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Abstract 

In this paper, we propose an optimization framework for a robust deep learning algorithm 

using the influences of noisy recurring on artificial neural networks. Influences between 

nodes in the neural network remain very steady in the convergence towards a superior node 

even with several types of noises or rouges. Several characteristicss of noisy data sources 

have been used to optimize the observations in a group of neural networks during their 

learning process. While the standard network learns to emulate those around, it does not 

distinguish between professional and nonprofessional exemplars. A Collective system can 

accomplish and address such difficult tasks in both static and dynamic environments without 

using some external controls or central coordination. We will show how the algorithm 

approximates gradient descent of the expected solutions produced by the nodes in the space 

of pheromone trails. Positive feedback helps individual nodes to recognize and hone their skills, 

and covering their solution optimally and rapidly. Our experiment results showed how long-

run disruption in the learning algorithm can successfully move towards the process that 

accomplishes favorable outcomes. Our results are comparable to and better than those 

proposed by other models considered significant, e.g., “large step Markov chain” and other 

local search heuristic algorithms. 
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1. Introduction 

A large number of optimization research studies has been contacted frequently using efficient 

deep learning models, e.g., reinforcement learning [1], self-supervised learning [2], 

unsupervised learning [3], pruning of decision trees [4], swarm intelligence [5], etc. Although 

self-training is not new, the learning process in a style-based environment is fairly used. For 

several years’ researchers did not show up how those strategies of learning grouped 

themselves successfully and how nodes demonstrated their plans and preserved equilibrium. 

These indeed seem serious questions need machine learning techniques for persuading. 

Applying knowledge unintelligently makes the neural networks useless because applying 

neural networks in low dimensionality would fail to converge even small changes in weights 

could lead to significant changes in outputs. When the gradient becomes zero, optimization 

weight will be failed and data will be overfitting. Also, time complexity plays an important 
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role in enhancing neural networks; for instance, when it is too high, the algorithm sometimes 

runs for days even on a small dataset. In our perspective, learning in a neural network could 

be optimized by increasing the pheromone level deposited for the transition from node to 

node in its space. This technique could influence and control parameters toward the optimal 

solution. Unlike previous methods proposed by more recent researchers [6][7], the goal is not 

to deal with the process of learning, but rather it is important to deal with the outcomes of 

learning to better increase the performance of optimization. The meta-knowledge could 

handle commonalities in the outcomes of learning algorithms and often could achieve high 

performance and superior results [8][9]. The learner algorithm could generalize the base-level 

learners and their tasks. Since learning is often adequate to optimize some objective functions, 

learning outcomes of intermediate nodes in the hidden layers in neural networks mostly 

increases the optimization performance. Machine learning focuses on a philosophy that 

learning patterns normally in information rather than meticulously crafting rules by hand. The 

data-driven approaches have been delivered by machine learning techniques in a wide range 

of application areas. Yet, there is a domain that has prominently been left untouched by 

machine learning, the planning tools that power machine learning itself. One of the foremost 

wide used tools in machine learning is mathematical optimization. Optimization in an 

algorithmic program works as an exceedingly model that tends to collect information and 

select the best parameters. The algorithm often stays static and it is reserved for human 

specialists who should toil through several rounds of theoretical analysis and empirical 

validation to plot a higher problem-solving. While the algorithm proposed by [10] focuses on 

a learning optimization for practicing models on a specific task, the algorithm proposed by 

[11] sets a lot of formidable objectives of learning for modeling a task-independent problem. 

Association has been developed a technique for learning optimization algorithms for high-

dimensional random optimization issues, and just like the downside of practicing shallow 

neural networks. Learning to optimization framework learns association in optimization for 

using in reinforcement learning problems, and the final structure of association tends to be 

free continuous optimization algorithm. At each cycle, the algorithm takes a step ∆x and uses 

it to update the present cycle x(i). In hand-engineered optimization algorithms, ∆x is 

computed victimization of some fixed formula φ that depends on the optimal function of the 

current cycle and past cycles, and often, it is just a task of the present and past gradients. 

Different optimization algorithms are characterized by it is updated formula φ. Hence, by 

learning φ, it would learn association in optimization algorithms. Association in optimization 

algorithms often viewed as a mathematician call method such Markov Decision Process 

(MDP), that is, the states represent the current cycles. Hence, the matter of learning φ simply 

reduces to a search problem. Hinging upon the strategy projected to develop an extension of 

learning optimizations for high-dimensional random issues. Association in optimization 

algorithms had been used for learning shallow neural networks, it showed that it was 

outperformed the standard hand-engineered optimization algorithms, such as ADAM [12], 

AdaGrad [13], and RMSprop [14], as well as optimization algorithms for supervised learning 

techniques [10]. Changing the attributes of neural networks like weights and learning rates to 

reduce the losses and provide the most accurate results needs methods or algorithms. Some 

optimizers work to reduce the loss function between layers by changing the weights, such a 

method is called ‘Gradient Descent. While in the ‘Stochastic Gradient Descent’ the 

parameters are altered after computation of loss on each training example, whereas in the 

‘Mini-Batch Gradient Descent method, the parameters are updated after every batch. 

