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Abstract 

Each mental or physical task gives rise to generate electromagnetic activity in the brain. These 

electrical signals are analyzed by using various neuroimaging techniques which include 

electroencephalography (EEG), magnetoencephalogy (MEG), positron emission tomography (PET) 

and functional magnetic resonance imaging (fMRI).  However, when the brain sources which are 

responsible for such electrical activity are localized, then it’s called brain source localization or 

source estimation. This information is utilized to comprehend brain’s physiological, pathological, 

mental, functional abnormalities. Also, the information is used to diagnose cognitive behaviour of 

the brain. Various methodologies based upon EEG signals are adopted to localize the active 

sources such as minimum norm estimation (MNE), low resolution brain electromagnetic 

tomography (LORETA), standardized LORETA, exact LORETA, multiple signal classification 

(MUSIC), focal under- determined system solution (FOCUSS) etc. This research discusses 

localizing ability of low resolution techniques (LORETA and sLORETA) for various head models 

(finite difference model and concentric model). The simulations are carried out by using 

NETSTATION software. The results are compared in terms of activations for same EEG data with 

the same stimulus provided to subjects. However, it is observed that the combination of finite 

difference method (FDM) with sLORETA produced best results in terms of source intensity level 

(nA). Hence, the combination of inverse method sLORETA with FDM produces better source 

localization.    
 

Keywords: Electroencephalography, Inverse Problem,  Finite Difference Method, LORETA, 

Standardized LORETA 

 

1. Introduction 

Electroencephalography (EEG) is the invasive/non-invasive functional neuroimaging 

technique which is used to quantify neural activity by taking into account the electrical 

signals produced with the brain using a set of electrodes placed on the scalp[1-4]. EEG 

signals based localization of active brain sources is called EEG source localization or 

EEG inverse problem as the source model is constructed with the data parameters 

available [5].This EEG based source modelling is used for various neuroscience 

applications [6]. Due to the multipurpose application of brain source localization in the 

field of applied surgery and clinical purposes, it has got the attentions from various 

factions of society such as neurosurgeons, biomedical engineers, signal/image processing 

researchers and experts etc. It is evident from the fact that more than 200 publications are 

produced so far in this area of research. The EEG inverse problem is categorized as 

severely ill-posed inverse more than one solution can fit into data. This can be elaborated 

as the unknown parameters (active sources) outnumber the known parameters (electrodes 

used) [7] .  
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Figure 1. Inverse and Forward Problem Depiction[8] 

Since inception of brain source localization issues, many techniques are suggested by 

various researchers to solve this ill-posed problem with better resolution, low 

computational complexity and low localization errors. However, the most significant 

contribution was made by minimum norm estimation (MNE) [9], low resolution brain 

electromagnetic tomography (LORETA) [10], standardized LORETA [11],exact 

LORETA[12], Multiple Signal classifier (MUSIC) and Recursively applied and projected 

MUSIC (RAP MUSIC)[13], focal under determined system solution (FOCUSS)[14], 

hybrid weighted minimum norm-LORETA (WMN-LORETA)[15], recursive sLORETA-

FOCUSS[16], standardized shrinking LORETA-FOCUSS (SSLOFO) [17], shrinking 

LORETA-FOCUSS[18] and Bayesian framework based multiple sparse priors[19-21]. 

This paper discusses low resolution techniques such as LORETA, sLORETA applied with 

numerical head modelling (Finite difference method) to produce the results for activation 

made during the data taken from subjects. This paper discusses low resolution techniques 

along with their implementation with various head modelling schemes. So here a brief 

account of LORETA and sLORETA is provided. 

