
International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017), pp.11-22

http//dx.doi.org/10.14257/ijhit.2017.10.7.02

ISSN: 1738-9968 IJHIT

Copyright © 2017 SERSC

A Tile Data Cache Replacement Policy Based on Hierarchical

Relationship and Correlation Degree

XingHan Chen
1
,Feixiang Chen

2
 and Jiaxing Liu

3

1first author
 Department of Information Science and Technology, Beijing Forestry

University Beijing 100083, China, fishxhchen@126.com
*2Corresponding Author

 Department of Information Science and Technology, Beijing

Forestry University Beijing 100083, China, fxchen@126.com
3
 Department of Information Science and Technology, Beijing Forestry University

Beijing 100083, China, liujiaxing_tao@163.com

Abstract

To solve the problems that server and network pressure is too large and tile response

time is too long in tile spatial data transmission, a data cache preplacement method

named Value Evaluation of Associated Tiles was put forward in this paper. This method

combined the tiles of hierarchy and the correlation between adjacent tiles, and the value

of tiles was defined. On the basis of this method, the tile value and cache space were

abstracted as 0/1 knapsack problem, and solved by ant colony algorithm. Experimental

results showed that this method was significantly improved in tile hit rate and byte hit

rate, especially in the small cache capacity, the cache hit rate was significantly higher

than other algorithms.

Keywords: tile data; hierarchical relationship; correlation degree; cache replacement

policy; Ant colony algorithm

1. Introduction

The development and integration between network technology with spatial information

services bring geospatial information service network develops rapidly. It affects the

quality of network spatial geographic information service that traffic surge due to

sustained growth in the scale of users and mass properties of spatial data bring network

congestion and server overload [1]. According to the users' requirement, Network spatial

geographic information service based on tile granularity employ spatial data streaming

transmission technology to transmit multiresolution tile data to users [2-5]. This

on-demand service can avoid unnecessary spatial data transmission which effectively

reduces the network bandwidth pressure and alleviates the pressure on server. Therefore,

establishing a reasonable caching mechanism in the client side eases server pressure and

reduces system requirements for network bandwidth and server performance.

Many scholars have done some researches on tile-pyramid data cache mechanism at

the client side [6-8, 15-16]. Tile cache lifetime excess and popularity replacement

(TCLEPR) policy was proposed in reference [16], in which tiles that life span is beyond

average cache life and access popularity is lowest are swap out. Based on tile granularity,

TCLEPR brings higher cache-hit rate while it does not take into account tiles spatial

relationship and size differences. Reference [7] mainly reported the tiles prefetching

policy and replacement policy. It calculated neighbor tiles’ prefetching probability by the

tile’s transition probability, and the tile with least transition probability was replaced by

the tile with biggest prefetching probability. However, only the neighbor relation has been

investigated and it is not been involved that the effect of hierarchy factors on the

probability of tiles being called. Meanwhile this method computation amount is too large.

In reference [8], multi-core location aware cache replacement policy (MLCR) was

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

12 Copyright © 2017 SERSC

proposed which is based on the history request number of tiles in the multicore GPU

shared cache group to improve tile cache hit rate, while it is only aimed at the 3D scene in

mobile devices.

Users have their usage patterns when they use map services. For example, they tend to

use spatial data that can provide maximum comfort and spatial data requested by single

user tends to more centralized in space and more repeatable. In the network spatial

geographic information service based on tile granularity, different resolution level is an

important factor to affect the clarity and comfort of spatial data. On the client side,

magnifying, shrinking, dragging are the most commonly used operating. Zooming into or

zooming out of a map is in essence to call different resolution level data in the same

geographic range; dragging is in essence to call neighbor tiles of the visual areas tiles.

