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Abstract 

Text classification is an important problem for spam filtering, sentiment analysis, news 

filtering, document organizations, document retrieval and many more. The complexity of text 

classification increases with some classes and training samples. The main objective of this 

paper is to improve the accuracy of text classification with long short-term memory with word 

embedding. Experiments were conducted on seven benchmark datasets namely IMDB, 

Amazon review full score, Amazon review polarity, Yelp review polarity, AG news topic 

classification, Yahoo! Answers topic classification, DBpedia ontology classification with the 

different number of classes and training samples. Different experiments are conducted to 

evaluate the effect of each parameter on LSTM. Results show that 100 batch size, 50 epochs, 

Adagrad optimizer, 5 hidden nodes, 100-word vector length, 2 LSTM layers, 0.001 L2 

regularizations, 0.001 learning rate give the higher accuracy. The results of LSTM are 

compared with the literature. For IMDB, Amazon review full score, Yahoo! Answers topic 

classification dataset the results obtained are better than literature. Results of LSTM for 

Amazon review polarity, Yelp review polarity, AG news topic classification are close to best-

known results. For the DBpedia ontology classification dataset the accuracy is more than 91% 

but less than best known. 

 

Keywords: Text classification, Long short-term memory, Deep learning, Word2Vec, Word 

embedding 

 

1. Introduction 

Text classification is to classify the text into the appropriate categories based on the textual 

content. Due to the large and growing amount of text data, automatic text classification 

methods are receiving more and more attention from the research community. Although many 

efforts have been made in this regard, it remains an open question [1]. The World Wide Web 

needs efficient and effective classification algorithms to help people navigate and browse 

online documents quickly [2]. Text classification is used in a various area like email 

classification and spam filtering [3], sentiment analysis [4], opinion and topic detection [5], 

author identification [6] and language identification [7], news filtering and organizations [8], 

document organization and retrieval [9], etc.  

Various techniques are designed for text classification. Some key methods, usually used 

for text classification such as support vector machine (SVM) [10], decision trees [3], pattern 

(Rule)-based, neural network (NN) [11], bayesian (Generative) [12], k. nearest neighbour 
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(KNN) [13] etc. Compared with other supervised machine learning algorithms, the SVM 

classifier is one of the most effective text classification methods. 

Neural networks are machine learning (ML) models inspired by the human brain. It 

includes many neurons that form a huge network. Neural networks have a flexible 

architecture with a distinct number of nodes per layer with a different number of weights and 

hidden layers. Multiple hidden layers of the neural network are called deep learning [11]. 

Many types of deep learning can be used for classification such as recurrent neural networks 

(RNN), convolutional neural networks (CNN), multilayer Perceptron, etc. The advantage of 

RNN is that the previous state is used to calculate the current state. However, simple RNNs 

have problems in delivering information in long sequences. LSTM is the solution to this 

problem. RNN with extra long-term memory was proposed in 1977. LSTM is one of the most 

successful and developed for controlling robots, natural language text compression, automatic 

speech recognition, time series prediction, handwriting recognition, document classification 

and many more. They can equally prove good in the process of document classification [14]. 

In literature, different text classifiers are investigated for text classification such as Naïve 

Bayes, SVM, logistic regression, stochastic gradient descent, NN, SVM and hybrid models of 

these. The main objective of this paper is to improve text classification using long short-term 

memory. Paper presents results of LSTM with Word2Vec for text classification on seven 

benchmark datasets. Investigations are conducted on the effect of different parameters of 

LSTM.  

The rest of this paper is organized as follows. Section 2, is about a brief review and some 

related works. In Section 3, we discuss the proposed methodology. Experimental details, 

results and discussion are demonstrated in Section 4. Finally, in Section 5 we present our 

conclusions. 

 

2. Literature Review 

This section covers a review of different research carried out for text classification using 

different machine learning (ML) based approaches and LSTM. 

Classification algorithm KNN is given in [13]. The KNN is a frequently used text 

classification technique. This method works well even when using multi-category documents 

to process classification tasks. The limitation of KNN is that it needs more time to classify 

objects when given many training examples. RA has high computational efficiency, fast 

learning speed [15].  

The NB classifier is based on the Bayesian theorem with strong independence assumptions. 

