
International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

http://dx.doi.org/10.21742/ijhit.2020.13.1.03

Print ISSN: 1738-9968, eISSN: 2652-2233 IJHIT

Copyright ⓒ 2020 Global Vision Press (GV Press)

Improved Text Classification using Long Short-Term Memory and

Word Embedding Technique

Amol C. Adamuthe1

Assistant Professor, Rajarambapu Institute of Technology, Rajaramnagar, MS, India

amol.admuthe@gmail.com

Abstract

Text classification is an important problem for spam filtering, sentiment analysis, news

filtering, document organizations, document retrieval and many more. The complexity of text

classification increases with some classes and training samples. The main objective of this

paper is to improve the accuracy of text classification with long short-term memory with word

embedding. Experiments were conducted on seven benchmark datasets namely IMDB,

Amazon review full score, Amazon review polarity, Yelp review polarity, AG news topic

classification, Yahoo! Answers topic classification, DBpedia ontology classification with the

different number of classes and training samples. Different experiments are conducted to

evaluate the effect of each parameter on LSTM. Results show that 100 batch size, 50 epochs,

Adagrad optimizer, 5 hidden nodes, 100-word vector length, 2 LSTM layers, 0.001 L2

regularizations, 0.001 learning rate give the higher accuracy. The results of LSTM are

compared with the literature. For IMDB, Amazon review full score, Yahoo! Answers topic

classification dataset the results obtained are better than literature. Results of LSTM for

Amazon review polarity, Yelp review polarity, AG news topic classification are close to best-

known results. For the DBpedia ontology classification dataset the accuracy is more than 91%

but less than best known.

Keywords: Text classification, Long short-term memory, Deep learning, Word2Vec, Word

embedding

1. Introduction

Text classification is to classify the text into the appropriate categories based on the textual

content. Due to the large and growing amount of text data, automatic text classification

methods are receiving more and more attention from the research community. Although many

efforts have been made in this regard, it remains an open question [1]. The World Wide Web

needs efficient and effective classification algorithms to help people navigate and browse

online documents quickly [2]. Text classification is used in a various area like email

classification and spam filtering [3], sentiment analysis [4], opinion and topic detection [5],

author identification [6] and language identification [7], news filtering and organizations [8],

document organization and retrieval [9], etc.

Various techniques are designed for text classification. Some key methods, usually used

for text classification such as support vector machine (SVM) [10], decision trees [3], pattern

(Rule)-based, neural network (NN) [11], bayesian (Generative) [12], k. nearest neighbour

Article history:

Received (July 15, 2019), Review Result (December 3, 2019), Accepted (January 24, 2020)

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

20 Amol C. Adamuthe

(KNN) [13] etc. Compared with other supervised machine learning algorithms, the SVM

classifier is one of the most effective text classification methods.

Neural networks are machine learning (ML) models inspired by the human brain. It

includes many neurons that form a huge network. Neural networks have a flexible

architecture with a distinct number of nodes per layer with a different number of weights and

hidden layers. Multiple hidden layers of the neural network are called deep learning [11].

Many types of deep learning can be used for classification such as recurrent neural networks

(RNN), convolutional neural networks (CNN), multilayer Perceptron, etc. The advantage of

RNN is that the previous state is used to calculate the current state. However, simple RNNs

have problems in delivering information in long sequences. LSTM is the solution to this

problem. RNN with extra long-term memory was proposed in 1977. LSTM is one of the most

successful and developed for controlling robots, natural language text compression, automatic

speech recognition, time series prediction, handwriting recognition, document classification

and many more. They can equally prove good in the process of document classification [14].

In literature, different text classifiers are investigated for text classification such as Naïve

Bayes, SVM, logistic regression, stochastic gradient descent, NN, SVM and hybrid models of

these. The main objective of this paper is to improve text classification using long short-term

memory. Paper presents results of LSTM with Word2Vec for text classification on seven

benchmark datasets. Investigations are conducted on the effect of different parameters of

LSTM.

The rest of this paper is organized as follows. Section 2, is about a brief review and some

related works. In Section 3, we discuss the proposed methodology. Experimental details,

results and discussion are demonstrated in Section 4. Finally, in Section 5 we present our

conclusions.

2. Literature Review

This section covers a review of different research carried out for text classification using

different machine learning (ML) based approaches and LSTM.

Classification algorithm KNN is given in [13]. The KNN is a frequently used text

classification technique. This method works well even when using multi-category documents

to process classification tasks. The limitation of KNN is that it needs more time to classify

objects when given many training examples. RA has high computational efficiency, fast

learning speed [15].

The NB classifier is based on the Bayesian theorem with strong independence assumptions.

The algorithm calculates the posterior probabilities that the documents belong to different

classes and assign the document to the class with the highest a posteriori probability [12]. It

handles numerical and textual data extremely well. The disadvantage of the NB classification

method is that the classification performance is relatively low compared with other ML

algorithms [3].