Momentum, Nesterov Accelerated Gradient, Adagrad, AdaDelta, and Adam are other 
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methods used for optimizing the neural network algorithms. However, researchers are always 

realistic for using optimization while training the neural network [15]. 

The rest of this manuscript is organized as follows: In Section 2, we will illustrate some 

related works. In Section 3, we will briefly describe the metaphor of the learning algorithm. 

Section 4 will elaborate on the Gradient Descent and Stochastic Gradient Descent algorithms. 

In Section 5, we will describe our algorithm and formula of the learning process.  In Section 6, 

we will outline the proposed experimental results, and Section 7 summarizes our outcomes 

based on the analysis of results. 

 

2. Related work 

The line of optimization on learning algorithms is fairly recent. The Learning task-

independent optimization algorithmic programs used reinforcement learning to call the 

optimization algorithm [11], while supervised learning was used to exploit learning task-

dependent optimization algorithms [10]. In the special case, objective algorithms that train the 

optimization algorithmic program are trained on area unit loss functions for learning different 

models. Although these techniques have been used from time to time in the literature [16][17], 

they were exploited by most researchers to visit disparate strategies with different functions. 

These techniques all share the target of learning some form of meta-knowledge regarding 

learning, however, the variety of meta-knowledge that tends to be proposed is different. The 

learning strategies could be divided into the subsequent two classes (i) what to learn and (ii) 

how to learn. Methods on a class “what to learn” tend to learn what parameter values of the 

base level learner level helpful across a family of connected tasks [17]. The meta-knowledge 

captures commonalities shared by tasks within the family that allows learning on a brand new 

task from the family to be accomplished more quickly. Most early strategies represent this 

category; which, this line of research has blossomed into a section that has later refer to as 

transfer learning and multi-task learning. However, methods on the second class “how to 

learn” tends to be base-level learner that achieves the simplest performance on a task [18]. 

The meta-knowledge captures correlations between totally different tasks and therefore the 

performance of various base-level learners on those tasks. One challenge below this strategy 

is to decide on a parameterization area of base-level learners that are each made enough to be 

capable of representing disparate base-level learners and compact enough to allow traceable 

search over this area. A non-constant parametric that stored examples of totally different 

base-level learners in a file were proposed by [19]; whereas representation on the base-level 

learner as an all-purpose algorithm was proposed by [20]. The previous has restricted 

illustration power, whereas the latter makes search and learning within the area of base-level 

learners balking. The online learning algorithm of any base-learner could map a sequence of 

training exemplars to a sequence of predictions and model it as an iterated neural network 

[21]. Within the scope of this formulation, meta-training is reduced to learning the iterated 

network, and the base level learner is encoded within the memory state of the iterated network. 

Hyperparameter optimization could be seen as another example of strategies during this class. 

The area of base-level learners to go looking over is parameterized by a predefined set of 

hyperparameters. Unlike the previous strategies, multiple trials with totally different 

hyperparameter settings on the same class are permissible, then, it is so generalization across 

classes isn't needed. Guided policy search for learning purposes and trained autonomous 

optimizers for different classes of convex and non-convex objective functions was proposed 

to demonstrate that the autonomous optimizers converged faster and better than hand-

engineered optimizers [6]. A combination of the adaptive genetic and cuckoo search 
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algorithms was proposed by [22]. Algorithm intended to train a particular Artificial Neural 

Network (ANN) to obtain the finest weight load by using a hybrid ANN protocol. The overall 

accuracy was better than that of the genetic algorithms. Finally, a new method for learning 

optimization algorithms for high-dimensional stochastic problems was presented by [7], the 

researchers confirmed that the learned optimization algorithm is robust to change in the 

stochastic of gradients and the neural network architectures. 

3. The metaphor of learning 

Neural networks are modeled as a collection of learning nodes that are widely used for 

time series data prediction [23][24]. Feature extensive and state-of-the-art convergence 

exposed many facets of neural networks that helped technology capabilities and their 

applications [25]. Each node in a neural network is linked by a set of nodes represented by a 

simple feed-forward network to accept a binary vector of inputs and give a single output. The 

networks technically adjusted using a back-propagation algorithm to observe errors in each 

node based on the difference between planned output and observed output. This means the 

learning experience of each node in the networks is based upon observations of other nodes. 

However, there are three types of observable outputs in the defined network: (i) the new 

nodes or so-called “observers”, (ii) the experienced nodes or so-called “instructors”, and (iii) 

the nodes that give inconsistent results or outputs to the instructors, this kind of node is so-

called “rogue”. The observers born in a network like a network with randomized weights that 

needs a randomization model to deal with such case. The randomization models require a 

relationship between weights to achieve a proper output. Nodes do not have to achieve the 

exact similar weights as others but the network would be equivalent to any node that is fully 

learned.  