The algorithm calculates the posterior probabilities that the documents belong to different 

classes and assign the document to the class with the highest a posteriori probability [12]. It 

handles numerical and textual data extremely well. The disadvantage of the NB classification 

method is that the classification performance is relatively low compared with other ML 

algorithms [3]. 

The DT text classifier built using a “divide and conquer” strategy. The DT checks if all 

training examples have the identical label, and if not, selects the term partition from the 

merged class document with the duplicate term value and places each such item in a separate 

subtree [16]. 

SVM is a supervised classification algorithm that deals with a lot of functionalities. SVM 

is one of the most effective text classification methods as a comparison to other ML 

algorithms [3]. SVM was originally applied to Joachim's text classification [17]. Joachim 

verifies the classification performance of SVM in text categorization by comparing it with 
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SVM and KNN. Drucker uses the SVM to implement a spam filtering system and compares it 

to NB to implement the system. They show that SVM is a better spam filtering method than 

NB. Since the analysis, SVM has more parameters than the logistic regression and DT 

classifiers, the SVM has the highest classification accuracy most of the time, whereas the 

SVM requires more computation time due to more parameters and is very time-consuming. 

Logistic regression is computationally efficient compared to SVM. 

On comparing DT and NNs, their strengths and weaknesses are almost complementary. 

For example, people can easily understand the representation of DT, which is not the case of 

NNs. Decision trees encounter difficulties in handling noise in training data, as well as NNs, 

DTs learn very quickly. NNs learn relatively slowly. DT learning is used for qualitative 

analysis, and NN is used for subsequent quantitative analysis. 

An NN initialized with a DT is a hybrid approach that can be applied to text classification 

problems and tested for performance relative to many other text classification algorithms. The 

method shows that the hybrid decision tree and neural network method improve the accuracy 

of the text classification task, and the performance of the random text classifier is equivalent 

to the previous result than the single DT or NN.  

The probabilistic neural network is a combination of SVM, KNN, and slightly modified 

versions of DTs and proposed to better handle multi-label classification problems [18]. BFC 

is a hybrid method of NB vectorizer. Compared with the simple Bayesian classification 

method, the SVM classifier improves the classification accuracy. In [19], a hybrid algorithm 

is proposed, which is based on the variable precision rough set, combined with the strength of 

KNN and RA techniques to improve the accuracy of text classification and overcome the 

drawbacks of RA. 

Long Short-Term Memory units, also called LSTM, are a variation of Recurrent Neural 

Networks that are capable of learning long-term dependencies. They were proposed by the 

German researchers Hochreiter and Schmidhuber as a solution to the error backflow problems 

[20]. The challenging task of sentiment analysis is a need of required labeled dataset and to 

solve this issue Qurat Tul Ain et al. [21] combined deep learning technique and sentiment 

analysis. Deep learning techniques gave an effective performance. Peerapon Vateekul et al. 

[22] proposed those deep learning techniques for sentiment analysis of Twitter data. LSTM 

and Dynamic CNN performed well than traditional methods like naïve Bayes and support 

vector machine.  In deep learning techniques, they used word2vec and in the traditional 

approach bag of the word, the approach was used which occurs difficulty in the training 

process. LSTM and DCNN gave better accuracy. Dan Li et al. [23] trained the emotional 

model to find out which sentence belongs to which emotion model using LSTM which was 

used for better analyzing the long sentences. 10 Unfold layer in backpropagation gave better 

accuracy rate and recall rate for LSTM than RNN [24]. After analysis of the performance of 

three RNN methods which are vanilla RNN, LSTM and GRU, one layer with GRU gave 

better accuracy [25]. Abdalraouf Hassan et al. used a continuous bag of word approach which 

gave a better performance than a traditional bag of word approach with a single LSTM layer 

performed well [26]. Extended versions of RNN which was LSTM and Gated Recurrent Unit 

was proposed by Yong Zhang et al. LSTM and GRU methods achieve better performance 

compared with RNN [4]. Piotr Semberecki et al. proposed LSTM for classifying English 

Wikipedia articles. Encoding of a word using a dictionary and Google news pre-trained word 

vector used for word embedding. Pre-trained word vector achieved better performance [27]. 

Different ML techniques are used for document classification. Yash R. Ghorpade et al. [14] 

include text pre-processing, FS, feature extraction and class prediction. LSTM achieves 93% 

accuracy at 25 epochs. 
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[Table 1] summarized the contributions for text classification using LSTM with the dataset, 

parameter details and results.  