In this paper, we present a tile data cache replacement policy, Value Evaluation of

Associated Tiles (VEAT), which is based on multi resolution hierarchical relations

between tile data and relations between adjacent tiles. VEAT fully takes into account the

impact on the user experience when to measure tiles storage value. Tile value is adjusted

by level factor which is calculated according to the tile request history. Tile’s associated

value is calculated by the value of neighbor tile. By tiles’ associated value and sizes, tile

data cache replacement is abstracted into 0/1 knapsack problem which is settled by ant

colony algorithm.

2. Tile Cache Index Design

The tiles stored in the tile-based server of network geographical information service

are generated from hierarchical cutting map data in spatial database (such as setting the

size of tiles as 256×256 pixel) [9-10]. These tiles constitute the multi resolution

hierarchical spatial data tile Pyramid model, as shown in Figure 1 In the multi resolution

layer pyramid model of tiles, the topper the level is, the bigger the level is and the higher

the resolution is. At different levels, the geographical range represented by all tiles on the

same level is same. When users request tiles, the client can send a request to the server for

a couple of tiles at the corresponding resolution level based on the field of view and

resolution. One specific tile through two-dimensional coordinates and level number

obtains unique identification.

When users request tiles, according to the user's current window angle center and the

window boundary latitude and longitude range to determine the required tiles’ resolution

level (level) and two dimensional coordinate range ({Xmin,Ymin} to {Xmax,Ymax}). On

the client side, cache index and tile data are stored separately. The tile cache index can

uniquely determine if a tile is present in the cache and where the tile is stored. When

building tile index, the hierarchy, row and column of tile data are encoded into a string

(TileID). Each tile data has a unique TileID which can uniquely identify a tile map block:

𝑻𝒊𝒍𝒆𝑰𝑫 = (𝒊, 𝒋, 𝒍𝒆𝒗𝒆𝒍) (1)

Where level represents tile hierarchy, i represents tile’s line number in the level

hierarchy, j represents tile’s column number in the level hierarchy. TileID(i,j,level)

represents the encoding of tile whose hierarchy is level, line number is i and column

number is j. To quickly locate the index entry, index entry uses hash storage.

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

Copyright © 2017 SERSC 13

Figure 1. Tile Pyramid Model

Assume index term is ind and TileID is the keyword for ind. TileID is the unique

identification of ind. Assume index is an index set for storing data in the cache:

∀ 𝒊𝒏𝒅 𝝐 𝑰𝒏𝒅𝒆𝒙 , 𝒊𝒏𝒅 = (𝑻𝒊𝒍𝒆𝑰𝑫, 𝒔𝒊𝒛𝒆, 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚, 𝑻𝒍𝒂𝒔𝒕, 𝑻𝒇𝒊𝒓𝒔𝒕, 𝒍𝒆𝒗𝒆𝒍, 𝒗𝒂𝒍𝒖𝒆) (2)

 ind(TileID) ϵ Index represents index entry ind whose key is TileID in index set

Index. size represents space occupied by the tile. T_first represents the first time the tile is

cached and T_last represents the last time the tile is hit. frequency represents hit counts of

the tile after T_first. In order to avoid the sudden increase in frequency when tile data is

requested multiple times in short time which impact tile value evaluation, cache

protection policy is set for tiles cached. Static time is defined with T_least. A tile’s

frequency only increased by 1 if the tile is hit repeatedly within time T_least. value

represents value of the cache entry which is evaluated by algorithm in each cache

replacement.

3. VEAT Strategy

3.1 Determination of Cache Update Value of VEAT Algorithm

When new tile enters and the cache space cannot contain it, tiles of low cache value in

the cache area should be replaced through cache replacement strategy. The traditional

cache replacement strategies are as follows [11-12]. In LRU (Least Recently Used)

strategy, every tile’s last hit time is recorded and tiles in the cache area that have not been

hit for the longest duration are replaced and excluded from the cache area. In LFU (Least

Frequently Used) strategy, the times of tiles being hit are recorded and tiles with the

fewest times within a specific period are replaced and excluded from the cache area. In

FIFO (First In First Out) strategy, tiles that first enter the cache are replaced and excluded

from the cache area. In SIZE algorithm, the tile with the greatest performance indicators

or a couple of tiles with relatively greater indicators are replaced and excluded from the

cache area.