It supposes that there is no centralization in the learning systems while nodes learn by the 

local structure of information in uncorrelated networks. While the observers’ nodes are 

unable to differentiate between other observers, instructors, and rogues, they considered that 

any node could be observed to be an instructor. Learning of new or young nodes in a neural 

network means adjusting network weights through a back-propagation algorithm to measure 

the errors. Each node makes its error estimation in the output by monitoring what other nodes 

in the vicinity are doing. That means each node strives to observe its averaged output. The 

instructors in the network represent nodes that acquired the necessary knowledge to perform 

the required tasks. Sometimes, instructors do not affect interaction with the observers, but 

they simply go through their tasks within the vicinity of the learning nodes. In the context of 

such a learning scenario, they acquire some binary inputs to play as new nodes and give a 

binary output. Experimentally, binary functions are used XOR to connect all paths in the 

network. To implement the XOR function, a Sigmoid Neuron, as a node, must be used in the 

network [17]. Although the rogue nodes could conceptualize in any number of instantiations, 

the environmental externalities could make some nodes misbehave or, sometimes, be 

conflicted with others in the network. Rogue outputs were selected for their featured behavior 

rather than for their conceptual justification. The polymorphisms of rogue nodes have two 

variable characteristics: the regularity with those that appear in the network and the 

consistency of their output. The rogues appear either on fixed intervals or random intervals 

with a fixed frequency while the output is either random or by a specified rule.  The number 

of rogues occurs at once and duration of their influences is varied in preliminary experiments, 

but in this case, they are assumed to be fixed and equal to the number of available instructors. 

Although the instructors presented in every stage, the rogues appeared in a small fraction of 

stages. However, nodes could not discriminate between good and bad observations, resulting 
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in hard to define the influential rogue of fully persistent forms. Influencing rogue often 

presents an instructor, and in such case, nodes would use knowledge rather than observation 

to filter other means from their learning.  

In terms of measuring the ability to learn nodes, data must be collected in detail within a 

time frame and observation steps. Each node experienced its output and differentiated 

between the observed output and the instructors’ output. However, Root-Mean-Squares error 

has been used to compute the difference between the instructors’ average outputs and the 

observers’ average outputs to measure the observer’s convergence towards the instructors 

[27]. At that end, the observer’s nodes simply discover the outputs of other nodes labeled 

observers, instructors, or rogues. 

 

4. Stochastic gradient descent 

Neural network algorithms usually work in the solution of the combinatorial problem at 

hand. The algorithm is usually used to find a tour of minimal length (i.e., an optimal solution 

of the combinatorial problem). However, we adopt in this work as working in the space of 

pheromone trails. In other words, we aim at finding an optimal set of pheromones, which can 

be defined in different ways. In this research, we focus on a specific form of optimization for 

pheromone values. We will call an optimal set of pheromones a configuration that optimizes 

the expected value of the solution produced by a node during its forward trip. We then study 

how this problem had been solved using gradient descent [10] in the continuous space of 

pheromone trails. In the case of a network, we aim at maximizing the expected value of the 

inverse length of a node’s forward trip, given the current pheromone trails and the path 

selection rule. The gradient of the scaled “error” 𝜀 stochastically defined as: 

  𝜀 = 𝐸 [1
𝐿(𝑏𝑛)⁄ |𝑇] =  ∑ 𝑃𝑟 (𝑏𝑛𝑏𝑛𝜖𝑥𝑛 |𝑇)

1

𝐿(𝑏𝑛)
   (1) 

Note that the expectation is conditioned on T because the probability of a given tour 

happening depends on the current pheromone trail vector T, while the “local error”  1 𝐿(𝑏𝑛)⁄  

did not use the weights 𝜏 (x, y). Then, for each pair of paths (x, y) 𝜖𝑋2, we have: 

𝜕𝜀

 𝜕𝜏(𝑥,𝑦)
 = ∑

𝜕𝑃𝑟 (𝑏𝑛|𝑇)

𝜕𝜏(𝑥,𝑦)
 

1

𝐿(𝑏𝑛)𝑏𝑛𝜖𝑥𝑛     (2) 

The probability of a given path is equal to the product of the probabilities of all the initial 

events that compose it: if 𝑏𝑛 = (𝑥1, 𝑥1, …, 𝑥𝑛) 𝜖𝑥𝑛, then 

Pr(𝑏𝑛|T) = ∏ 𝑃𝑟(𝑥1| 𝑇,𝑛
𝑡=1  𝑏𝑡−1)   (3) 

where 𝑏𝑡  is equal to 𝑏𝑛  truncated after step t: 𝑏𝑡  = (𝑥1, 𝑥1 , …, 𝑥𝑡) 𝜖𝑥𝑛,  and 𝑏0   is the 

empty sequence. Therefore, 

 𝜕𝑃𝑟(𝑏𝑛|𝑇) 