Table 1. Short summary of LSTM for text classification 

 

Reference Technique Dataset  

Word 

Embedding 

Technique  

Parameters  studied / used Results 

[22] 
LSTM, 

DCNN 

Thai Twitter 

data 

Skip-gram 

model 

50-word vector length, 
softmax function, stochastic 

gradient descent with cross-

entropy loss function, LSTM 

layer, Hidden nodes, Filter 

width, filters, word vector 

length. 

LSTM-96-word vector gave 
75.12%, 5 hidden nodes gave 

75.30% highest accuracy. 

DCNN- 48-word vector for 

DCNN 75.35%, 3-6 and 6-14 

filters gave 75.30% highest 

accuracy. 

[23] 
LSTM, 

RNN 

JD.COM, 

Travel 

comment ctrip 
and English 

movie review 

Not given 
Unfold layer, 

backpropagation 

LSTM produce better accuracy 

rate and recall rate than RNN. 

[24] 

Paragraph 

vector, 

Deep 
RNN, and 

LSTM 

IMDB, SST 

Skip-gram, 

Continuous 

bag of 
word 

approach 

RMSProp, learning rate, 

epochs, vocabulary 

downsampling, LSTM layers, 
hidden size 

IMDB dataset - 150-word 

vector, 25 epochs, 0.05 learning 

rate and vocabulary 

downsampling for CBOW is 

1e-4 and for skip-gram 1e-2.  

paragraph vector got 0.945 

higher accuracies than LSTM.  
SST dataset - 3 LSTM layers, 

100 hidden sizes, 0.5 dropouts, 

1 learning rate, 0.99 decay, and 

epsilon of 1e-8 LSTM got 

0.843 accuracy which is better 

than paragraph vector. 

[25] 

Vanilla 

RNN, 
LSTM, 

GRU 

Amazon health 

product 
reviews, SST-

1, SST-2 

Google 

news pre-
trained 

word vector 

RMSProp, word vector, 

hidden layer, dense layer 

node, learning rate, mini-
batch gradient descent, 

sigmoid, softmax. 

One layer with GRU gave 

83.90% accuracy on Amazon 

health product reviews, 44.61% 
accuracy on SST-1 and 84.40% 

accuracy on SST-2 

[26] LSTM IMDB, SST 

Continuous 

bag of 

word 

approach 

Stochastic gradient descent, 

mini batches, rectifier linear 

units, hidden size, drop out, 

batches, dropout, LSTM 

layers. 

Single layer LSTM with, 128 

hidden sizes, 64 batch size, and 

0.5 dropouts performed well. 

[4] 

RNN, 

LSTM, 

GRU 

IMDB, 

Standford 

sentiment 

treebank (SST) 

Bag of the 

word, Skip-

gram model 

Softmax, Stochastic gradient 
descent, RMSProp, word 

vector, hidden nodes, 

learning rate, decay factor, a 

fuzzy factor of RMSProp. 

300-word vector size, 100 

hidden nodes, 0.001 learning 

rate, 0.9 decay factor, and 1e-6 
fuzzy factor gave high 

performance. CA-LSTM and 

CA-GRU achieve similar and 

better performance with 90.01 

accuracy for CA-LSTM and 

CA-GRU which is better than 

RNN recall 89.32. 

[27] LSTM 

English 

Wikipedia 

article 

Encoding 

of a word 
using a 

dictionary, 

Google 

news pre-

trained 

word vector 

LSTM cells, epochs, Batch 

size, Adam, learning rate, 
sigmoid, for binary 

classification uses binary 

cross entropy and for 

multiclass uses sparse 

categorical cross entropy, 

truncate length 500 and 1000 

For the encoding of a word 

using dictionary gave 91.52%, 
76.53% and 58.93% accuracy 

for 2, 3 and 7 classes 

respectively. 

For the pre-trained vector gave 

92.25% and 86.21% accuracy 

for 2 and 7 classes respectively. 

[14] LSTM 20 Newsgroup TF-IDF Epochs 
LSTM achieve 93% accuracy at 

25 epochs. 
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3. Methodology 

This section presents algorithmic and implementation details of LSTM and word 

embedding technique (Word2Vec) for text classification.  