 

LORETA 

     This technique is elaborated and explained by R.D. Pascual-Marqui in [10]. LORETA 

estimates the active brain sources by calculating the distribution of current sources 

through the entire brain volume. This technique was proposed to localize the 3D solutions 

properly as compared to previous minimum norm estimation (MNE) approaches where 

there was no prior knowledge. However, LORETA imposes a spatial smoothness 

constraint upon solution. This spatial smoothness constraint is expressed using the 3D 

discretized Laplacian matrix as can be seen in literature [10]. Thus, LORETA estimates 

the sources with improved time resolution but low spatial resolution. For the low noise 

instantaneous measurements, the discrete solution for LORETA is derived as: 

 

                     J

BWJ
2

min

   under constraint Y=LJ          (1)  

where
nc NN

Y


 is data captured by cN
sensors and the number of time samples is nN

. 

The current density 
nd NN

J


 is responsible for the propagation of the energy of dN
 

current dipoles distributed through the cortical surface. However, the dataset (Y) and the 

sources (J) are related through gain matrix L which is also termed as leadfield matrix. 

Weighted matrix W is defined as: IW  , I
33  is identity matrix and  defines 
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the Kronecker product,  is a diagonal matrix for which the diagonal element is defined 

by: 



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N
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                          (2) 

 

       The discrete Laplace operator B is introduced to emphasize relationships between 

current densities and thus, the spatial resolution is not taken into consideration which 

makes the blurred localization images. For a regular cubic grid within the brain volume, if 

the distance between neighboring grids is assumed to be d, then this operator is defined as: 
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. M defines the 3D locations 

for the current densities. There are some modifications done on this basic localizing 

technique which include sLORETA, eLORETA and some hybrid algorithms such as 

Shrinking LORETA-FOCUSS, Standardized Shrinking LORETA-FOCUSS, WMN-

LORETA, Recursive sLORETA-FOCUSS etc. 

 

sLORETA 

 The initial variation on basic LORETA produced sLORETA as defined in [11]. 

sLORETA is based on standardization of current density supposed to be estimated for 

source localization. Hence, the current density estimate is carried out by using MNE 

approach and further it is standardized utilizing the expected standard deviation associated 

with it. The standard deviation is assumed to be created by noise exclusively. sLORETA 

is similar to method proposed by Dale [22] as it provides current density estimates by 

using MNE solution with  localization inference computed through standardized current 

density. The way sLORETA adopts the standardization for current density is different and 

thus result is lesser localization error as compared to Dale method. As per standard 

definition for minimum norm estimates, the solution provide by it is harmonic in nature 

which implies that Laplacian of current density is zero (i.e. 0)(2  rJ ), where r denotes 

the volume coordinates in the brain. Thus, producing smooth solution as mentioned in 

MNE section above. Due to this, the deep point sources in the brain are not properly 

localized and localization error is relatively high. This issue can be resolved through 

standardization of MNE solution. Using same definitions for the variables as mentioned 

in previous methods, the functional of interest is given below: 

                                    

22
JcLJYF 

                                       (4)                                        

Here 0 is regularization parameter. This functional is supposed to be minimized with 

respected to J and c for given leadfield (L), voltage measurements (Y) and regularization 

parameter ( ). The explicit solution for such minimization will be: 

                                       ,' TYJ  with  
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(5)                

where 
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 is a vector of ones.  
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By using average reference for the measurements, one will have the functional as: 

                

22
JLJYF 

                                    (7)                                                                                               

With solution as:  

,' TYJ  with
  HLLLT TT                                            

Hence, the estimated current density for sLORETA is given by: 

                                               
JSLJHLLLTLJJ J

TT

')('  
                       (8)                                     

       Here 'JS
   is variance of estimated current density. 

       In this way the sources are estimated in presence and absence of noise. This method 

has been used extensively for source localization with various head modeling schemes. 

Different neuroimaging software implements this technique which includes Netstation 

and LORETA etc. There are number of publications which followed sLORETA technique 

to localize the sources[23, 24]. The disadvantage with sLORETA is its low resolution 

which is due to regularization in solution for stability.  

After discussion of low resolution methods in detail, now the related methodology is 

discussed for this research. Section II discusses methodology; Section III provides results 

and discussion. Section IV is dedicated for conclusion. 