The DT text classifier built using a “divide and conquer” strategy. The DT checks if all

training examples have the identical label, and if not, selects the term partition from the

merged class document with the duplicate term value and places each such item in a separate

subtree [16].

SVM is a supervised classification algorithm that deals with a lot of functionalities. SVM

is one of the most effective text classification methods as a comparison to other ML

algorithms [3]. SVM was originally applied to Joachim's text classification [17]. Joachim

verifies the classification performance of SVM in text categorization by comparing it with

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 21

SVM and KNN. Drucker uses the SVM to implement a spam filtering system and compares it

to NB to implement the system. They show that SVM is a better spam filtering method than

NB. Since the analysis, SVM has more parameters than the logistic regression and DT

classifiers, the SVM has the highest classification accuracy most of the time, whereas the

SVM requires more computation time due to more parameters and is very time-consuming.

Logistic regression is computationally efficient compared to SVM.

On comparing DT and NNs, their strengths and weaknesses are almost complementary.

For example, people can easily understand the representation of DT, which is not the case of

NNs. Decision trees encounter difficulties in handling noise in training data, as well as NNs,

DTs learn very quickly. NNs learn relatively slowly. DT learning is used for qualitative

analysis, and NN is used for subsequent quantitative analysis.

An NN initialized with a DT is a hybrid approach that can be applied to text classification

problems and tested for performance relative to many other text classification algorithms. The

method shows that the hybrid decision tree and neural network method improve the accuracy

of the text classification task, and the performance of the random text classifier is equivalent

to the previous result than the single DT or NN.

The probabilistic neural network is a combination of SVM, KNN, and slightly modified

versions of DTs and proposed to better handle multi-label classification problems [18]. BFC

is a hybrid method of NB vectorizer. Compared with the simple Bayesian classification

method, the SVM classifier improves the classification accuracy. In [19], a hybrid algorithm

is proposed, which is based on the variable precision rough set, combined with the strength of

KNN and RA techniques to improve the accuracy of text classification and overcome the

drawbacks of RA.

Long Short-Term Memory units, also called LSTM, are a variation of Recurrent Neural

Networks that are capable of learning long-term dependencies. They were proposed by the

German researchers Hochreiter and Schmidhuber as a solution to the error backflow problems

[20]. The challenging task of sentiment analysis is a need of required labeled dataset and to

solve this issue Qurat Tul Ain et al. [21] combined deep learning technique and sentiment

analysis. Deep learning techniques gave an effective performance. Peerapon Vateekul et al.

[22] proposed those deep learning techniques for sentiment analysis of Twitter data. LSTM

and Dynamic CNN performed well than traditional methods like naïve Bayes and support

vector machine. In deep learning techniques, they used word2vec and in the traditional

approach bag of the word, the approach was used which occurs difficulty in the training

process. LSTM and DCNN gave better accuracy. Dan Li et al. [23] trained the emotional

model to find out which sentence belongs to which emotion model using LSTM which was

used for better analyzing the long sentences. 10 Unfold layer in backpropagation gave better

accuracy rate and recall rate for LSTM than RNN [24]. After analysis of the performance of

three RNN methods which are vanilla RNN, LSTM and GRU, one layer with GRU gave

better accuracy [25]. Abdalraouf Hassan et al. used a continuous bag of word approach which

gave a better performance than a traditional bag of word approach with a single LSTM layer

performed well [26]. Extended versions of RNN which was LSTM and Gated Recurrent Unit

was proposed by Yong Zhang et al. LSTM and GRU methods achieve better performance

compared with RNN [4]. Piotr Semberecki et al. proposed LSTM for classifying English

Wikipedia articles. Encoding of a word using a dictionary and Google news pre-trained word

vector used for word embedding. Pre-trained word vector achieved better performance [27].

Different ML techniques are used for document classification. Yash R. Ghorpade et al. [14]

include text pre-processing, FS, feature extraction and class prediction. LSTM achieves 93%

accuracy at 25 epochs.

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

22 Amol C. Adamuthe

[Table 1] summarized the contributions for text classification using LSTM with the dataset,

parameter details and results.

Table 1. Short summary of LSTM for text classification

Reference Technique Dataset

Word

Embedding

Technique

Parameters studied / used Results

[22]
LSTM,

DCNN

Thai Twitter

data

Skip-gram

model

50-word vector length,
softmax function, stochastic

gradient descent with cross-

entropy loss function, LSTM

layer, Hidden nodes, Filter

width, filters, word vector

length.

LSTM-96-word vector gave
75.12%, 5 hidden nodes gave

75.30% highest accuracy.

DCNN- 48-word vector for

DCNN 75.35%, 3-6 and 6-14

filters gave 75.30% highest

accuracy.

[23]
LSTM,

RNN

JD.COM,

Travel

comment ctrip
and English

movie review

Not given
Unfold layer,

backpropagation

LSTM produce better accuracy

rate and recall rate than RNN.

