compressed data part. (The Huffman trees
themselves are compressed using Huffman encoding.) The compressed data consists of a series
of elements of two types: literal bytes (of strings that have not been detected as duplicated within
the previous 32K input bytes), and pointers to duplicated strings, where a pointer is represented
as a pair (length, backward distance). The representation used in the DEFLATE format limits
distances to 32K bytes and lengths to 258 bytes, but does not limit the size of a block, except for
non compressible blocks, which are limited as noted above. Each type of value (literals, distances,

4

92

and lengths) in the compressed data is represented using a Huffman code, using one code tree for
literals and lengths and a separate code tree for distances. The code trees for each block appear in
a compact form just before the compressed data for that block.
Thus, literal bytes, (length,backward distance) and next literal are the basic parts of the so-called

compression block, the basic atom in the LZ77 compressed data file. In the case of DEFLATE
compression, only literal bytes and length,backward distance parts are present and Huffman scheme
is applied as an additional step. Huffman coding is a popular method of data compression. This
scheme is based on the frequency of occurrence of a character. The main principle of Huffman
coding is to use a lower number of bits to encode the data that occurs more frequently. The algorithm
starts by building a list of all the alphabet symbols in descending order of their probabilities. It then
constructs a tree, with a symbol at every leaf, from the bottom up. This is done in steps, where at
each step the two symbols with smallest probabilities are selected, added to the top of the partial
tree, deleted from the list, and replaced with an auxiliary symbol representing the two original
symbols. When the list is reduced to just one auxiliary symbol, the tree is complete. The tree is
then traversed to determine the codes of the symbols [1] [8].

3.2: Types of Compression Modes in DEFLATE Algorithm

In DEFLATE compression algorithm there are 3 modes for data compression. The first one,
‘Mode 1’ does not compress data. The second, ‘Mode 2’ compresses data by using LZ77 and a
fixed Huffman coding, according to a fixed table within the compression algorithm. The last one,
‘Mode 3’, compresses data with LZ77 and a dynamic Huffman coding. In mode 3, the encoder
generates two code tables, which are located after the header of the compressed file. After that, it
uses the tables to encode the data that constitutes the compressed raw data block. The format of
each block [1] is detailed in Figure 3.

Mode 2

3-bit Header (“001” or “101”)

Literal/Length prefix codes and distances prefix code

Code 256 (EOB)

Mode 3

3-bit Header “010” or “110”

Table information

Compressed Data(Encoded with the 2 prefix tables)

Code 256(EOB)

Mode 1

3-bit Header (“000” or “100”)

Data Area (up to 65,535 bytes)

LEN (unsigned 16-bit numbers) data bytes

Figure 3. Format of each block in DEFLATE compression algorithm.

The encoder compares lengths for each compression mode and then compresses data by selecting

5

93

the shortest length of the compressed data [9]. A simplified DEFLATE compression algorithm is
shown in Figure 4.

Figure 4. Simplified DEFLATE algorithm.

In order to decompress or rescue damaged compressed files, we have to recognize the format of
compressed data 3. The block in Mode 1 is composed of an header which signals the decoder (also
referred to as decompressor) which is the compression mode and the raw compressed data section.
Mode 2 is composed of an header, like Mode 1, and of a raw compressed data part. Mode 3 is
composed of an header, an Huffman table, and, finally, a raw compressed data block [8].

3.3: Basic Principle of INFLATE Decompression Algorithm

It is worthy to mention that a DEFLATE stream consists of a series of blocks. Each block is
preceded by a 3-bit header, specified as follows. The 1st bit asserts whether we have the last block
in stream sequence. A value of ‘1’ specifies that this is the last-block in the stream whereas a ‘0’
indicates that there are more blocks to process after this one. The next 2 bits refer to the encoding
method used for the current block, which specifies the encoding mode:

• 00: a stored/raw/literal section follows, between 0 and 65535 bytes in length (Mode 1).
• 01: a static Huffman compressed block, using a predefined Huffman table (Mode 2).
• 10: a compressed block with a dynamic Huffman encoding scheme (Mode 3).

We can briefly detail how the INFLATE algorithm, the decompressor, works. If the data stream
has been compressed by Mode 1, the decompressor just flushes out the data. In the case of Mode
2, initially, as a first step, the decompressor decodes the Huffman table, built within the algorithm,
as already mentioned, and, then, as a second step, it decodes the LZ77 blocks. Finally, for Mode
3, the decompressor reads the Huffman tree information within the current block and then decodes
Huffman and LZ77 blocks. When the decompressor meets an EOB string, it stops the decoding
phase. Figure 5 illustrates the mentioned algorithm.

