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Abstract 

This paper proposes a denoising neural network for real-time ray tracing. The ray-tracing 

method is applied in graphics to increase the reality and in particular, Monte Carlo 

Rendering is most effective. However, ray tracing that applies Monte Carlo Rendering has a 

steep rise in the number of calculations with the increase of the number of rays. Therefore, to 

solve this problem, various methods are being proposed to reduce the number of rays and to 

decrease the occurring noise. In this paper, an autoencoder-based neural network that can 

effectively remove noise while using a small number of rays was implemented. An 

autoencoder that uses a 1×1 convolution in creating the last feature map was proposed to 

significantly lower the amount of calculation. The proposed structure can handle an 8196 spp 

ray-tracing image in 20 seconds at 64 spp. 
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1. Introduction 

Ray tracing is a computer graphic technique that recreates light effects by tracking the lights 

from the light source to create realistic computer graphics. However, since images are created 

by tracking each light from the light source, the amount of computation is massive. The 

method to solve this issue is a path tracing that tracks the light in reverse from the pixels of 

the image to the light source. Currently, path tracing means ray tracing. It is realistically 

impossible to create images by tracing all lights in the pixels. Therefore, a few lights are 

traced from the pixel, and the average of them is defined as the pixel value. This method is 

called Monte Carlo Rendering [1].  

 

 
     (a) 8spp                                        (b) 64spp                                  (c) 1024spp 

Figure 1. Comparison of the quality of ray tracing image according to changes in spp 
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When tracing a lot of lights per pixel, more realistic images are created. The unit for 

tracing light is called sample per pixel (spp). When spp decreases, the amount of calculation 

drops, but images with more noise are created. On the other hand, when spp increases, more 

realistic images are created, but the amount of calculation increases significantly [Figure 1]. 

The difference of calculation amount according to spp is as shown in [Table 1]. 

Table 1. Comparison of calculation amount 

Resolution 8spp 128spp 1024spp 8196spp 

720p 7,373 117,965 943,718 7,553,434 

1080p 16,589 265,421 2,123,366 16,986,931 

4K 70,779 1,132,462 9,059,697 72,477,573 

(unit = 1000) 

 

To identify the increase of calculation amount according to the number of rays, the image 

of [Figure 1] based on 4K, which is the highest grade of images, was measured. Assuming 

that one calculation is performed for one sample during ray tracing at 8196 spp with noise-

free, approximately 72.4 billion calculations are required. Such amount of calculation is too 

high to handle in real-time. When rendering at 8 spp, the number of calculations decreases by 

1,000 times, and therefore, the spp must be reduced to decrease the amount of calculation. 

Table 2. Peak Signal Noise Ratio (PSNR) and Structural Similarity(SSIM) by spp variation [2][3]  

 8spp 128spp 1024spp 

PSNR 13.6834 20.1158 25.1086 

SSIM 0.1839 0.3987 0.6321 

However, as shown in [Table 2], when the number of spp decreases, noise included in the 

image relatively increases, and the quality of the image becomes poor. This paper proposes a 

method for using a small amount of spp to obtain the image quality similar to the images that 

use more spp to remove noise from the image. Furthermore, this paper applies a deep 

learning-based neural network with high efficiency for removing noise and proposes an 

optimized structure of the applied neural network. 

 

2. Proposed neural network 
 

2.1. Autoencoder 

The proposed neural network was configured using the Unet based Autoencoder [4]. First, 

the image size is gradually decreased using the encoder while the size of the feature map is 

increased. At this time, the layer between the encoder and decoder having the most feature 

maps is called the bottleneck layer, and it has a total of 512 feature maps. Afterward, the size 

of the original image is restored, passing through the decoder. Noise is removed by the 

decoder and an image without noise is shown. Then, noise that was not removed and the 

checked patterns that may occur at the boundary of the filter are removed additionally. The 

proposed neural network structure is as follows [Figure 2]. 

 

2.2. 1×1 Convolution 

1×1 convolution was proposed by M Lin et al. [5]. If this method is used when the size of 

the feature map decreases, the amount of calculation decreases significantly. Using this 
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method, the neural network gains more time. In this paper, the amount of calculation was 

decreased when the feature map was decreased using this method in the decoder.  

 

 

Figure 2. Denoising auto encoder 

3. Implementation 

This algorithm is comprised of preprocessing, encoding/decoding, and reconstruction 

processes. A noisy image is converted to allow the entry of neural networks through 

preprocessing and the features are extracted bypassing the encoding layer. The extracted 

features then pass the decoding layer again to return to the original image size. Lastly, the 

denoising image is generated by passing the reconstruction layer. During the training, the 

image is in small image units at a size of 64×64 extracted from random images in patch units. 