[24]

Paragraph

vector,

Deep
RNN, and

LSTM

IMDB, SST

Skip-gram,

Continuous

bag of
word

approach

RMSProp, learning rate,

epochs, vocabulary

downsampling, LSTM layers,
hidden size

IMDB dataset - 150-word

vector, 25 epochs, 0.05 learning

rate and vocabulary

downsampling for CBOW is

1e-4 and for skip-gram 1e-2.

paragraph vector got 0.945

higher accuracies than LSTM.
SST dataset - 3 LSTM layers,

100 hidden sizes, 0.5 dropouts,

1 learning rate, 0.99 decay, and

epsilon of 1e-8 LSTM got

0.843 accuracy which is better

than paragraph vector.

[25]

Vanilla

RNN,
LSTM,

GRU

Amazon health

product
reviews, SST-

1, SST-2

Google

news pre-
trained

word vector

RMSProp, word vector,

hidden layer, dense layer

node, learning rate, mini-
batch gradient descent,

sigmoid, softmax.

One layer with GRU gave

83.90% accuracy on Amazon

health product reviews, 44.61%
accuracy on SST-1 and 84.40%

accuracy on SST-2

[26] LSTM IMDB, SST

Continuous

bag of

word

approach

Stochastic gradient descent,

mini batches, rectifier linear

units, hidden size, drop out,

batches, dropout, LSTM

layers.

Single layer LSTM with, 128

hidden sizes, 64 batch size, and

0.5 dropouts performed well.

[4]

RNN,

LSTM,

GRU

IMDB,

Standford

sentiment

treebank (SST)

Bag of the

word, Skip-

gram model

Softmax, Stochastic gradient
descent, RMSProp, word

vector, hidden nodes,

learning rate, decay factor, a

fuzzy factor of RMSProp.

300-word vector size, 100

hidden nodes, 0.001 learning

rate, 0.9 decay factor, and 1e-6
fuzzy factor gave high

performance. CA-LSTM and

CA-GRU achieve similar and

better performance with 90.01

accuracy for CA-LSTM and

CA-GRU which is better than

RNN recall 89.32.

[27] LSTM

English

Wikipedia

article

Encoding

of a word
using a

dictionary,

Google

news pre-

trained

word vector

LSTM cells, epochs, Batch

size, Adam, learning rate,
sigmoid, for binary

classification uses binary

cross entropy and for

multiclass uses sparse

categorical cross entropy,

truncate length 500 and 1000

For the encoding of a word

using dictionary gave 91.52%,
76.53% and 58.93% accuracy

for 2, 3 and 7 classes

respectively.

For the pre-trained vector gave

92.25% and 86.21% accuracy

for 2 and 7 classes respectively.

[14] LSTM 20 Newsgroup TF-IDF Epochs
LSTM achieve 93% accuracy at

25 epochs.

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 23

3. Methodology

This section presents algorithmic and implementation details of LSTM and word

embedding technique (Word2Vec) for text classification.

3.1. Word embedding technique - Word2Vec

LSTM needs the input in numeric format, not text. Different methods are used to convert

text to numeric format such as a bag of the word, term frequency-inverse document term

frequency, Word2Vec, etc. The bag of word and TFIDF method for obtaining such vectors is

based on very simple lexical coding. It works for binary classifications, but as the number of

classes (subject categories) increases, its accuracy decreased. Paper [28] suggested two

methods for vector representations, CBOW (continuous bag of the word) and the skip-gram.

The Word2Vec method is more stable and flexible. Word2Vec is a method of representing

words in multidimensional vector space [28]. Word2Vec gave a better performance on

different neural network techniques. Word2Vec is a shallow NN that is used to process text

and create the vector of words from the vocabulary.

This paper used a skip-gram model for the input of LSTM. It converts the text into a

numeric form that the deep network can understand. The Skip-gram model finds the target

corpus y from the given word. There are input, output, and hidden layers. The activation

function used for the output layer is SoftMax. For configuration of Word2Vec used different

parameters that are:

100 batch size - It is the number of words that you process at a time.

20 minimum word frequency - It is the number of word frequencies in the corpus. In the

case of a large corpus need to increase the value of word frequency.

100 layer size - It tells the input vector size.

Learning Rate - It is the step size for each update of the coefficient.

Tokenizer - It is used to tokenize the sentences.

3.2. Long Short-Term memory for text classification

LSTM contains one memory cell and three gates, which are the forgotten gate, input gate

and output gate and the size of the input vector defined by the word embedding size. Input

gate is used to control the flow of input, output gate is used to control the flow of output and

forget gate decides the what information going to store in the memory cell and what

information going to throw away from the cell. [Figure 1] shows the pseudo-code of LSTM

for text classification.

Farhoodi and Yari [29] have listed the performance measures for text classification.

Evaluation of the LSTM classifier is tested using two measures namely accuracy and loss.

Accuracy is calculated using equation (1).

Accuracy =
2∗(𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (1)

The smaller the MSE value, the higher the accuracy and vice versa [30]. Loss is calculated

using the mean square error shown in equation (2) [31].