VEAT algorithm uses cache update value to replace cache. Firstly, the evaluation

model of cache value is determined, in which value of each tile is evaluated in order to

maximize the total cache value of all tiles stored in the cache. The request intensity of

tiles is closely related to the visit frequency determined by times of history visits of tiles

Fre(TileID) and survival time in cache T_present-T_first (TileID). Taking times of being

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

14 Copyright © 2017 SERSC

hit in history and survival time into account, the cache value of one tile is determined as

follows:

{
𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = (

𝑭𝒓𝒆(𝑻𝒊𝒍𝒆𝑰𝑫)

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕−𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫)
)𝝈

𝑻𝒊𝒍𝒆𝑰𝑫 = (𝒍𝒆𝒗𝒆𝒍, 𝒊, 𝒋)
 (3)

where 𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) is the cache value of the tile in i line , j row and level hierarchy,

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕 is the time of the system at present, 𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫) is the time the tile first

enters cache, and Fre(TileID) is the visit frequency during its cache time, and δ is the

accommodation coefficient of the equation and is fitted by experimental data.

Different solution and geographical ranges of multi-solution tiles affect the elaborate

degree and comfort degree of tile map, which makes multi-solution tiles call frequency be

variation in different levels. In network spatial geographical information service, some

users prefer some specific levels’ tiles data. As a result, when cache value is the same

determined by other factors, users are estimated to use tiles that can bring them more

comfort. The comfort degree function is set as M(level) which indicates the comfort

degree in level hierarchy:

𝐌(𝐥𝐞𝐯𝐞𝐥) = 𝜷 × 𝑪(𝒍𝒆𝒗𝒆𝒍) (4)

C(level) is the level factor, suggesting the visit rate in history of level. Users prefer data

that bring them maximum comfort when visiting tile data with different resolution levels

and identical geographical ranges. Consequently, level factor C(level) can be regarded as

positively correlated to comfort factor M(level). Level factor can be calculated as follows:

𝑪(𝒍𝒆𝒗𝒆𝒍) =
𝑺(𝒍𝒆𝒗𝒆𝒍)

∑ 𝑺(𝒍)𝒏𝒖𝒎
𝒍=𝟎

=
𝑺(𝒍𝒆𝒗𝒆𝒍)

𝑺𝑼𝑴
 (5)

where S(level) refers to the total number of tiles in level hierarchy in the cache, and

num refers to total number of levels. Therefore, ∑ 𝑺(𝒍) 𝒏𝒖𝒎
𝒍=𝟎 represents the total number of

tiles in all resolution levels in cache, which means that the total number of tiles in the

cache is represented by SUM.

Introducing comfort degree function M to the evaluation model of cache:

{
𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = 𝜶 × (

𝑭𝒓𝒆(𝑻𝒊𝒍𝒆𝑰𝑫)

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕−𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫)
)

𝝈

+𝜷 × 𝑴(𝒍𝒆𝒗𝒆𝒍)𝜸

𝑻𝒊𝒍𝒆𝑰𝑫 = (𝒍𝒆𝒗𝒆𝒍, 𝒊, 𝒋)

(6)

where α, β, and γ are accommodation coefficients of the equation and fitted by

experimental data. And α+β=1.

When a tile is requested, tiles that have same resolution level with requested tile and

the space distance from the tile within limits are called association tiles. Windows used by

users are usually rectangle. It is hypothesized that window is made up of row*column

tiles. When tiles data need to be loaded into the windows, row*column tiles whose spatial

location is proximate in the same resolution level should be loaded. When one tile is

requested, tiles in the same resolution level and proximate two-dimensional coordinates

are very possible to be requested simultaneously. After one tile is requested, when users

carry out translation operation of maps, tiles close to tiles requested are also very likely to

be requested due. Therefore, cache value of tiles is influenced by cache value of relation

tiles in addition to inherent properties.