 

2. Methodology  
 

Subjects  

The data is collected by using proper ethics approval and consent from various healthy 

subjects. All of them are healthy, drug free and having no previous record of having any 

neurological disorder. All of them are currently university students between the ages of 

20-30 years and with normal corrected vision. 

 

Ethical Approval and Consent 

The experimental details were provided to participants and they were signed before the 

start of the experiment. The Human Ethics Committee of Universiti Teknologi 

PETRONAS, Perak, Malaysia has approved the work. EEG data were captured at scalp 

surface with 250 samples per second using HydroCel Geodesic 128 channel montage and 

300 Net Amplifier of EGI Inc, USA [25] and Cz channel is taken as reference channel. 

The impedance between scalp and sensors was 50 KΩ. The EEG dense electrode sensor 

net is shown in Fig. 02. The EEG recordings were done at Intelligent Neuro-Signals and 

Medical Imaging Laboratory, Centre for Intelligent Signals and Imaging Research 

(CISIR), Universiti Teknologi PETRONAS, Perak, Malaysia.  
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Figure 2. EEG Cap Layout  

EEG Analysis 

The data acquired was subjected to filtering done by a band pass filter having 

frequency range as 1-48Hz. Prior to application of inverse methods such as LORETA, 

sLORETA, head modelling schemes (such as Finite difference method and concentric 

head model) was used for every set of data. After the application of head modelling, both 

of the inverse techniques are used to see the activation in the corresponding areas and to 

check the difference between them. The results are compiled for all cases to offer a 

comparison between various localization techniques with different modelling techniques. 

The Tikhonov regularization is applied with value of 110
4

.  

 

3. Results and Discussion  

The results showing active brain activation in certain parts are produced for subjects 

with specified head models and low resolution inverse techniques (LORETA and 

sLORETA) scheme and stated stimulus provided. Because in this research, only 

emphasize is given to low resolution methods, therefore the related results for the 

activation are provided for LORETA and sLORETA only. All the graphs are provided in 

3 views i.e. sagittal, coronal and axial along with the activation region shown below. The 

color scheme is provided with the software accordingly. Due to ethical approval, the 

identity of the subjects is omitted. The results illustrate the activation in different brain 

during visual stimulus experiment. For both subjects, the results are collected for four 

different combinations of forward and inverse modelling. The combinations of head 

models and low resolution inverse methods are: 1) Sunstok-LORETA, 2) Sunstok-

sLORETA, 3) FDM-LORETA 4) and FDM-sLORETA respectively. These combinations 

are utilized with the specifications stated in the methodology section. Hence, For example, 

for the subject X, the process to find out the related activation was done for all 

combinations. The corresponding activation is shown for all mentioned combinations. 

The yellow colour demonstrates maximized activity in a particular region. In this case, the 

most activated region is occipital region for each combination. However, the maximum 

intensity of 280 nA is shown with FDM-sLORETA combination. However, lower values 

of intensities were found for Sunstok-LORETA (0.92nA), Sunstok-sLORETA (5.35nA) 

and FDM-LORETA (15.782nA) respectively. The similar trend was observed for the 

subject Y when it was tested through all possible combinations. The region which was 

most active during the given stimulus for subject Y is parietal region. However, the 

highest activation was observed for subject y was with FDM-sLORETA (61.82 nA). 

Other combinations have got lesser intensities as compared to FDM-sLORETA. Such as 

LORETA (0.279 nA), sLORETA (2.089nA) and FDM-LORETA (7.40nA) respectively. 
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These activation data with each combination for both subjects are produced in Table 01 

and Table 02 given at the end of the article. Hence, the maximum value due to FDM-

sLORETA is quite higher as compared to other combinations for both subjects. It is so 

because of high performance of sLORETA as compared with its older version LORETA. 