Mean square error =
1

𝑁
 ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑁

𝑖=1
(2)

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

24 Amol C. Adamuthe

4. Experimental details, results and discussion

This section presents details of the dataset used, parameters on which LSTM

experimentation is carried out, results and discussion. LSTM performance is evaluated with

six experiments conducted on batch size, epochs, optimizers, hidden nodes, word vector size,

LSTM layers, L2 regularization, and learning rate.

Figure 1. The pseudo-code of LSTM for text classification

All results presented in this section are on the testing dataset. The results of seven datasets

are compared with the literature. The experimental datasets are collected from [32]. The

details of the dataset to the number of classes, train sets and test sets are shown in [Table 2].

Table 2. Datasets used for text classification

 Name of Dataset
Number of

Classes

Number of

Train Sets

Number of Test

Sets

Dataset 1 IMDB 2 25,000 25,000

Dataset 2 Amazon review full score 2 30,00,000 6,50,000

Dataset 3 Amazon review polarity 2 3,000,000 650,000

Dataset 4 Yelp review polarity 2 560,000 38,000

Dataset 5 AG news topic classification 4 1,20,000 7,600

Dataset 6 Yahoo! Answers topic classification 10 1,400,000 60,000

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 25

Dataset 7 DBpedia ontology classification 14 1,800,000 200,000

The deeplearning4j library is used for the implementation of the methodology. It is a Java-

based toolkit for building, training and deploying deep neural networks, regressions and KNN

[33].

4.1. Experiment 1: Identifying suitable batch size, epochs and optimizer

Experiments are carried out using different combinations of batch size and number of

epochs. Results in [Table 3] show that 100 batch size at 50 epochs gives the best accuracy for

all seven datasets. The accuracy range is from 91% to 95.3%.

Table 3. Accuracy (in %) on various batch size and epochs

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Batch Size 10 20 40 60 80 100 10 20 40 60 80 100 10 20 40 60 80 100

No. of epochs 10 50 100

Dataset 1 74.56 76.2 76.43 75.33 78 79.89 83.55 84.1 86.45 89.76 91.32 95.3 93.4 92.2 92.15 89 90.4 87.89

Dataset 2 74 76.6 77.2 78.34 79.1 79.89 83.55 84.1 86.45 89.7 92.5 94.3 92.2 90.33 89.6 89.76 88 87.3

Dataset 3 77.2 78 79.2 79.56 83.2 86.1 88.16 88.34 89 91.54 93.9 94.26 94 92.4 91 90.33 90 89.23

Dataset 4 77.3 77.87 78.0 78.65 80.98 83.4 85.9 86.4 89.6 92 92.4 94.37 93.5 91.65 91.1 90.76 90 89.76

Dataset 5 77.34 77.89 79.43 81.6 82 83.87 85.1 86 86.76 87.8 89.9 91.43 90.2 90.16 89.3 88.4 88 87.23

Dataset 6 76.3 77 77.43 78.23 79.2 80 81.33 83.8 86 88.76 89.54 92.5 90.5 90.23 89.5 87.45 87 86.65

Dataset 7 73.34 74 76.66 78.97 79.1 82.54 82.9 85.4 86.8 88.2 89.36 91.67 88.89 87.45 87 86.34 87 85.34

We have tested the performance of seven optimizers namely Adagrad, Adadelta, SGD,

Adam, RMSprop, Adamax, Nadam. Figure 2 shows that the performance of LSTM differs

with optimizers. For all seven datasets Adagrad, Adadelta and SGD are the top three

performers respectively. Results show that loss decreases with increasing epochs.

Figure 2. Performance of different optimizers for dataset 6

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

L
o
ss

Number of Epochs

Adagrad

Adadelta

SGD

Adam

RMSprop

Adamax

Nadam

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

26 Amol C. Adamuthe

4.2. Experiment 2: Identifying the suitable number of hidden nodes

The goal of this experiment is to find the optimal output size of the LSTM, which can be

thought of as the size of hidden nodes in the network. After experimentation, found that the

best accuracy comes from using 5 hidden nodes as shown in [Table 4].

Table 4. Results on a varying number of hidden node in LSTM

Number of Hidden Nodes

5 10 20 50

Dataset 1 95.30 95.20 95.07 95.03

Dataset 2 94.30 93.76 93.12 92.76

Dataset 3 94.26 94.02 93.52 91.87

Dataset 4 94.37 93.65 93.03 92.43

Dataset 5 91.43 91.35 91.00 89.64

Dataset 6 92.50 91.83 91.74 90.28

Dataset 7 91.67 90.23 90.16 89.42

4.3. Experiment 3: Impact of word vector length on accuracy of LSTM

The LSTM used in this experiment receives a word vector sequence and creates an output

of length 100 which gives a better result which is shown in [Table 5]. With this word vector,

accuracy increases as per vector length increase at the beginning but do not increase after a

certain period. All the remaining experiments are conducted with best-fitted vector length.