6

94

Figure 5. Simplified INFLATE algorithm.

4: A New Method for Rescuing Damaged Raw Compressed Files

The main goal of this section is to provide a solution for decompressing and recovering raw
data streams. At the end of the decompression phase we will have to deal with many chunks of
data, according to the compression scheme and thus we will be able to apply a further analysis
step toward the reconstruction of the original uncompressed material, final phase of the forensic
analysis. Even though it will not be possible to recover the original uncompressed file, by using
data carving techniques it will be certainly worthy to extract as much information as possible from
these pieces of data.
So far, in mode 2, the Huffman table is located at the level of the DEFLATE compression algo-

rithm, whereas in mode 3 the Huffman table is read within the compressed file, according to the
layout shown in Figure 3. Therefore, if the first part of the Huffman table is damaged, in the case
of mode 3, it will not be possible to decompress that block, because of the features of the dynamic
Huffman coding scheme.
However, if we consider the compression scheme for mode 2, we can agree that even though

the header is corrupted, it will be likely possible to recover the subsequent raw compressed data
streams. This follows from the knowledge of the fixed Huffman table, which is directly coded
within the compression algorithm. Interestingly, as already pinpointed, previous recovery tools,
which deal with the DEFLATE compression scheme, try to find the header and, by reading the
offset information, try to sort out the compressed raw data blocks. Our approach acts at the bit
level by considering mode 2. Even though the header is corrupted, it is certainly possible to remove
one bit per time, to apply the INFLATE decompression algorithm and, as a result, decide whether
we are able to obtain any decompressed block. This bit-by-bit process can be reiterated as many
times as possible, according to the length of the compressed stream. The detailed algorithm of the
bit-by-bit decompression is shown in Figure 6.

7

95

Figure 6. Damaged raw compressed data recovery process.

When given a damaged input file, our algorithm acts by trying to decompress, according to the
LZ77 scheme, the raw data block. If the decompression can be done, then the resulting data block
is saved as a file (chunk). Conversely, if the input data can not be decompressed, the next bit is
removed and the process is repeated until the end of the block (EOB string). The method of bit-by-
bit is shown in Figure 7.

1st

2nd

LSB MSB

3rd

Figure 7. Bit-by-bit algorithm.

Since data blocks are packed as bytes, e.g. starting with the least-significant bit [9], the process
of removing bits can be represented like in Figure 7. Firstly, the 8th bit is removed from the first
byte of data and then the remaining part of the data stream is shifted like in a register. The process
is repeated as many times as necessary while the block is decompressed or the end of the block is
reached.

8

96

4.1: Damaged Raw Data: Possible Scenario

We have already detailed the basic structure of compressed data blocks. These blocks can be
sometimes independent or dependent among each other. Normally, this interblock dependency
does not permit the recovery of a single raw compressed data block (data stream). The mentioned
dependency is obtained by acting on a specific parameter of the DEFLATE compression algorithm,
as follows.

• ret = DEFLATE(&strm, ‘flush value’)

The flush value determines the degree of dependency among different blocks. More precisely, the
flush value signals the end of a data compressed block pertaining to a certain file (boundary block),
which has been compressed. A possible value for such a flag is Z SYNC FLUSH, which creates
a special NULL block to define the boundary among different blocks. Conversely, when the flush
value is set to Z FULL FLUSH, then the whole set of blocks in the compressed file is independent.
That is, even though there may be some damaged compressed data blocks which have been created
with the DEFLATE algorithm using Z FULL FLUSH, the entire set of compressed data blocks can
be recovered successfully.
As a matter of fact, by analyzing the binary compressed data there is no information to tell

whether the Z FULL FLUSH flag has been applied. Thus, most of the damaged compressed files
look impossible to recover. However, if some raw compressed blocks start with literal bytes LZ77
codes, it will be possible to decode the compressed data block by using the INFLATE algorithm
(only for compression mode 2). This feature strictly depends on the characteristics of the original
uncompressed data. In some cases, there could be some compressed blocks which cannot use the
characters previously seen (literal bytes) to create the new compressed data stream. That is, if
the uncompressed data has a law compression ratio, according to the LZ77 algorithm, the block
independency will be assured even if ‘Z FULL FLUSH’ has not been set. In this case, a dependent
compressed block looks like an independent compressed block. Thus, at least partially, it should
be possible to recover some compressed data blocks even though there are dependencies among
blocks. Figure 8 details what it has already been described.