When learning is performed using the original image, it requires excessively large capacity 

memories, so it is divided into patch units and then the patches are gathered in batch units for 

use.  

 

3.1. Preprocessing 

Preprocessing allows output images from the renderer to be used with the input of the 

neural network. The image created by the renderer can output the color (R, G, B) as well as 

the values used for calculating the color value. This is applied for the use of neural network 

input. In general, Color 3ch (channel), Specular 3ch, Diffuse 3ch, Normal 3ch, Albedo 3ch, 

and Depth 2ch are generated and used. In addition, 2ch for Color, Specular, Diffuse, Normal, 

Albedo variance and 1ch for depth variance for a total of 22ch are used. At this time, when 

the values with large fluctuations are used as an input for neural networks, there is a 

possibility that the model will be divergence. Therefore, it is used by changing the standard 

deviation from the square root of variance. In addition, to detect the noise candidates and 

edges, the gradient of the pixel values is computed. The gradient is performed once in the x-

direction and once in the y-direction. Therefore, Color 3ch, Specular 3ch, Normal 3ch, 

Albedo 3ch, and Depth 1ch for a total of 16ch times two for a total of 32 are generated. Lastly, 

using the median values with some of the noise removed, additional hints are given to the 

neural network. This is only applied in the color, specular, and diffuse where noise exists. 

Images that completed preprocessing will have a total of 63ch [Figure 3]. 
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Figure 3. Preprocessed feature 

3.2. Encoding/Decoding 

Encoding is a work that reduces the size of the image and increases the number of feature 

maps. When an image has a size of 1024×1024, it undergoes encoding and the size is reduced 

significantly to 1024×1024, 512×512, 256×256, and 128×128. At the bottleneck layer 

between encoding and decoding, it has a total of 512 feature maps. Rectified Linear Unit 

(ReLU) [6] is used as the activation function. Information in each layer in encoding is saved 

and used as skip connection [7] in decoding. Decoding is a process that the features are 

reduced again and the original image is restored. Each layer is connected through the 

encoding layer and skip connection. Skip connection is added when restoring the original 

images of feature maps that were found bypassing the encoding. Through this, it finds the 

weighted values that create images similar to the original image more quickly during the 

training. Furthermore, it well presents the details of the actual image. The decoder’s 

activation function uses Leaky Rectified Linear Unit (leaky ReLU) [8]. In addition, when 

restoring the original image, the feature map is reduced, and therefore, 1×1 convolution can 

be used. 1×1 convolution is first reduced before passing the filter, and therefore, the amount 

of calculation can be reduced by approximately 1/10.  

 

3.3. Reconstruction 

Reconstruction is a layer for post-processing the images that completed encoding/decoding. 

This is used to remove the noise that is not removed in the encoding/decoding layer and the 

check patterns that are created in the boundaries of the filter. Images that pass this layer are 

converted into a three-channel image comprised of only R, G, and B from the image 

comprised of feature maps. 

 
4. Experiment result 
 

4.1. Rendering time test 

The data set for the experiment is shown in the following [Figure 4]. 
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  (a) Chandelier                                              (b) Lamp                                                (c) Mirror 

Figure 4. Experiment dataset 

When displaying the same quality compared to noise for the video in [Figure 1], 8196 spp 

and 64 spp were compared. In 64 spp, the autoencoder neural network proposed in this paper 

was applied. The experiment environment was executed in AMD’s 2990 wx (32core) and 

tungsten renderers, and the results are as shown in Table 3. When comparing the rendering 

time, the renderer of this paper showed a shorter execution time by 240 times.  

Table 2. Rendering time comparison 

 64 spp 8196 spp 

Rendering Time 20sec 1hour 20min 48sec 

 

4.2. Inference time test 

To measure the effects of the 1×1 convolution-based autoencoder proposed in this paper, 

the inference time was measured in the experiment image. Results, as shown in [Table 4], 

were found in the aforementioned measurement environment. When using 1×1 convolution, it 

is evident that processing time was decreased by 30%.  

Table 3. Inference time average in 64 scenes 

 without 1×1 with 1×1 

Inference Time 0.1930sec  0.1534sec 

 

5. Conclusion 

The ray-tracing renderer configured in this paper can remove noise through deep learning 

and use small amounts of rays to create high-quality graphic images. By reducing the number 

of rays to improve the processing speed to configure ray-tracing graphics in real-time, it is 

possible to configure high-quality content in mobile devices. In particular, the autoencoder in 

the 1×1 convolution structure can be applied in various neural networks, and therefore 

contribute to the studies regarding mobile neural networks. 
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