Since the wide range of association tiles with the specific tiles and difficult to specify,

calculation of all association tiles brings too much complexity. As a response, this paper

selects representative tiles of four directions as relation tiles. T(level,i,j) refers to the tile

of i line and j row of level hierarchy. If T(level,i,j) is the center of the window which

suggests the tiles in window rectangle area ranging from T(level, i-row+1, j-column+1) to

T(level,i+row-1,j+column-1). At the same moment, the likelihood of users carrying out

translation operation in up, down, left, right directions is regarded as identical. Tiles

selected in the four directions are T(level,i-(row-1)/2,j-(column-1)/2)，T(level ,i-(row-1)/2,

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

Copyright © 2017 SERSC 15

j+(column-1)/2), T(level, i+(row-1)/2,j-(column-1)/2) ， and T(level,

i+(row-1)/2,j+(column-1)/2) respectively, in which “/”suggests exact division.

Introducing association tiles to the evaluation of cache value:

𝑹𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = 𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) ∗ 𝑹𝟏 + (𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 −
𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 −

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 −

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 +

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 +

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 −

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 +

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 +

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
)) ∗ 𝑹𝟐 (7)

where 𝑹𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) is the association cache value of tile T(level,i,j), 𝑹𝟏、𝑹𝟐 are

regulatory factors of the equation and fitted by experimental data, and 𝑹𝟏 +𝑹𝟐=1. When

tiles of cache are replaced, association value of tiles is regarded as evidence of

replacement.

3.2 Knapsack Problem Abstraction with the VEAT Strategy

Due to limited cache space, when cache value of one tile is considered, the space that

the tile takes up should also be taken into account. This question can be otherwise solved

by 0/1 knapsack problem[13]. The maximum bearing capacity of a knapsack is W, n

items are provided, the weight of item i is 𝒘𝒊, and how to select items to maximize the

total value without exceeding the maximum bearing capacity should be solved.

If the total number of tile Indexes in the cache is N, TileID(z) represents the TileID of

the z index, the size of the tile corresponding to TileID is Size(z), and the association

cache value of the tile is RH(z). The cache space can be abstracted to the size of the

knapsack which is V. The state variable of the tile is State(z). When tiles are selected into

the cache, State(z) is 1, otherwise it is 0. The total value of all the tiles of the cache is

∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 , and the total space they take up is∑ 𝑺𝒊𝒛𝒆(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵

𝒛=𝟏 . The

solution to 0/1 knapsack problem maximizes the total cache value

∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 through determining the value of State(z)(z=1,2,3,…,N).

{

𝑴𝒂𝒙 ∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏

𝑺𝒕𝒂𝒕𝒆(𝒛) ∈ *𝟎, 𝟏+ 𝒛 ∈ *𝟏, 𝟐, 𝟑, … , 𝑵+

 ∑ 𝑺𝒊𝒛𝒆(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 ≤ 𝑽

 (8)

3.3 Ant Colony Algorithm Solution with the VEAT Method

To enlarge the total value of cache as much as possible, and to avoid the convergence

to a locally optimal solution, ant colony algorithm, a member of the heuristic algorithm

family, is applied to solve computational problems. Ant colony algorithm is a simulated

evolutionary algorithm which is proposed based on the behavior of ants in the natural

world

[14]. While passing a trail, ants would lay down pheromone to send information to

other ants, the existence and strength of which can be sensed within limits. The

pheromone density will become higher with the increase in ant number, and over time, the

pheromone will evaporate.