𝜕𝜏(𝑥,𝑦)
 = 𝑃𝑟(𝑏𝑛|𝑇) ∑

𝜕𝑙𝑛 (𝑃𝑟 (𝑥𝑡|𝑇,𝑏𝑡−1))

𝜕𝜏(𝑥,𝑦)
 𝑛

𝑡=1    (4) 

Here, we have supposed that Pr (𝑥𝑡|𝑇, 𝑏𝑡−1) > 0, which is always true because 𝑥𝑡  ∄ 𝑏𝑡−1 as 

𝑏𝑡 is an acyclic path and because the pheromone trails never fall to 0. Define the eligibility 

trace of (x, y) in the path 𝑏𝑛 as: 

𝑇𝑥,𝑦(𝑏𝑛) =
𝜕 𝑙𝑛(𝑃𝑟(𝑏𝑛|𝑇))

𝜕𝜏(𝑥,𝑦)
= ∑

𝜕𝑙𝑛 (𝑃𝑟 (𝑥𝑡|𝑇,𝑏𝑡−1))

𝜕𝜏(𝑥,𝑦)
 𝑛

𝑡=1   (5) 
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Then, 

𝜕𝜀

𝜕𝜏(𝑥,𝑦)
 = ∑ 𝑃𝑟(𝑏𝑛|𝑇) 

𝑇𝑥,𝑦 (𝑏𝑛)

𝐿(𝑏𝑛)
 𝑏𝑛𝜖𝑥𝑛 = E[

𝑇𝑥,𝑦 (𝑏𝑛)

𝐿(𝑏𝑛)
|𝑇]  (6) 

We will see later how to calculate the traces 𝑇𝑥,𝑦 . We could show the form of the SGD 

algorithm. Scaling the gradient of 𝜀 represents updating T synchronously in the direction of 

the gradient of 𝜀: 

∆𝑇 =∝ 𝛻𝑇𝜀     (7) 

That is, for each individual “weight” 𝜏(𝑥, 𝑦): 

∆𝜏(𝑥, 𝑦) = ∝
𝜕𝜀

𝜕𝜏(𝑥,𝑦)
    (8) 

Where ∝ > 0 is the step-size parameter or learning rate.  

We can make a gradient ascent in the space of pheromone trails by following all possible 

paths 𝑏𝑛 and computing, for each of them, the probability Pr(𝑏𝑛 | T) that a node follows that 

path during its forward trip (given the current pheromone trails), the length of the 

corresponding tour L(𝑏𝑛), and the variable 𝑇𝑥,𝑦(𝑏𝑛) for each (x, y) ∈  𝑥2. Once all possible 

paths had been followed, the original problem could be solved simply by taking the best. 

Moreover, the size of 𝑥𝑛 evolved exponentially with the number of paths, so this algorithm 

soon becomes unrealistically. Finally, the exact gradient descent performs poorly in many 

complex domains because it gets trapped in the first local optimum on its way. 

In Stochastic Gradient Descent (SGD), a random estimation of the unbiased gradient is 

involved instead of the real gradient. In the case of our algorithm, the gradient of 𝜀 is the 

expected value of the random variable 𝑇𝑥,𝑦/L given the current pheromones. Therefore, if we 

draw independently m paths 𝑏𝑛
1, 𝑏𝑛

2, 𝑏𝑛
3 , . . , 𝑏𝑛

𝑚  in 𝑥𝑛
  following the probability Pr(𝑏𝑛|T) and 

average their contributions 𝑇𝑥,𝑦(𝑏𝑛
𝑖

 
)/ 𝐿 (𝑏𝑛

𝑖
 
) to the gradient, the result becomes: 

1

𝑚
 ∑

𝑇𝑥,𝑦(𝑏𝑛
𝑖

 )

𝐿 (𝑏𝑛
𝑖

 
)

𝑚
𝑖=1      (9) 

A random vector that assumed a value is similar to the gradient which is an unbiased 

estimation of the gradient. This is true regardless of the number of paths sampled, even if only 

one sample is used to estimate the gradient (i.e., m = 1). The results of the stochastic 

algorithm have a real complexity. Moreover, it may escape from some low-value local optima 

on its path. It often makes imperfect moves because the gradient estimation is incorrect, but 

such moves probably permit jumping out of an incorrect local optimum. Thus, SGD often 

performs better than the actual gradient descent in large and highly multimodal search spaces. 

The basis of comparison between the standard or actual gradient descent and SGD is the 

analogy between the actions of sending a node forward and sampling a tour 𝑏𝑛 from Pr(𝑏𝑛|T). 