 

3.1. Word embedding technique - Word2Vec  

LSTM needs the input in numeric format, not text. Different methods are used to convert 

text to numeric format such as a bag of the word, term frequency-inverse document term 

frequency, Word2Vec, etc. The bag of word and TFIDF method for obtaining such vectors is 

based on very simple lexical coding. It works for binary classifications, but as the number of 

classes (subject categories) increases, its accuracy decreased. Paper [28] suggested two 

methods for vector representations, CBOW (continuous bag of the word) and the skip-gram. 

The Word2Vec method is more stable and flexible. Word2Vec is a method of representing 

words in multidimensional vector space [28]. Word2Vec gave a better performance on 

different neural network techniques. Word2Vec is a shallow NN that is used to process text 

and create the vector of words from the vocabulary.  

This paper used a skip-gram model for the input of LSTM. It converts the text into a 

numeric form that the deep network can understand. The Skip-gram model finds the target 

corpus y from the given word. There are input, output, and hidden layers. The activation 

function used for the output layer is SoftMax. For configuration of Word2Vec used different 

parameters that are:  

100 batch size - It is the number of words that you process at a time. 

20 minimum word frequency - It is the number of word frequencies in the corpus. In the 

case of a large corpus need to increase the value of word frequency. 

100 layer size - It tells the input vector size. 

Learning Rate - It is the step size for each update of the coefficient. 

Tokenizer - It is used to tokenize the sentences. 

 

3.2. Long Short-Term memory for text classification 

LSTM contains one memory cell and three gates, which are the forgotten gate, input gate 

and output gate and the size of the input vector defined by the word embedding size. Input 

gate is used to control the flow of input, output gate is used to control the flow of output and 

forget gate decides the what information going to store in the memory cell and what 

information going to throw away from the cell. [Figure 1] shows the pseudo-code of LSTM 

for text classification. 

Farhoodi and Yari [29] have listed the performance measures for text classification. 

Evaluation of the LSTM classifier is tested using two measures namely accuracy and loss. 

Accuracy is calculated using equation (1).  

Accuracy =  
2∗(𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                        (1) 

The smaller the MSE value, the higher the accuracy and vice versa [30]. Loss is calculated 

using the mean square error shown in equation (2) [31].  

Mean square error = 
1

𝑁
 ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2                                          

𝑁

𝑖=1
(2) 
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4. Experimental details, results and discussion  

This section presents details of the dataset used, parameters on which LSTM 

experimentation is carried out, results and discussion. LSTM performance is evaluated with 

six experiments conducted on batch size, epochs, optimizers, hidden nodes, word vector size, 

LSTM layers, L2 regularization, and learning rate.  

 

 

Figure 1. The pseudo-code of LSTM for text classification 

All results presented in this section are on the testing dataset. The results of seven datasets 

are compared with the literature. The experimental datasets are collected from [32]. The 

details of the dataset to the number of classes, train sets and test sets are shown in [Table 2]. 

Table 2. Datasets used for text classification 

 

 Name of Dataset 
Number of 

Classes 

Number of 

Train Sets 

Number of Test 

Sets 

Dataset 1 IMDB 2 25,000 25,000 

Dataset 2 Amazon review full score 2 30,00,000 6,50,000 

Dataset 3 Amazon review polarity 2 3,000,000 650,000 

Dataset 4 Yelp review polarity 2 560,000 38,000 

Dataset 5 AG news topic classification 4 1,20,000 7,600 

Dataset 6 Yahoo! Answers topic classification 10 1,400,000 60,000 
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Dataset 7 DBpedia ontology classification 14 1,800,000 200,000 

 

The deeplearning4j library is used for the implementation of the methodology. It is a Java-

based toolkit for building, training and deploying deep neural networks, regressions and KNN 

[33]. 

 

4.1. Experiment 1: Identifying suitable batch size, epochs and optimizer 

Experiments are carried out using different combinations of batch size and number of 

epochs. Results in [Table 3] show that 100 batch size at 50 epochs gives the best accuracy for 

all seven datasets. The accuracy range is from 91% to 95.3%. 