Damaged

First Block

Literal Codes

Length/distance Codes

2nd Block
Can be decompressed with high probability

3rd Block
Can be recovered with low probability

Figure 8. Block recovery.

In Figure 8, the first raw data block is damaged. The first part of the second block specifies literal
bytes information, whereas the first part of the third block contains length and distance information.

9

97

As stated, when we find such an information block it means that the block does not depend on
the previous one, according to the coding scheme. As a consequence, since the second block is
independent from the first, it can be likely decompressed. However, in the case of the third block,
its initial part is referred to as literal/distance information block, which pertains to a sequence of
stream blocks of a certain file being compressed. Thus, in such a case, it is unlikely that the raw
compressed data block can be recovered.

4.2: Decompression Helper

Suppose that a damaged ZIP file has been found on a binary hard disk image. This file has no ZIP
header, and thus there is no way to know where the first part of the raw compressed data is located.
Moreover, if we try to apply the decoding algorithm, the data will not be decompressed. Therefore,
we could conclude that the first part of this raw compressed file is damaged. Thus, this corrupted
file could not be decompressed or recovered. However, by using the method proposed in this paper,
the bit-by-bit processing approach, some data blocks might be recovered. The main algorithm has
been implemented in a software tool shown in Figure 9, which is able to recover chunks of raw data
blocks, belonging to a certain file, or, more interestingly, even entire damaged files.

Figure 9. Screenshot of Decompression Helper

The results of the execution of Decompression Helper, the name of the tool we have imple-
mented, are shown in Figure 10. In that Figure, we can see the decompressed data chunks which
have been successfully decompressed. The decompressed[i] is referred to as the decompressed
data block which starts from the i-th bit in the original damaged data file. As already explained, all
chunks are the uncompressed stream, or data block, of the original file. Clearly, the next phase of
the work is to sort out different chunks and to figure out important details about the data content.
As already pointed out, even one single part of a file can be decisive in a forensic investigation.

A forensic practitioner, by using our proposed recovery algorithm, based on the so-called bit-by-bit
processing, should be able to discover the contents of a fragment of compressed file, according to
the DEFLATE scheme, recovered, for example, from a memory dump, in the context of a volatile
forensic memory analysis scenario. The important thing to understand, is that at the moment, our
approach is the only one which tries to automate this recovery process, which could be very hard if
done manually.
Table 1 shows how the proposed tool can be helpful. The only assumption is that the first block

of the compressed data is always damaged.
In addition, Table 1 shows which damaged compressed data blocks can be recovered and which

can not. We have tested our solution on plenty of corrupted compressed files, which have been
created ad hoc by removing or altering the header block, of different size, in the range of 100 bytes

10

98

Figure 10. Decompressed files.

to 10 Mbytes. One important fact is the decompression (recovery) time, which strictly depends on
the size of the file being recovered. So far, we have experimentally determined that the extraction
time is linearly dependent on the damaged file size. Moreover, according to the range in size
previously specified, we can expect an extraction time in the range 15 seconds - 15 minutes (100
bytes, 10 Mbytes). Clearly, this is a worst-case scenario. Indeed, in future versions of the tool we
will optimize the extraction algorithm by improving, as a consequence, the computation time.
As already stated, the main result of our tool is the set of uncompressed data blocks which will

be used, in a further analysis step, to reconstruct the original file.
Table 2 illustrates the main differences between current state-of-the-art recovery tools, which

are able to deal with the DEFLATE/INFLATE compression scheme, and the one we have created,
Decompression Helper.

5: Experimental Results

In our experiment we considered 100 corrupted ZIP files, which were obtained from allocated
and unallocated hard disk space. Moreover, as can be seen in Table 3, there are two groups of
damaged files: one with header information and the other with raw compressed data.
The result of the experiment obtained by using the new method stated in this paper is shown in

Table 4.
Considering damaged ZIP files which come from allocated space, it can be seen that there are 13

files whose raw data section has been damaged. After recovering 8 files, it can be noticed that 5 of
them are ZIP files and 3 are text-based files. The results are illustrated in Figure 11.