During its forward trip, the action of a node is precisely to sample a solution following the 

probability distribution. Therefore, the forward component of a network could be used in an 

SGD algorithm as well, and it just has to change the weight of updated rules.  

Pr(𝑥𝑡+1 = 𝑥| 𝑇, 𝑏𝑡) =  { 𝜏(𝑥𝑡,𝑥)

∑ 𝜏(𝑥,𝑦)𝑦𝜖𝑥
𝑦𝜖𝑏𝑡

                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0                                                         𝑖𝑓           𝑥∈𝑏𝑡   (10) 
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Where x∈ 𝑏𝑡 means that the acyclic path traverse x. 

 

5. Algorithm and formula 

In our neural network algorithm, the node works as a basic computational agent that seeks 

the optimal solutions. The algorithm needs to find the shortest path on the weighted network 

and each node stochastically builds an iterative solution to compare and determine the new 

shortest paths in the network. At that end, the pheromone level on each edge has been updated. 

To select the edge, each node builds a solution to move on the edge. To determine the next 

path, each node shall assume the pheromone level and the length of each available path from 

the current position. That means, at each turn, the node moves from state x to state y and 

looks for an intermediate solution. Hence, node k computes a set of nodes in its range 𝐴𝑘(x) 

with feasible probabilities from the current state and then moves to one with high probability.  

 𝑃𝑥𝑦
𝑘 =

(𝑓𝑥𝑦
∝ )(𝑑𝑥𝑦

𝜕 )

∑ (𝑓𝑥𝑦
∝ )(𝑑𝑥𝑦

𝜕 )𝑧∈𝑥
    (11) 

Where 𝑓𝑥𝑦
∝  denotes the amount of pheromone deposited for the transition from state x to 

state y,  ∝ denotes a parameter to control the influence of  𝑓𝑥𝑦
∝ , 𝑑𝑥𝑦

𝜕  denotes the desirability of 

state transition x y (typically 1/𝑑𝑥𝑦
 , d is the distance) and 𝜕 ≥ 1 denotes a parameter to control 

the influence of 𝑑𝑥𝑦
 , 𝑓𝑥𝑦

  denotes the trail level and attractiveness for other possible state 

transitions.  

In terms of pheromone updates, when all nodes have completed their solution, pheromones 

are usually updated. Increasing or decreasing the level of pheromones is matched to good or 

bad solutions. Function below shows an example of the global pheromone updating rule:  

             𝑓𝑥𝑦
   (1-P) 𝑓𝑥𝑦

  + ∑ ∆𝑘 𝑓𝑥𝑦
𝑘    (12) 

Where 𝑓𝑥𝑦
  is the amount of pheromone deposited for the transition from x y, P is the 

pheromone evaporation coefficient, and 𝑓𝑥𝑦
∝  is the amount of pheromone deposited by kth node,  

  ∆𝑓𝑥𝑦
𝑘 = {  0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑄/ 𝐿𝑘              𝑖𝑓 𝑛𝑜𝑑𝑒 𝑘 𝑢𝑠𝑒𝑠 𝑐𝑢𝑟𝑣𝑒 𝑥 𝑦 𝑖𝑛 𝑖𝑡𝑠 𝑚𝑜𝑣𝑖𝑛𝑔
 

Where 𝐿𝑘  is the length of moving k and Q is a constant.  

P. T(x, y) + ∑ 𝐴𝑘
𝑚
𝑘=1 (x, y)   (13) 

Where   A𝑘(x, y) is the amount of pheromone added to the path xy by node k. 

            m is the number of nodes, 

            P is a parameter of the pheromone decay rate, 

             𝐴𝑘 is the length of tour completed by node k, 

T(x, y) at the next iteration becomes: 

 𝐴𝑘(x, y)=1/𝐿𝑘     (14) 

P tends to remove the decaying learning rate problem. Instead of assembling all last 

squared gradients, P determines the window of last assembled gradients to part of fixed size 

'w'. This exponentially moving average was used rather than the sum of all the gradients. 

E[g²](t)=γ.E[g²](t−1)+(1−γ).g²(t)   (15) 

γ is a similar value as the momentum term (around 0.9). 
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The following iterative training algorithm is similar to classical self-training with some 

minor differences. Assuming labeled nodes {(A1, B1), (A2, B2),…,( A𝑛, B𝑛)} and unlabeled 

nodes {Ά1, Ά2, . . , Ά𝑚}. 
1- Learn an instructor model θ∗ to minimize the cross-entropy loss on the labeled nodes. 

1

𝑛
 ∑ ℓ (𝑛

𝑖=1 𝐵𝑖, 𝑓𝑛𝑜𝑖𝑠𝑦(𝐴𝑖, 𝜃))    (16) 

2- Learn an un-noised instructor model to generate labels for unlabeled nodes. 