Table 3. Accuracy (in %) on various batch size and epochs 

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Batch Size 10 20 40 60 80 100 10 20 40 60 80 100 10 20 40 60 80 100 

No. of epochs 10 50 100 

Dataset 1 74.56 76.2 76.43 75.33 78 79.89 83.55 84.1 86.45 89.76 91.32 95.3 93.4 92.2 92.15 89 90.4 87.89 

Dataset 2 74 76.6 77.2 78.34 79.1 79.89 83.55 84.1 86.45 89.7 92.5 94.3 92.2 90.33 89.6 89.76 88 87.3 

Dataset 3 77.2 78 79.2 79.56 83.2 86.1 88.16 88.34 89 91.54 93.9 94.26 94 92.4 91 90.33 90 89.23 

Dataset 4 77.3 77.87 78.0 78.65 80.98 83.4 85.9 86.4 89.6 92 92.4 94.37 93.5 91.65 91.1 90.76 90 89.76 

Dataset 5 77.34 77.89 79.43 81.6 82 83.87 85.1 86 86.76 87.8 89.9 91.43 90.2 90.16 89.3 88.4 88 87.23 

Dataset 6 76.3 77 77.43 78.23 79.2 80 81.33 83.8 86 88.76 89.54 92.5 90.5 90.23 89.5 87.45 87 86.65 

Dataset 7 73.34 74 76.66 78.97 79.1 82.54 82.9 85.4 86.8 88.2 89.36 91.67 88.89 87.45 87 86.34 87 85.34 

 

We have tested the performance of seven optimizers namely Adagrad, Adadelta, SGD, 

Adam, RMSprop, Adamax, Nadam. Figure 2 shows that the performance of LSTM differs 

with optimizers. For all seven datasets Adagrad, Adadelta and SGD are the top three 

performers respectively. Results show that loss decreases with increasing epochs.    

 

 

Figure 2. Performance of different optimizers for dataset 6 
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4.2. Experiment 2: Identifying the suitable number of hidden nodes 

The goal of this experiment is to find the optimal output size of the LSTM, which can be 

thought of as the size of hidden nodes in the network. After experimentation, found that the 

best accuracy comes from using 5 hidden nodes as shown in [Table 4]. 

Table 4. Results on a varying number of hidden node in LSTM 

 
Number of Hidden Nodes 

5 10 20 50 

Dataset 1 95.30 95.20 95.07 95.03 

Dataset 2 94.30 93.76 93.12 92.76 

Dataset 3 94.26 94.02 93.52 91.87 

Dataset 4 94.37 93.65 93.03 92.43 

Dataset 5 91.43 91.35 91.00 89.64 

Dataset 6 92.50 91.83 91.74 90.28 

Dataset 7 91.67 90.23 90.16 89.42 

 

4.3. Experiment 3: Impact of word vector length on accuracy of LSTM 

The LSTM used in this experiment receives a word vector sequence and creates an output 

of length 100 which gives a better result which is shown in [Table 5]. With this word vector, 

accuracy increases as per vector length increase at the beginning but do not increase after a 

certain period. All the remaining experiments are conducted with best-fitted vector length. 

Table 5. Results on varying word vector length 

 
Word Vector Length 

10 20 50 100 300 

Dataset 1 93.79 94.79 95.05 95.38 94.88 

Dataset 2 92.47 93.48 94.04 94.63 93.45 

Dataset 3 92.84 93.75 94.01 94.32 93.63 

Dataset 4 91.63 92.67 93.73 94.57 93.52 

Dataset 5 89.45 90.54 91.02 91.56 90.73 

Dataset 6 89.84 90.26 91.28 92.81 91.36 

Dataset 7 88.57 89.91 90.84 91.72 90.65 

 

4.4. Experiment 4: Impact of layers on accuracy of LSTM 

The performance of algorithms is always associated with the architecture. [Table 6] shows 

the results of LSTM with different layers. LSTM with two layers shows the best accuracy for 

all datasets. Performance is not directly proportional to the number of LSTM layers.  

Table 6. Results on a varying number of layers in LSTM 

 Number of LSTM Layer 

1 2 3 4 5 

Dataset 1 94.06 95.46 94.38 94.02 93.47 

Dataset 2 93.65 94.73 93.72 93.51 92.91 

Dataset 3 93.88 94.56 93.68 93.36 92.73 
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Dataset 4 93.88 94.63 93.71 92.49 91.68 

Dataset 5 90.26 91.70 90.28 90.11 89.74 

Dataset 6 91.74 92.91 91.58 90.92 89.83 

Dataset 7 90.47 91.88 90.82 90.53 89.61 

 

4.5. Experiment 5: Impact of L2 regularization on accuracy of LSTM 

L2 regularization is used to avoid overfitting and minimize error. [Table 7] shows that 

0.001 value for L2 regularization given the best performance. 