Ants would leave such pheromone on something, tiles in this case, and once choices

are completed, they would find out a set of, or sets of, optimum solutions, whose tiles

would then be left with more pheromone than others. Pheromone, therefore, can be

updated as follows when ant colony algorithm is applied to solve the 0/1 knapsack

problem:

𝑻𝒛(𝒕 + 𝒑) = (𝟏 − 𝝆)𝑻𝒛(𝒕) +△ 𝑻𝒛 (9)

𝑻𝒛(𝒕) is the amount of pheromone on tile Z at t. ρ∈(0,1) is the pheromone

evaporation coefficient，(1-ρ) is the pheromone residual coefficient，and △ 𝑻𝒛 is the

amount of pheromone added within p. The added amount of pheromone △ 𝑻𝒌 can be

represented as:

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

16 Copyright © 2017 SERSC

△ 𝐓𝐳 = {
𝛒𝐓𝐳(𝐭) + 𝟎. 𝟏, 𝐳 𝐢𝐬 𝐭𝐡𝐞 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐫𝐨𝐮𝐧𝐝

−
𝐒𝐢𝐳𝐞(𝐳)

𝐕
𝛒𝐓𝐳(𝐭), 𝐳 𝐢𝐬 𝐧𝐨𝐭 𝐭𝐡𝐞 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐫𝐨𝐮𝐧𝐝

 (10)

The influence of tile size on pheromone is considered in this formula. The bigger the

tile, the more cache storage space it occupies; under the condition that nothing is hit, a tile

that occupies more cache space has higher pheromone evaporation coefficient.

In the ant colony algorithm, the probability of each tile being selected by ants is called

selection probability. The probability of ant k selecting tile z at t is:

𝑷𝒛
𝒌(𝒕) = {

𝑻𝒛
𝝁(𝒕)𝜼𝒛

𝝊(𝒕)

∑ 𝑻𝒎
𝝁 (𝒕)𝜼𝒎

𝝊 (𝒕)𝒎∉𝒕𝒂𝒃𝒖𝒌

, 𝒛 ∉ 𝒕𝒂𝒃𝒖𝒌

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒔
 (11)

𝒕𝒂𝒃𝒖𝒌 is a tabu list, in which tile that has been judged by ant k is deposited and

cannot be selected any more. 𝜼𝒛(𝒕) is a heuristic function, representing the desirability

of ant k’s independent choice of tile z. μ is a pheromone factor representing the influence

of pheromone on ants’ selection results, and υ is a desirability heuristic factor representing

the influence of cache content property on ants’ selection results. The bigger the value of

μ，the more likely for later ants to follow the former ones selections; the bigger the value

of υ, the more likely for ants to use heuristic function to make independent selection.

The heuristic function 𝜼𝒛(𝒕) represents the judgement made by ants according to the

value of cache tile without the influence of pheromone. Based on the associated cache

value of tile and the size of tile, the heuristic function can be defined as:

𝜼𝒛(𝒕) =
𝑹𝑯(𝒛)

𝑺𝒊𝒛𝒆(𝒛)
 (12)

3.4 VEAT Algorithm Procedure

When a new tile needs to gain access to the memory cache or local cache, and the

cache space is insufficient, cache replacement of contents can be carried out based on the

VEAT algorithm, so that the total value of data stored in the cache can be maximized and

the hit rate of tile can be increased. Since the tiles called in the client windows are

consecutive, requests for multiple consecutive tiles will generally be sent. If N new tiles

are requested at the same time, the cache replacement algorithm needs to be executed for

N times. To improve the algorithm performance, this paper carries out an integrated

processing of those multiple tiles that are requested consecutively, together with only one

cache replacement.

Descriptions of the VEAT Algorithm:

 1）When a new tile needs to gain access to cache, cache objects will be created and

initialized based on the attribute information of this new tile, such as level, line number,

column number and size. TilesID should be determined according to the level, line

number and column number of the tile, the frequency of cache should be initialized as 1,

and the built-up time of cache should be recorded.

 2）Whether the cache space can be used to store this tile? If the cache space is

insufficient, then please go to step 3; if not, store this tile.

 3）Initialize the parameters of the ant colony algorithm. The pheromone on each tile

𝑻𝒛(𝒕) should be initialized as a fixed value 𝑻𝟎; the maximum iteration number of this

algorithm should be set as TMAX and the number of ants should be set as 𝑵𝒂𝒏𝒕. The tabu

list of all ants 𝒕𝒂𝒃𝒖𝒌 should be initialized as null, and the solution set list of each ant

 𝒓𝒆𝒔𝒖𝒍𝒕𝒌 should also be initialized. Such parameters as 𝛅、𝜶、𝜷、𝜸、𝑹𝟏、𝑹𝟐、υ、μ should

be given a value.