Ḇ𝑖= f(Ά𝑖, 𝜃∗), ⩝𝑖= 1,.., m.    (17) 

3- Learn observer model Ǿ∗ to minimize the cross-entropy loss in labeled nodes and 

unlabeled nodes with noise added to the observer’s model. 

1

𝑛
 ∑ ℓ (𝑛

𝑖=1 𝐵𝑖, 𝑓𝑛𝑜𝑖𝑠𝑦(𝐴𝑖 , Ǿ )) + 
1

𝑚
 ∑ ℓ (𝑛

𝑖=1 Ḇ𝑖 , 𝑓𝑛𝑜𝑖𝑠𝑦(Ά𝑖, Ǿ ))  (18) 

4- Learn the instructor as an observer and go back to step 2. 

However, the main parameters of the algorithm are the pheromone trails r(x, y) associated 

with every pair of paths (x, y) ∈ 𝑥2. Assume T be the bi-dimensional vector collecting all the 

t (x, y)’s. The essential principle of the algorithm is to simulate artificial nodes that involve 

the pheromone trails to create a random tour. Once its tour was completed, every node creates 

a backward trip following the same path and refreshes the pheromones on its way back. 

Finally, some of the pheromone trails evaporate, that is, they decrease by a fixed factor p, 0 < 

p ≤ 1, known as the evaporation rate. The behavior of every node is summarized as follows: 

Forward procedure: 

o Specify the starting path x1 sparsely.  

o At every step ∈ {1, … , 𝑛1 −),  after following the path 

𝑏𝑡 = (𝑥1, 𝑥2, …, 𝑥𝑡)  ∈ 𝑥𝑡  ,  specify the following path at random after 

Pr(xt+1 = x| T, bt) =  { τ(xt,x)

∑ τ(x,y)yϵx

yϵbt

                                     otherwise

0                                                         if           x∈bt 

where x∈ 𝑏𝑡 means that the acyclic path 𝑏𝑡 traverses x. 

Backward procedure: 

After compositing the path 𝑏𝑛= (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈  𝑥𝑛, reinforce the pheromone trails 𝜏(𝑥𝑛, 

𝑥1)  by the amount 1/L( 𝑏𝑛) . There are other methods of implementing the algorithmic 

program. Within the original implementation of our network a group of m artificial nodes 

concurrently built m solutions as follows: Initially, all the nodes perform their forward trip 

while not change the pheromones, for the upcoming “generation” of m nodes. The pheromone 

evaporation stage occurs at every generation, before moving the node backward. The whole 

update at every generation of every pheromone 𝜏 (x, y), (x, y) ∈  𝑥2 is then: 

∆𝜏 (x, y)= (∑
𝛿𝑥,𝑦 (𝑏𝑛

𝑖 )

𝐿(𝑏𝑛)
𝑚
𝑖=1  )- 𝜌𝜏(𝑥, 𝑦)   (19) 

Where 𝑏𝑛
𝑖  ∈  𝑥𝑛 is the path followed by the i node in its forward trip (i ∈ {1, 2, … , 𝑚}), 

and 𝛿𝑥,𝑦 (𝑏𝑛
 )=1 if y is the first successor of x in the tour linked to 𝑏𝑛

  ∈  𝑥𝑛 and 0 otherwise.  
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When m=1, the other nodes sent one after one in a completely sequential way, waiting for 

the previous node to finish its backward trip before posting a new one. In such case, the 

pheromone updates were built by each node as, for all (x, y) ∈  𝑥2, 

∆𝜏 (x, y)= 
𝛿𝑥,𝑦 (𝑏𝑛

 )

𝐿(𝑏𝑛)
 - 𝜌𝜏(𝑥, 𝑦)    (20) 

Where  𝑏𝑛= (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈  𝑥𝑛 is the path followed by the node in its forward trip.  

This pheromone update rule was probably used completely not to the concurrent 

implementation of node network in which nodes act isolated of each other, while a 

pheromone evaporation stage was linked with each node. The function ideally replaced by the 

following rule, proposed for the first time in [28], in which, the enforcement of pheromone 

trails is multiplied by the evaporation rate 𝜌: 

∆𝜏 (x, y)= 𝜌
𝛿𝑥,𝑦 (𝑏𝑛

 )

𝐿(𝑏𝑛)
 - 𝜌𝜏(𝑥, 𝑦) = 𝜌(

𝛿𝑥,𝑦 (𝑏𝑛
 )

𝐿(𝑏𝑛)
−  𝜏(𝑥, 𝑦)  (21) 

6. Experimental results 

During our preliminary study of using the dataset in AntNet [29], the observer composition 

was varied. The network was chosen to be feed-forward with two inputs, one hidden layer of 

four neurons, and one output node. While two and three neurons in the hidden layer produce 

similar results, four neurons have been chosen to produce results with less training, as the 

inputs were chosen as a binary vector. In terms of learning starts from instructors without 

rouges, it is initially important to accept untrained nodes and to emulate them around, it 

would converge on the output of instructors. To that end, a group of six observers was trained 

with three instructors and no rogue influences. As shown in [Figure 1], the nodes converged 

on a proper XOR output, and the observers have little trouble converging in relatively few 

epochs, the depiction of nodes shows converging on a proper average output (6 nodes, 3 

instructors, and 0 rouges) with fixed rouge occurrences and fixed rouge output. The final 

parameters consisted of the observer's training under varying conditions of rogue influences. 