Table 5. Results on varying word vector length

Word Vector Length

10 20 50 100 300

Dataset 1 93.79 94.79 95.05 95.38 94.88

Dataset 2 92.47 93.48 94.04 94.63 93.45

Dataset 3 92.84 93.75 94.01 94.32 93.63

Dataset 4 91.63 92.67 93.73 94.57 93.52

Dataset 5 89.45 90.54 91.02 91.56 90.73

Dataset 6 89.84 90.26 91.28 92.81 91.36

Dataset 7 88.57 89.91 90.84 91.72 90.65

4.4. Experiment 4: Impact of layers on accuracy of LSTM

The performance of algorithms is always associated with the architecture. [Table 6] shows

the results of LSTM with different layers. LSTM with two layers shows the best accuracy for

all datasets. Performance is not directly proportional to the number of LSTM layers.

Table 6. Results on a varying number of layers in LSTM

 Number of LSTM Layer

1 2 3 4 5

Dataset 1 94.06 95.46 94.38 94.02 93.47

Dataset 2 93.65 94.73 93.72 93.51 92.91

Dataset 3 93.88 94.56 93.68 93.36 92.73

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 27

Dataset 4 93.88 94.63 93.71 92.49 91.68

Dataset 5 90.26 91.70 90.28 90.11 89.74

Dataset 6 91.74 92.91 91.58 90.92 89.83

Dataset 7 90.47 91.88 90.82 90.53 89.61

4.5. Experiment 5: Impact of L2 regularization on accuracy of LSTM

L2 regularization is used to avoid overfitting and minimize error. [Table 7] shows that

0.001 value for L2 regularization given the best performance.

Table 7. Results on varying L2 regularization

 L2 Regularization

0.001 0.01 0.5 0.6 0.7

Dataset 1 95.62 94.72 94.28 93.82 92.44

Dataset 2 94.82 93.77 92.56 92.35 91.83

Dataset 3 94.63 93.53 93.37 92.64 91.30

Dataset 4 94.73 93.82 93.63 92.72 92.01

Dataset 5 91.74 90.28 90.04 89.74 89.37

Dataset 6 92.97 91.38 91.23 90.38 89.93

Dataset 7 91.92 90.64 90.39 89.83 89.58

4.6. Experiment 6: Impact of learning rate on performance of LSTM

[Table 8] shows that the 0.001 learning rate gives the best performance. If the learning rate

is low, then training is more reliable and gives better accuracy, but optimization will take a lot

of time because steps towards the minimum of the loss function are tiny.

Table 8. Results on varying learning rate

 Learning Rate

0.001 0.01 0.1 0.2 0.3

Dataset 1 95.78 95.47 94.62 93.68 92.17

Dataset 2 94.93 93.26 92.54 92.37 91.76

Dataset 3 94.87 93.63 93.46 92.77 91.79

Dataset 4 94.88 94.27 93.68 93.35 92.78

Dataset 5 91.79 90.67 90.38 89.88 89.62

Dataset 6 93.04 92.69 92.38 91.83 91.63

Dataset 7 91.98 90.83 90.52 89.63 88.89

[Table 9] shows the best results obtained with suitable LSTM parameters.

Table 9. Best results obtained

Dataset

1 2 3 4 5 6 7

100 batch size and 50 epochs 95.3 94.3 94.26 94.37 91.43 92.5 91.67

Adagrad 0.002 0.002 0.002 0.002 0.004 0.002 0.002

5 Hidden Nodes 95.30 94.30 94.26 94.37 91.43 92.50 91.67

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

28 Amol C. Adamuthe

100 Word Vector Length 95.38 94.63 94.32 94.57 91.56 92.81 91.72

2 LSTM Layers 95.46 94.73 94.56 94.63 91.70 92.91 91.88

0.001 L2 Regularization 95.62 94.82 94.63 94.73 91.74 92.97 91.92

0.001 Learning Rate 95.78 94.93 94.87 94.88 91.79 93.04 91.98

[Table 10] shows the result comparison for the IMDB dataset with 12 papers from the

literature. All these papers experimented with machine learning algorithms. The proposed

methodology provides better results with 95.78% accuracy.

Table 10. Results comparison for dataset 1 (IMDB dataset)

Reference Technique Accuracy in %

[10] Support Vector Machine - Unigram 86.4

[34] Recurrent Neural Tensor Network 87.6

[35]

Bag of Words 87.8

Full + Bag of Words 88.33

Full + Unlabelled + Bag of Words 88.89

[4]

Comprehensive Attention-Recurrent Neural Network 89

Comprehensive Attention - Long short-term memory 90.1

Comprehensive Attention - Gated Recurrent Unit 90.1

[36]
Long Short-Term Memory + Cognition Based Attention +

Local Text Context Based Attention ModelparallelGECO
90.1

[37] Hybrid Residual Long short-term memory 90.92

[38] Recurrent Convolution Neural Network-Highway 90.3

[39]