Table 7. Results on varying L2 regularization 

 L2 Regularization 

0.001 0.01 0.5 0.6 0.7 

Dataset 1 95.62 94.72 94.28 93.82 92.44 

Dataset 2 94.82 93.77 92.56 92.35 91.83 

Dataset 3 94.63 93.53 93.37 92.64 91.30 

Dataset 4 94.73 93.82 93.63 92.72 92.01 

Dataset 5 91.74 90.28 90.04 89.74 89.37 

Dataset 6 92.97 91.38 91.23 90.38 89.93 

Dataset 7 91.92 90.64 90.39 89.83 89.58 

 

4.6. Experiment 6: Impact of learning rate on performance of LSTM 

[Table 8] shows that the 0.001 learning rate gives the best performance. If the learning rate 

is low, then training is more reliable and gives better accuracy, but optimization will take a lot 

of time because steps towards the minimum of the loss function are tiny. 

Table 8. Results on varying learning rate 

 

 Learning Rate 

0.001 0.01 0.1 0.2 0.3 

Dataset 1 95.78 95.47 94.62 93.68 92.17 

Dataset 2 94.93 93.26 92.54 92.37 91.76 

Dataset 3 94.87 93.63 93.46 92.77 91.79 

Dataset 4 94.88 94.27 93.68 93.35 92.78 

Dataset 5 91.79 90.67 90.38 89.88 89.62 

Dataset 6 93.04 92.69 92.38 91.83 91.63 

Dataset 7 91.98 90.83 90.52 89.63 88.89 

 

[Table 9] shows the best results obtained with suitable LSTM parameters. 

Table 9. Best results obtained 

 
Dataset 

1 2 3 4 5 6 7 

100 batch size and 50 epochs 95.3 94.3 94.26 94.37 91.43 92.5 91.67 

Adagrad 0.002 0.002 0.002 0.002 0.004 0.002 0.002 

5 Hidden Nodes 95.30 94.30 94.26 94.37 91.43 92.50 91.67 
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100 Word Vector Length 95.38 94.63 94.32 94.57 91.56 92.81 91.72 

2 LSTM Layers 95.46 94.73 94.56 94.63 91.70 92.91 91.88 

0.001 L2 Regularization 95.62 94.82 94.63 94.73 91.74 92.97 91.92 

0.001 Learning Rate 95.78 94.93 94.87 94.88 91.79 93.04 91.98 

 

[Table 10] shows the result comparison for the IMDB dataset with 12 papers from the 

literature. All these papers experimented with machine learning algorithms. The proposed 

methodology provides better results with 95.78% accuracy.  

Table 10. Results comparison for dataset 1 (IMDB dataset) 

 

Reference Technique Accuracy in % 

[10] Support Vector Machine - Unigram 86.4 

[34] Recurrent Neural Tensor Network 87.6 

[35] 

Bag of Words 87.8 

Full + Bag of Words  88.33 

Full + Unlabelled + Bag of Words   88.89 

[4] 

Comprehensive Attention-Recurrent Neural Network 89 

Comprehensive Attention - Long short-term memory 90.1 

Comprehensive Attention - Gated Recurrent Unit 90.1 

[36] 
Long Short-Term Memory + Cognition Based Attention + 

Local Text Context Based Attention ModelparallelGECO 
90.1 

[37] Hybrid Residual Long short-term memory 90.92 

[38] Recurrent Convolution Neural Network-Highway 90.3 

[39] 

Multinomial Naïve Bayes-Unigram 83.55 

Multinomial Naïve Bayes - Bigram 86.59 

Support Vector Machine-Unigram 86.95 

Support Vector Machine with Naïve Bayes Feature - 

Unigram 
88.29 

Support Vector Machine-Bigram 89.2 

Support Vector Machine with Naïve Bayes Feature - 

Bigram 
91.22 

[40] One Hot Bidirectional-Long short-term memory 91.86 

[41] Paragraph Vector 92.58 

[42] Topic Recurrent Neural Network 93.72 

[24] 

Averaged Paragraph Vector 88.3 

Long short-term memory 89.1 

Paragraph Vector (Logistic Regression) 94.4 
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Paragraph Vector (2 Layer Multilayer Perceptron) 94.5 

This Paper Proposed Methodology 95.78 

 

[Table 11] shows a comparison of LSTM parameters in this paper and literature for IMDB 

dataset. This result shows the finely tuned parameter values of LSTM for IMDB dataset. 