Although both of these methods are low resolution methods and have disadvantage of 

spatial blurring. But upon the analysis, it is clear that sLORETA exhibits less localization 

error and more intensive values for active regions when it was observed for same data 

with same stimulus provided. Another point worth to be to be noted from the above 

results is higher values of intensities for both subjects when the numerical head modeling 

(FDM) was applied. Hence, it can be seen from the Table 01 and Table 02 that significant 

difference can be observed between the activation intensities for both subjects. For 

example, for subject X, the intensities shown for FDM-LORETA and FDM-sLORETA 

are 15.782 nA and 280 nA. However, the intensities for same subject by using Sunstok-

LORETA and Sunstok-sLORETA are 0.92 nA and 5.35 nA respectively. This fact can 

also be seen by looking into resultant activations for subject Y for numerical FDM-

LORETA and FDM-sLORETA (7.40 nA and 61.82 nA) which is much higher than 

Sunstok-LORETA and Sunstok-sLORETA (0.279 nA and 2.089 nA) respectively. Hence, 

it is evident that numerical methods for head modelling such as boundary element method 

(BEM), finite element method (FEM) and finite difference method (FDM) out-performs 

the analytical methods (like Sunstok) which takes into account the nested shape 

concentric models for head modelling.  

 

4. Conclusion   

This research work discusses EEG based brain source localization by using various 

forward and inverse models. The EEG data was captured by using visual stimuli and 

localization results were obtained by introducing various combinations of forward and 

inverse techniques with the help of NETSTATION software package. The results showed 

activation in different brain regions i.e. occipital and parietal with varying intensity levels 

(measured in nA) for all forward and inverse models combinations. Maximum intensity 

value was observed for FDM-sLORETA combination. The usage of numerical methods 

such as finite difference method (FDM) produces better results as compared to analytical 

models. This supports the idea of implementation of boundary element method (BEM) 

and finite element method (FEM) for various datasets with different stimuli and 

corresponding activations can be checked by adopting same methodology. The results and 

corresponding discussion presented above suggests that these low resolution methods 

such as LORETA, sLORETA and eLORETA results can be compared with high 

resolution subspace based multiple signal classification (MUSIC), recursively applied and 

projected MUSIC (RAP MUSIC) and other methods with varying head models 

(numerical and analytical) to check the active brain localization with low localization 

error and maximum accuracy in localizing active sources. These results are well utilized 

for clinical purposes for diagnoses of different neural diseases such as epilepsy and 

tumour. Also the application of these results is equally useful for cognitive and behavioral 

analysis and for brain research applications. 
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Figures and Tables 
 

Table 1. Activation Data for Subject X 

Subject Method Maximum Active Region Intensity (nA) 
1 Sun Stok LORETA Occipital Lobe 0.92 
2 Sun Stok -sLORETA Occipital Lobe 5.35 
3 FDM-LORETA Occipital Lobe 15.782 
4 FDM-sLORETA Occipital Lobe 280 

 
Table 2. Activation Data for Subject Y 

 
Subject Method Maximum Active Region Intensity (nA) 

1 Sun Stok LORETA Parietal lobe 0.279 
2 Sun Stok -sLORETA Parietal lobe 2.089 
3 FDM-LORETA Parietal lobe 7.40 
4 FDM-sLORETA Parietal lobe 61.82 

 

  
Activation Map for FDM-sLORETA for Subject X Activation Map for FDM-LORETA for Subject X 

 

 

 

 

  
Activation Map for Sunstok-sLORETA for Subject X Activation Map for Sunstok-LORETA for Subject X 

  

 

 
 

  
Activation Map for FDM-sLORETA for Subject X Activation Map for FDM-LORETA for Subject X 

 

 

 

 

  
Activation Map for Sunstok-sLORETA for Subject X Activation Map for Sunstok-LORETA for Subject X 
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Activation Map for FDM-sLORETA for Subject Y Activation Map for FDM-LORETA for Subject Y 

  
Activation Map for Sunstok-sLORETA for Subject Y Activation Map for Sunstok-LORETA for Subject Y 
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