Multinomial Naïve Bayes-Unigram 83.55

Multinomial Naïve Bayes - Bigram 86.59

Support Vector Machine-Unigram 86.95

Support Vector Machine with Naïve Bayes Feature -

Unigram
88.29

Support Vector Machine-Bigram 89.2

Support Vector Machine with Naïve Bayes Feature -

Bigram
91.22

[40] One Hot Bidirectional-Long short-term memory 91.86

[41] Paragraph Vector 92.58

[42] Topic Recurrent Neural Network 93.72

[24]

Averaged Paragraph Vector 88.3

Long short-term memory 89.1

Paragraph Vector (Logistic Regression) 94.4

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 29

Paragraph Vector (2 Layer Multilayer Perceptron) 94.5

This Paper Proposed Methodology 95.78

[Table 11] shows a comparison of LSTM parameters in this paper and literature for IMDB

dataset. This result shows the finely tuned parameter values of LSTM for IMDB dataset.

Table 11. Comparison of LSTM parameters of [4], [24], [40] and this paper for IMDB dataset

Parameters [4] [24] [40] This Paper

Word Embedding Skip-gram Glove Vector One hot Skip-gram

Word Vector Length 300 100 500 100

Number of Hidden Nodes 100 100 Not Given 5

Optimizer RMSProp RMSProp SGD Adagrad

Layers
2 LSTM and

1CNN
1 LSTM

Bi-directional

LSTM
2 LSTM

Learning Rate 0.001 0.001 Not Given 0.001

Epochs Not Given 10-17 Not Given 50

Accuracy 90.1 89.1 91.86 95.78

[Table 12] shows a comparison of results for dataset 3 to 7. To best of our knowledge

results for dataset 2 (Amazon review full score with 2 classes) is not available. The accuracy

obtained for dataset 2 is 94.93%. The accuracy obtained for dataset 3, 4 and 5 are 94.87%,

94.88 and 91.79% respectively, which is close to the best results in the literature. The results

are better than many other techniques listed in [Table 12]. Results obtained for dataset 6 are

significantly better than literature. The improvement in accuracy is more than 17%. For

dataset 7, accuracy is approximately 6% less than the best mentioned in [Table 12].

Table 12. Comparison of previously published results with this paper for dataset 3, 4, 5, 6 and 7

Ref. Method Dataset 3 Dataset 4 Dataset 5 Dataset 6 Dataset 7

[43]

Hierarchical Network Averaging - - - 75.2 -

Hierarchical Network Max Pooling - - - 75.2 -

Hierarchical Network Attention Model - - - 75.8 -

[44]

Naïve Bayes - 86 90 68.7 -

Kneser-Ney Bayes - 81.8 89.3 69.3

Multilayer Perceptron Naïve Bayes - 73.6 89.9 60.6 -

Discriminative Long short-term memory - 92.6 92.1 73.7 -

Generative Long short-term memory Independent Component - 90 90.7 70.5 -

Generative Long short-term memory Shared Component - 88.2 90.6 69.3 -

[45]
Word Context Region Embedding 95.1 - 92.8 73.7 98.9

Context Word Region Embedding 95.3 - 92.8 73.4 98.9

[37]

Long short-term memory - - 91.76 - -

Recurrent Neural Network - - 91.19 - -

Identity Mapping Skip Connected Long short-term memory - - 92.05 - -

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

30 Amol C. Adamuthe

Parametric Skip Connection Long short-term memory - - 92.01 - -

Long short-term memory + Gated Recurrent Unit - - 91.05 - -

Hybrid Residual Long short-term memory - - 91.9 - -

[46] Very Deep Convolution Network 95.72 95.72 91.33 73.43 98.71

[47]
Long short-term memory - - 87.08 - 97.87

Length Adaptive Recurrent Model - - 87.18 - 97.88

This Paper Proposed Methodology 94.87 94.88 91.79 93.04 91.98

5. Conclusions

Paper presents the effect of the different parameters on the performance of LSTM and

Word2Vec for text classification. Text classification accuracy obtained by proposed

methodology for dataset 1, 2, 3, 4, 5 and 6 are 95.78%, 94.93%, 94.87%, 94.88%, 91.79%,

93.04% and 91.98% respectively. Six different experimentation shows that 100 batch size, 50

epochs, Adagrad optimizer, 5 hidden nodes, 100-word vector length, 2 LSTM layers, 0.001

L2 regularizations, 0.001 learning rate give better accuracy. Empirical results on IMDB,

Amazon review full score, and Yahoo! Answers topic classification dataset demonstrate that

the proposed architecture effectively improves the classification performance compared with

previously published results on the same dataset. The accuracy of LSTM for dataset Amazon

review polarity, Yelp review polarity and AG news topic classification is close to the best

results in the literature. For the DBpedia ontology classification dataset, the accuracy is

above 91% but 6% less than the best results in the literature. Future work: There is scope to

improve the accuracy of LSTM with hybrid architecture.

