
International Journal of Hybrid Information Technology 

Vol. 1, No. 1, January, 2008 

 

 

11 

Extended Welch Inner Product Theorem for Systematic Binary 
Block Codes 

 

 

Jia Hou 
School of Electronics & Information, Soochow University, Suzhou, China 

E-mail:houjiastock@hotmail.com 

Moon Ho Lee 
Institute of Information & Communication, Chonbuk National University, Jeonju, 

Korea. 
E-mail: moonho@chonbuk.ac.kr 

Abstract 

A Simple extended Welch inner product theorem is investigated in this paper. Several 

functions to find the largest possible minimum Hamming distance of the systematic binary 

block codes are also derived by using the extended Welch inner product theorem. The results 

will be useful to estimate or design good codes for communications or other information 

technology.    

 

1. Introduction 

In 1974, Welch and his famous paper [1] introduced a great theorem for the inner products 

among a set of M  vectors of length L  and norm 1. In that paper, the author defined the 
inner products as  
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where ( )*  denotes the complex conjugate and the component is with sets of vectors 

{ ),...,( 1

v

L

v aa  or ),...,( 1

λλ
Laa : Mv ,...,1, =λ }. Based on these notations and definition, we 

have the following theorem, which is widely used for coding and sequences design in the 

communication systems.   

Welch Inner Product Theorem: Let k  be a positive integer. Then we have  
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where the maximum inner product value can be bounded.                        

 

2. Extended Welch theorem  

The well known extension of Welch inner product theorem is Welch bound for analyzing 

the correlations of sequences. Therefore, by considering the period and synchronization, in 
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this case, the cyclic shifts of the sequences should be cared. Thus, the number of the vectors 

in (2) should be changed from M  to ML  and then the equation (2) can be rewritten as  
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where the maximum inner product value can be related to the maximum correlation of the 

sequences. However, we note that the number of the vectors is always larger than the length 

of the vectors. In the case of LM < , the Welch inner product theorem is still not so tighter 

for the inner product’s bound. Therefore, we present two lemmas, which can apply the Welch 

inner product theorem to calculate the case with LM < .  

   In the case of LM < , the Welch inner product theorem is not suitable to calculate the 

bound, since  
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But it is clearly that ( )2maxc  is always larger than zero, the equation (4) is not useful in 

this case. Thus, we derive two lemmas extended from the Welch inner product theorem 

to estimate the tighter bound if LM < .  

Lemma 1:  Let 0mod' ≠= MLL , if LM < , the inner product theorem can be 

rewritten as  
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Proof and Explanation: As shown in Figure.1 (a), we decompose the LM ×  block into 

two kinds of smaller blocks. One is MM ×  block, the other is 'LM ×  block, where 

MLL mod'= . Thus the inner product equation (2) can be represented as 
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We now obtain a positive value to denote the inner product’s bound.  

Lemma 2: If 0mod' == MLL , then the Lemma 1 can not generalize the inner 

product’s bound. Since 
0'' =LL

M
 is not existed. Therefore, we define that  
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Proof and Explanation: As shown in Figure.1 (b), we decompose the LM ×  block into 

only one kind of smaller blocks. Thus the inner product equation (2) can be represented 

by  
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We now obtain a non-negative value to denote the inner product’s bound.  
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Figure 1. Block decomposition, if LM < .  

 

 

3. Application to Hamming distance estimation for binary block codes 

Assuming that the binary code X  is :),...,( 1

v

L

v xx  Mv ,...,1= , whose length is L , and 

}1,0{∈v

ix , Li ,...,1= , then we can map them to a set of M  vectors of length L ,  
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As shown in Figure 2, the Hamming distance can be obtained from the inner products based 

on several computations. First, we denote the Hamming distance of two codewords as  
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where ⊕  is 2mod  addition. Second, we map 
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the inner product may be rewritten by ( )2,
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, 2 λλ vv dLC −= . In practical, we only 

require the minimum Hamming distance as large as possible. Therefore we can write  
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Typically, the systematical linear ),( kn block code gives a parity check matrix [2] as 

[ ]T

kn PIH −= − , where knI −  is ( ) )( knkn −×− identity matrix and 
TP  is the transform 

of the parity check bits form. It is clearly that knI −  has constant Hamming distance “2”, 

and the parity check form is a )1()( −×− kkn  block. By applying Lemma 1 and Lemma 

2, the distance estimation for this block can be written as  

Case A: if )1()( −<− kkn , we have  
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where )mod()1(' knkL −−= . If 0)mod()1( =−− knk , the equation (13) should be 

changed to  
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Case B: )1()( −>− kkn , we write that  
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Special Cases: 1) if 1=M , the Hamming distance does not exist;  2)  if 2=M , the 

largest Hamming distance can be equal to L  , the length of the codewords.  

Generally, the possible maximum distance maxd or possible largest minimum 

Hamming distance of the systematical H matrix for Case A and Case B can be denoted 

by  

                                              2)max( ,max += λvdd ,                                               (16) 

similarly, we also can write the function for the minimum Hamming distance of the 

systematical generate matrix for binary block codes.  
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Figure 2. Relations between Hamming distance and inner products.  

 

4. Conclusion 

A simple extension of Welch inner product theorem is investigated. Otherwise, based on 

the results, we derive some extended lemmas applied to a general Hamming distance 

estimation for the systematical binary block codes. The contributions will be useful to 

measure or design good codes for communications system and information technology.  
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