4）According to formula (11), ant k calculates the probability of every tile being

visited and gets 𝑷𝒛
𝒌(𝒕). Based on the probability value, ant k then chooses the next tile z

to be stored into cache and adds the tile z to the tabu list 𝒕𝒂𝒃𝒖𝒌. Try to put tile z to the

solution set list 𝐫𝐞𝐬𝐮𝐥𝐭𝐤. If the total volume of tiles in the solution set list is smaller than

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

Copyright © 2017 SERSC 17

cache capacity V, then add tile z to this solution set list by changing the State (z) into 1; if

not, new judgement should be made until all remaining tiles cannot be added to the

solution set list any more. Cycle this process until all ants obtain the solution set.

 5）Find out the solution set that can maximize the value of ∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 in

the solution sets of all ants. If the total cache value of this solution set is bigger than that

of the global optimum solution, then replace the current optimum solution. If the iteration

number is smaller than TMAX, then update pheromone and go to step 4); if not, go to step

6).

 6）If the newly arrived data is in the optimum solution, then store it into cache and

replace the data that is not in the optimum solution with the newly arrived data; if not, do

not store the newly arrived data. The VEAT algorithm execution ends.

4. Experiment Evaluation

4.1 Experiment Environment

This experiment applies Fiddler to collect the request log data of users who do not set

cache, and 213,200 records are collected, with a storage size of 1.747 G. The resolution of

tiles is 256×256, the biggest tile occupies 26.6 kb, and the smallest one occupies 197 b.

SimpleScalar is used as the simulation platform in the experiment. The experiment

environment is Lenovo T440，CPU 1.60GHz，RAM 4G. First, the log data of users are

processed to extract the level, line number, column number and size of tiles, and request

time. Based on these data, the process of calling tiles on the client will then be simulated.

In this process, each tile will be evaluated with the VEAT algorithm to turn the relation

between cache space and cache tiles into the 0/1 knapsack problem; if the cache space is

insufficient, then apply the ant colony algorithm to carry out a cache replacement.

Parameter settings in the VEAT algorithm are as follows:

1）In the experiment, the values of σ and γ are fitted, and when 0.8 is chosen for σ

and 0.6 for γ, optimal results can be achieved.

2）α and β stand for the influence ratio of the factor of tile level. When 0.8 is chosen

for α, the average hit rates of cache are optimal, so 0.8 is chosen for α and 0.2 for β.

3）The values of 𝑹𝟏 and 𝑹𝟐 stand for how much influence associated tiles can

exert on the associated value of tiles. 0.9 is chosen for 𝑹𝟏 and 0.1 for 𝑹𝟐.

4）In the ant colony algorithm, 0.4 is chosen for parameter μ, and 0.6 for parameter υ.

4.2 Experiment Results and Analysis

The processing results of users’ request log data are set as data set A, data set B, data

set C and data set D. FIFO, LFU, LRU and VEAT are applied respectively to each set, to

simulate the calling of tiles under the condition of different cache capacities, and to

calculate their byte hit rates and tile hit rates. Figure 2 and Figure 3 show the byte hit rates

and tile hit rates of the four algorithms applied under the condition that the cache sizes are

10M, 20M, 30M, 40M, 50M, and 60M.

The experiment results in Figure 2 and Figure 3 indicate that both byte hit rates and

tile hit rates of the four algorithms will become higher with the increase in cache size.

When the cache capacity is enlarged to a certain point, however, the increase of cache hit

rates will level off, and the cache hit rates of the four algorithms get close to each other.