6: Conclusion and Future Works

In this paper we have illustrated a comprehensive and effective method which can be used to
rescue a corrupted compressed file according to the DEFLATE compression algorithm. It has been
pointed out that such method is totally new in the realm of recovery tools and, interestingly, it can

11

99

Table 1. Different cases that can be treated by ‘Decompressor Helper’.
Single or Order of block Compression mode LZ77 code at Can be decompressed or not

muliple block the first part of block
Single (1st) 1 Can be compressed with low probability
Single (1st) 2 Can be compressed with low probability
Single (1st) 2 Can be compressed with low probability
Single (1st) 3 No
Multiple 1st 1 Can be compressed with high probability
Multiple 1st 2 Can be compressed with low probability
Multiple 1st 3 No
Multiple not 1st 1 Can be compressed or not
Multiple not 1st 2 Maximum distance is

smaller than the Yes
Current offset

of the current block
Multiple not 1st 2 Maximum distance is

greater than the No
Current offset

of the current block
Multiple not 1st 3 Maximum distance is

smaller than the Yes
Current offset

of the current block
Multiple not 1st 3 Maximum distance is

greater than the No
Current offset

of the current block

Table 2. Comparison results between previous recovery tools and ‘Decompression
Helper’.

Preexistence recovery tool Decompression Helper
Can get raw compressed data
without the file header? No Yes

In case that only raw compressed
data are available, is it possible No Yes
to decompress raw compress data?
In case that first block is damaged
is it possible to decompress No Sometimes Yes
the rest of the blocks

In case of Single block,
if the first part Fixed block No Sometimes Yes

of the compressed
data is damaged, Dynamic block No No

can it be decompressed?

Table 3. Distribution of experimental files
Properties of damaged compressed data Quantity (#)

Damaged Signature 17
ZIP files from Damaged Header Damaged offset information 12
allocated space Damaged footer 8

Damaged Raw compressed data 13
Damaged Signature 7

ZIP files from Damaged Header Damaged offset info. 16
unallocated space Damaged footer 3

Damaged Raw compressed data 24

12

100

Table 4. Experimental Results
Properties of damaged compressed data Quantity (#) Recovery Rate (%)

Damaged Signature 17 100%(17)
ZIP files from Damaged Header Damaged offset information 12 100%(12)
allocated space Damaged footer 8 100%(8)

Damaged Raw compressed data 13 61%(8)
Damaged Signature 7 100%(7)

ZIP files from Damaged Header Damaged offset info. 16 100%(16)
unallocated space Damaged footer 3 100%(3)

Damaged Raw compressed data 24 66%(16)

Figure 11. Recovery results in case of damaged raw data(2)

be profitably used by digital forensic practitioners for dealing with data recovery from live mem-
ory dumps. After having described the DEFLATE compression algorithm, we have approached
the problem of recovering corrupted compressed files with a damaged or missing header, by de-
tailing why it is worthwhile to have a such tool and illustrating some differences of currently used
recovery algorithms. As a further step in the research, we would like to optimize the extraction
time and define a better strategy to identify boundary compressed blocks in the case of interblock
dependencies.

7 Acknowledgments

This work was supported by the IT R&D program of MKE/IITA. [2007-S019-02, Development
of Digital Forensic System for Information Transparency].

References

[1] D. Salomon, Data Compression - The Complete Reference - 4th edition, Spinger-Verlag, 2007
[2] M. Nelson, The Data Compression Book - 2nd edition, MIS Press Inc., 1996
[3] K. Sayood, Introduction to Data Compression - 2nd edition, Academic Press, 2000
[4] G. Roelofs, PNG: The Definitive Guide, O’Reilly, 1999

13

101

[5] G. Palmer, A Road Map for Digital Forensic Research, Tech. Rep. DTR-T001-0, Utica, New
York, 2001

[6] G. Langdon, A Note on the Ziv-Lempel Model for compressing Individual Sequences, IEEE
Transactions on Information Theory. IT-29(2):284∼287, 1983

[7] S. Klein and Y. Wiseman, Parallel Lempel Ziv Coding, Discrete Applied Mathematics, Vol.
146(2):180∼191, 2005

[8] ZLIB Compressed Data Format Specification version 3.3, RFC 1950, 1996,
http://www.ietf.org/rfc/rfc1950

[9] DEFLATE Compressed Data Format Specification version 1.3, RFC 1951, 1996,
http://www.ietf.org/rfc/rfc1951

[10] appnote.txt - ZIP file format specification, PKWARE Inc.

14

102