References

[1] E. Tellez and D. Moctezuma, “An automated text categorization framework based on hyperparameter

optimization,” Knowledge-Based Systems, pp.110-123, (2018) DOI: 10.1016/j.knosys.2018.03.003

[2] B. Parlak and A. Uysal, “The impact of feature selection on medical document classification,” in proceedings

of the 11th Iberian Conference on Information Systems and Technologies (CISTI), Turkey, pp.1-5, (2016)

DOI: 10.1109/CISTI.2016.7521524

[3] P. Pawar and S. Gawande, “A comparative study on different types of approaches to text categorization,”

International Journal of Machine Learning and Computing, vol.2, no.4, pp. 423-426, (2012)

[4] Y. Zhang, R. Venkatesan, N. Wang and M. Pratama, “Sentiment classification using comprehensive attention

recurrent models,” in proceedings of the International Joint Conference on Neural Networks (IJCNN), China,

pp.1562-1569, (2016) DOI: 10.1109/IJCNN.2016.7727384

[5] R. Rahul, K. Kumar and S. Selvakumar, “Opinion and topic detection using sentiment classifier,”

International Journal of Engineering and Computer Science, vol.2, no.7, pp.2189-2194, (2013)

[6] A. Mohsen, N. El-Makky and Ghanem. Nagia, “Author identification using deep learning,” in proceedings of

the 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Egypt, pp.898-903,

(2016) DOI: 10.1109/ICMLA.2016.0161

[7] S. Malmasi and D. Mark, “Language identification using classifier ensembles,” in proceedings of the joint

Workshop on Language Technology for Closely Related Languages, Varieties and Dialects, pp.35-43, (2015)

[8] N. Daniel and K. Karthik, “Survey on Text Classification Methods,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol.6, no.2, pp.585-588, (2016)

[9] S. Chakrabarti, B. Dom, R. Agrawal and P. Raghavan, “Using taxonomy, discriminants, and signatures for

navigating in text databases,” in preceding of the 23rd VLDB Conference Athens, Greece, vol.97, pp.446-455,

(1997)

International Journal of Hybrid Information Technology

Vol.13, No.1 (2020), pp.19-32

Copyright © 2020 Global Vision Press (GV Press) 31

[10] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using subjectivity summarization based on

minimum cuts,” in proceedings of the 42nd annual meeting on Association for Computational Linguistics,

pp.271-279, (2004) DOI: 10.3115/1218955.1218990

[11] L. Deng, “A tutorial survey of architectures, algorithms, and applications for deep learning,” in proceedings

of the APSIPA Transactions on Signal and Information Processing, vol.3, no.2, pp.1-29, (2014) DOI:

10.1017/atsip.2013.9

[12] I. Rish, “An empirical study of the naive Bayes classifier,” in IJCAI 2001 workshop on empirical methods in

artificial intelligence, New York, vol.3, no.22, pp.41-46, (2001)

[13] V. Tam, A. Santoso, and R. Setiono, “A comparative study of centroid-based, neighborhood-based and

statistical approaches for effective document categorization,” in proceedings of the IEEE 16th International

Conference on Pattern Recognition, Hong Kong, vol.4, pp.235-238, (2002)

[14] N. Ranjan, Y. Ghorpade, G. Kanthale, A. Ghorpade and A. Dubey, “Document classification using LSTM

neural network,” Journal of Data Mining and Management, vol.2, no.2, (2017)

[15] W. Cohen and Y. Singer, “Context-sensitive learning methods for text categorization,” ACM Transactions on

Information Systems (TOIS), vol.17, no.2, pp.141-173, (1999)

[16] A. Mashat, M. Fouad, S. Philip, and T. Gharib, “A decision tree classification model for university admission

system,” International Journal of Advanced Computer Science and Applications, vol.3, no.10, pp.17-21,

(2012)

[17] T. Joachims, “Text categorization with support vector machines: Learning with many relevant features,” in

proceedings of the European conference on machine learning, Berlin, pp.137-142, (1998)

[18] P. Ciarelli, E. Oliveira, C. Badue, and A. De Souza, “Multi-label text categorization using a probabilistic

neural network,” International Journal of Computer Information Systems and Industrial Management

Applications, vol.1, pp.133-144, (2009)

[19] D. Miao, Q. Duan, H. Zhang, and N. Jiao, “Rough set based hybrid algorithm for text classification,” Expert

Systems with Applications, vol.36, no.5, pp.9168-9174, (2009)

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol.9, no.8, pp.1735-

1780, (1997)

[21] Q. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran, B. Hayat, and A. Rehman, “Sentiment analysis using deep

learning techniques: a review,” International Journal of Advanced Computer Science and Applications, vol.8,

no.6, pp.424-433, (2017)

[22] P. Vateekul and T. Koomsubha, “A study of sentiment analysis using deep learning techniques on Thai

Twitter data,” in proceedings of the IEEE 13th International Joint Conference on Computer Science and