The results were tested in groups that sized around three observers to two instructors to two 

rogues. In all scenarios with instructors, the portion of instructors was raised to three as with 

the rogues. The instructors were always presented and the rogues appeared intermittently and 

influence evolved their power like that in the instructors. The rogues in all cases appeared 

exclusively in one percent of the time duration out of five percent of the time that the 

observers were learning. This means the rogues presented about 5 percent of the observer 

time that learned. All simulations in the primary experiment were conducted with the 

instructor output according to the XOR function. In each epoch, all possible binary inputs 

were given to the nodes, that is, since the nodes were computed in a two inputs binary 

function, they have presented four binary vectors of input in sequence. The observers trace 

and take note of the other nodes’ outputs at each input.  The learning process tries to find 

certain types of rogue disturbances in the learning process that beneficial. In some cases, 

converging is difficult to achieve it and in the case that disturbance assists in shakeup the 

network weights. After some iteration, the rogue influences shall help the network to 

converge, and obviously, it seems that the undisturbed instructor-observer group would 

converge faster. 

In all of the conducted training, the rogues had a significant influence on the observers’ 

outputs while the influence was not sustained due to nodes behaved very sensitive to the 

rogues and they were very sensitive to leave the bad influence. The network was relieved of 

the rogue inputs that quickly recovered. In this scenario, as shown in [Figure 2], the rouges 
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had a fixed interval of appearance and a fixed output. Although nodes were still able to 

converge quickly, their outputs had more trouble converting initially than other cases when 

the rogues regularly occurred. In that scenario, the rogues had a fixed interval of appearance 

and a fixed output. While the observer output changed drastically during periods of rogue 

influences, it returned quickly to its limiting form. Also, it could be observed that the rogue 

influences were more disruptive when the rogues used random outputs. As shown in [Figure 3] 

and [Figure 4], the nodes experienced a random rouge occurrence but a fixed rouge output, 

the recovery from rouge influence while the average nodes’ outputs experienced with 6 nodes, 

3 instructors, and 3 rouges, as a consequence of fixed rouge occurrences and fixed rouge 

outputs. When the nodes experienced random rogue occurrences and in a fixed rogue output, 

it seems it is better to deal with fixed outputs than random outputs for the regularly appeared 

rogues. [Figure 3] shows the error rate when using 6 nodes, 3 instructors, and 3 rouges, the 

network causes random rouge occurrences and fixed rouge outputs; whereas the average error 

of 6 nodes were 3 instructors and 3 rouges that resulted in fixed rouge occurrences and 

random rouge output. Looking at the nodes’ output in [Figure 5], it could be seen that the 

randomly occurring rouges had the opportunity to disrupt the learning process early, and this 

seems to be more significant than later disruptions. The learning network involved 8 nodes, 3 

instructors, and 3 rouges, which caused random rouge occurrences and a fixed rouge output. 

In each experiment, we ran 100 trials and each trial was stopped after each node moved 1000 

epochs.  

 

 

Figure 1. Observers converge to instructors 

Evaporation p was set to 0 and the parameter ∝ was set to 2 which approximately a 

normal node behavior. At that end, the network was checked whether the pheromone trail was 

higher on the long path or not. We found for a given parameter setting the network showed 
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convergence behavior after 1000 epochs when observers moved toward instructors with some 

rouges. For a small number of observers (up to 32), the network converged relatively to the 

longer path. This is due to fluctuations in the path selection of the initial iterations in the 

algorithm which lead to a reinforcement of the long path. Yet, with an increasing number of 

nodes, the number of times observed such behaviors decreased drastically, and for a large 

number of nodes, e.g., 512, it was not observed to the long path in any of the 100 trials. The 

experiments also indicate that, as could be expected, the network efficiency performed poorly 

when only one instructor was used, and a number of observers might be large significantly to 

one that obtained convergence in a short path. [Table 1] shows how three types of nodes 

affected the results. 