Table 11. Comparison of LSTM parameters of [4], [24], [40] and this paper for IMDB dataset 

 

Parameters [4] [24] [40] This Paper 

Word Embedding Skip-gram Glove Vector One hot Skip-gram 

Word Vector Length 300 100 500 100 

Number of Hidden Nodes 100 100 Not Given 5 

Optimizer RMSProp RMSProp SGD Adagrad 

Layers 
2 LSTM and 

1CNN 
1 LSTM 

Bi-directional 

LSTM 
2 LSTM 

Learning Rate 0.001 0.001 Not Given 0.001 

Epochs Not Given 10-17 Not Given 50 

Accuracy 90.1 89.1 91.86 95.78 

 

[Table 12] shows a comparison of results for dataset 3 to 7. To best of our knowledge 

results for dataset 2 (Amazon review full score with 2 classes) is not available. The accuracy 

obtained for dataset 2 is 94.93%. The accuracy obtained for dataset 3, 4 and 5 are 94.87%, 

94.88 and 91.79% respectively, which is close to the best results in the literature. The results 

are better than many other techniques listed in [Table 12]. Results obtained for dataset 6 are 

significantly better than literature. The improvement in accuracy is more than 17%.  For 

dataset 7, accuracy is approximately 6% less than the best mentioned in [Table 12].  

Table 12. Comparison of previously published results with this paper for dataset 3, 4, 5, 6 and 7 

 

Ref. Method Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7 

[43] 

Hierarchical Network Averaging - - - 75.2 - 

Hierarchical Network Max Pooling - - - 75.2 - 

Hierarchical Network Attention Model - - - 75.8 - 

[44] 

Naïve Bayes - 86 90 68.7 - 

Kneser-Ney Bayes - 81.8 89.3 69.3  

Multilayer Perceptron Naïve Bayes - 73.6 89.9 60.6 - 

Discriminative Long short-term memory - 92.6 92.1 73.7 - 

Generative Long short-term memory Independent Component - 90 90.7 70.5 - 

Generative Long short-term memory Shared Component - 88.2 90.6 69.3 - 

[45] 
Word Context Region Embedding 95.1 - 92.8 73.7 98.9 

Context Word Region Embedding 95.3 - 92.8 73.4 98.9 

[37] 

Long short-term memory - - 91.76 - - 

Recurrent Neural Network - - 91.19 - - 

Identity Mapping Skip Connected Long short-term memory - - 92.05 - - 
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Parametric Skip Connection Long short-term memory - - 92.01 - - 

Long short-term memory + Gated Recurrent Unit - - 91.05 - - 

Hybrid Residual Long short-term memory - - 91.9 - - 

[46] Very Deep Convolution Network 95.72 95.72 91.33 73.43 98.71 

[47] 
Long short-term memory - - 87.08 - 97.87 

Length Adaptive Recurrent Model - - 87.18 - 97.88 

This Paper Proposed Methodology 94.87 94.88 91.79 93.04 91.98 

 

5. Conclusions 

Paper presents the effect of the different parameters on the performance of LSTM and 

Word2Vec for text classification. Text classification accuracy obtained by proposed 

methodology for dataset 1, 2, 3, 4, 5 and 6 are 95.78%, 94.93%, 94.87%, 94.88%, 91.79%, 

93.04% and 91.98% respectively. Six different experimentation shows that 100 batch size, 50 

epochs, Adagrad optimizer, 5 hidden nodes, 100-word vector length, 2 LSTM layers, 0.001 

L2 regularizations, 0.001 learning rate give better accuracy. Empirical results on IMDB, 

Amazon review full score, and Yahoo! Answers topic classification dataset demonstrate that 

the proposed architecture effectively improves the classification performance compared with 

previously published results on the same dataset. The accuracy of LSTM for dataset Amazon 

review polarity, Yelp review polarity and AG news topic classification is close to the best 

results in the literature.  For the DBpedia ontology classification dataset, the accuracy is 

above 91% but 6% less than the best results in the literature. Future work: There is scope to 

improve the accuracy of LSTM with hybrid architecture. 
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