Software Engineering (JCSSE), Thailand, pp.1-6, (2016)

[23] D. Li and J. Qian, “Text sentiment analysis based on long short-term memory,” in proceedings of the IEEE

International Conference on Computer Communication and the Internet, China, pp.471-475, (2016)

[24] J. Hong and M. Fang, “Sentiment analysis with deeply learned distributed representations of variable length

texts,” Technical report, pp.655-665, (2015)

[25] K. Baktha and B. K. Tripathy, “Investigation of recurrent neural networks in the field of sentiment analysis,”

in proceedings of the IEEE Conference on Communication and Signal Processing, India, April, pp.2047-2050,

(2017)

[26] A. Hassan and A. Mahmood, “Deep learning for sentence classification,” in proceedings of the IEEE

Conference on Systems, Applications and Technology, Long Island, USA, pp.1-5, (2017)

[27] P. Semberecki and H. Maciejewski, “Deep learning methods for subject text classification of articles,” in

proceedings of the IEEE Federated Conference on Computer Science and Information Systems, Poland,

vol.11, pp.357-360, (2017)

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,”

arXiv preprint arXiv:(1301)3781, (2013)

Improved Text Classification using Long Short-Term Memory and Word Embedding Technique

32 Amol C. Adamuthe

[29] M. Farhoodi and A. Yari, “Applying machine learning algorithms for automatic Persian text classification,”

in proceedings of the 6th International Conference on Advanced Information Management and Service, Iran,

pp.318-323, (2010)

[30] C. Leke, B. Twala and T. Marwala, “Missing data prediction and classification: The use of auto-associative

neural networks and optimization algorithms,” arXiv preprint arXiv:(1403)5488, (2014)

[31] B. Chen, L. Xing, N. Zheng and C. Principe, “Quantized Minimum Error Entropy Criterion,” arXiv preprint

arXiv:(1710)04089, (2017)

[32] https://drive.google.com/drive/u/0/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMU

w1TWN6RDV3a0JHT3kxLVhVR2M

[33] https://deeplearning4j.org/

[34] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng and C. Potts, “Recursive deep models for

semantic compositionality over a sentiment treebank,” in proceedings of the conference on empirical methods

in natural language processing, Seattle, Washington, USA, pp.1631-1642, (2013)

[35] Maas A., Daly R., Pham P., Huang D., Ng A., and Potts C., “Learning word vectors for sentiment analysis,”

in proceedings of the 49th annual meeting of the association for computational linguistics: Human language

technologies, vol.1, pp.142-150, (2011)

[36] Y. Long, L. Qin, R. Xiang, M. Li, and C. Huang, “A cognition-based attention model for sentiment analysis,”

in proceedings of the Conference on Empirical Methods in Natural Language Processing, Copenhagen,

Denmark, pp.462-471, (2017)

[37] Y. Wang and F. Tian, “Recurrent residual learning for sequence classification,” in proceedings of the

Conference on Empirical Methods in Natural Language Processing, Austin, Texas, pp.938-943, (2016)

[38] Y. Wen, W. Zhang, R. Luo, and J. Wang, “Learning text representation using recurrent convolutional neural

network with highway layers,” arXiv preprint arXiv:(1606)06905, Pisa, Italy, (2016)

[39] S. Wang and D. Christopher, “Baselines and bigrams: Simple, good sentiment and topic classification,” in

proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Stanford, vol.2,

pp.90-94, (2012)

[40] R. Johnson and T. Zhang, “Supervised and semi-supervised text categorization using LSTM for region

embeddings,” arXiv preprint arXiv:(1602), 02373, (2016)

[41] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in proceedings of the

International Conference on Machine Learning, Beijing, China, vol.32, pp.1188-1196, (2014)

[42] A. Dieng, C. Wang, J. Gao, and J. Paisley, “Topicrnn: A recurrent neural network with long-range semantic

dependency,” arXiv preprint arXiv:1611, 01702, (2016)

[43] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention networks for document

classification,” in proceedings of the North American Chapter on Association for Computational Linguistics:

Human Language Technologies, Redmond, pp.1480-1489, (2016)

[44] D. Yogatama, C. Dyer, W. Ling, and P. Blunsom, “Generative and discriminative text classification with

recurrent neural networks,” arXiv preprint arXiv:(1703)01898, (2017)

[45] C. Qiao, B. Huang, G. Niu, D. Li, D. Dong, W. He, and H. Wu, “A new method of region embedding for text

classification,” National Engineering Laboratory of Deep Learning Technology and Application, China,

(2018)

[46] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep convolutional networks for text

classification,” in proceedings of the 15th Conference on European Chapter of the Association for

Computational Linguistics, France, vol.1, pp.1107-1116, (2016)

[47] Z. Huang, Z. Ye, S. Li, and R. Pan, “Length adaptive recurrent model for text classification,” in proceedings

of the ACM on Information and Knowledge Management, Singapore, pp.1019-1027, (2017)