 

 

Figure 2. Observers recover from rogue influences 

 
Figure 3. Nodes’ errors with random rogue occurrences 
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Figure 4. Nodes’ errors with random rogue output 

 

Figure 5. Nodes’ outputs with random rouge occurrences and fixed outputs  

As shown in [Table 2], in the short path artificial nodes try to build feasible solutions to the 

proposed problem by moving on a proper graph representation. The developed process was 

biased by the previous process memorized in a form of pheromone trails, and, in some cases, 
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by heuristic information for the proposed problem. In the second phase, the solutions 

constructed by the artificial nodes could be moved to the local optima by a proper local search 

routine. In the last phase, pheromone trails were updated by the nodes, pheromone 

evaporation, and/or other proper processes. When pheromone update was independent of the 

solution quality, network converged to the long path was high frequently. With only one 

instructor, the network converged to the long path in only 18 out of 100 trials, which is 

significantly less than in experiment 1, and with 8 instructors or more, it often converges to 

the short path. In the first case, we found that increasing ∝ harmed the convergence behavior 

while in the second case the results were rather independent of the particular value ∝. In 

general, we found that, in a fixed number of nodes, the algorithm tends to converge to the 

shortest path more often when ∝ was close to 1. This is intuitively clear because a large 

value ∝ tends to amplify the influence of initial random fluctuations. If by chance, the long 

path is initially selected by instructors, then the search of the whole network is quickly biased 

toward it. This happens to a lower extent when the value ∝ is close to 1. However, in an 

optimal network, both auto-catalysis and differential path length are worked to favor the 

emergence of short paths. While the results with network indicate that different path length 

alone could be enough to let the network converges to the optimal solution on small graphs. 

Also, relying on this effect as the main driving force of the algorithm comes at the charges of 

having to use a large network size, which results in long simulation times. Moreover, the 

efficiency of differentiating the path length was strongly reduced with reducing problem 

complexity. This is what is shown by the experiments reported as follows, where the column 

headings give the number m of nodes in the network. The first row gives results obtained 

when pheromone updates without considering path length, and the second row gives results 

when pheromone updates proportionally to the path length. 

Table 1. Nodes’ averages vs. best results 

Iteration 

Instructor, 

Observer, 

with rouge 

best result 

(length) 

Instructor, 

Observer, 

with rouge 

best result 

(sec) 

Instructor, 

Observer, 

with rouge 

average 

(length) 

Instructor, 

Observer, 

with rouge 

average 

(sec) 

Optimal 

result 
Error % 

200 

400 

600 

800 

12,520 

35, 066 

21,244 

9,014 

11 

96 

105 

720 

12,527 

35,066 

21,317 

9,187 

207 

421 

615 

9,20 

12,520 

35,042 

21,644 

9,099 

0.07 % 

0.03% 

0.08% 

0.25% 

Table 2. Nodes vs. proportional path length 

M 1 2 4 8 16 32 64 128 256 512 

Short path 66 49 31 27 23 29 9 6 3 0 

Long path 33 25 17 9 4 0 0 0 0 0 

Our results are comparable to those proposed by other models considered significant. For 

instance, the performance is as a “large step Markov chain” algorithm [30]. This algorithm is 

based on a simulated annealing mechanism that uses an improvement heuristic, and the 

heuristic is very similar to ours (the only difference is that it did not consider 3-paths) and a 
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mutation procedure called double-bridge. The double-bridge mutation has the smallest change 

(4-paths) that could not be reverted in one step by 3-paths. A comparison of our results with 

the results obtained for symmetric TSP [31] is different since it used a local search algorithm, 

“Lin-Kernigham”, which is a heuristic based on a segment-tree data structure [32] that gives 

better results and faster than 3-paths procedure.  It will be the subject work of the future to 

add such a procedure with meta-learning [33] to the proposed learning algorithm. 

 

7. Conclusions 

Optimizations in neural network algorithms tend to produce a mechanism to reduce the 

losses and provide the most accurate results possible. Improving the solutions constructed by 

nodes is the main challenge in neural network algorithms. It is a key to increasing the speed 

and efficiency of machine learning problems. We showed even with several different types of 

rogue influenced, the observers remain very steady in their convergence toward the 

instructors.  After temporary stacks, they were able to get right back on track with the little 

overall effect. The rogue influences had little effect on all convergence rates. With a greater 

sustained rogue presence, the networks would jolt substantially, but without persistence, the 

instructors would pull the nodes into convergence. The noisy influences of rogues might be 

helpful in some contexts. It is possible when lacking a good training function, the disruptions 

might be helpful from time to time. Certainly, diversification and mutation have always 

contributed to success in the long run.  It is also possible that with more difficult solutions, 

there will appear more chances to fall into a local solution, but in the case of non-optimal 

solutions, perturbations might allow networks to escape from the local solution. Some 

inherent advantages are: (i) computation avoids premature convergence, (ii) the positive 

feedback mechanism facilitates the rapid discovery of optimal solution, (iii) and the greedy 

heuristic helps to find acceptable solutions in the early stages of the search process. 

Disadvantages in such a learning system are: (i) slower convergence than other heuristics, (ii) 

no centralized processor to guide the system towards a perfect solution, and (iii) the process 

was performed poorly when used with a larger group, e.g., “75”. However, the right 

optimization algorithm could reduce the amount of training exponentially.  
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