Among the four algorithms, FIFO has the lowest cache hit rates in most cases, with

values far smaller than those of the other algorithms. LRU is better than FIFO, which

considers making adjustment to cache items after cache hits. LFU is, however, better than

LRU, which can avoid the influence of periodical and accidental events on LRU hit rates.

VEAT has cache hit rates higher than the other three algorithms do, especially so or more

so when the cache capacity is low. VEAT algorithm not only considers such factors as the

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

18 Copyright © 2017 SERSC

time and the space tiles occupy, but also the influence of such spatial factors as tile level

relations and associated tiles on the hit rates; and besides, this algorithm also considers as

much valuable information as possible that is related to tile data. Optimal results,

therefore, are achieved for different data sets under the condition of different cache

capacities. In general, the order from high to low of the cache hit rates of the four

algorithms is VEAT, LFU, LRU and FIFO.

Figure 2. Byte Hit Rate

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

Copyright © 2017 SERSC 19

Figure 3. Tile Hit Rate

This experiment shows the results of byte hit rates and tile hit rates of the four

algorithms. In addition, another experiment is carried out to explore the cache hit rates of

the four algorithms at every stage in the data reading process. For the limit of space, this

paper only mentions the simulation results of the byte hit rates and request hit rates in the

recording process in the data set B, achieved by the four algorithms under the condition of

20M cache capacity, as shown in Figure 4.

Figure 4 indicates the variation of cache hit rates in the recording process in the data

set B. The experiment results suggest that the cache hit rates of the four algorithms finally

level off after they fluctuate for a period of time. VEAT algorithm gains an edge in cache

hit rates when 10% to 20% of data is read, indicating that this algorithm can adjust the

value of tiles based on a small number of tile requests to obtain relatively high cache hit

rates.

Figure 4. Trends of Cache Hit Rate of Data Set B

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

20 Copyright © 2017 SERSC

5. Conclusion and Discussion

In this paper, we design a tile cache index, and propose a cache replacement policy

named VEAT for tile which combines the level of relationship and tile correlation degree.

In VEAT, cache capacity and tiles’ associated value are abstracted as 0/1 knapsack

problem and solved with ant colony algorithm.

The results show that VEAT algorithm is superior to LFU algorithm in byte hit rate and

tile hit rate. And, VEAT algorithm combined with multiple factors can still play its

advantage to get a higher hit rate while FIFO, LRU, LFU algorithms are limited when the

cache space is limited or the amount of data is less.

In the experimental results of byte hit rate and tile hit rate, the byte hit rate is higher

than the tile hit rate with the same data set and the same cache capacity. For this result,

this paper makes a hypothesis that users tend to access tiles that contain large amounts of

information. In the next step, we will focus on the influence of tile size, location, and the

level of tiles on the tile value.

Acknowledgments

This work was supported by Fundamental Research Funds for the Central

Universities (TD2014-02).

References

[1] W. Hao, Y.U. Zhanwu, Z. Wu, “The Research on the Algorithm of Spatial Data Cache in Network

Geographic Information Service”, Acta Geodaetica Et Cartographica Sinica, vol. 38, no. 4, (2009), pp.

348-355.

[2] H. Xia, L. Meng. “Research on Spatial Image Streaming Model Based on BitTorrent”, Acta Geodaetica

Et Cartographica Sinica, vol. 42, no. 2, (2013), pp. 225-232.
[3] R. Li，X. Tang，X. Shi，J. Fan，Z. Gui, “A replication strategy based on optimal load balancing for a

heterogeneous distributed caching system in networked GISs”, Geomatics & Information Science of

Wuhan University, vol. 40, no. 10, (2015), pp. 1287-1293.

[4] M.H. Jeong, Y.C. Suh, “A Study on Tile Map Service of High Spatial Resolution Image Using Open

Source GIS”, Journal of Korean Society for GeoSpatial Information System, vol. 17, no. 1, (2009), pp.

167-74.

[5] S. Wei, L. Zhiqing, J. Mengkai, L. Chengming, “Optimized Design and Implementation of the Tile Map

Dynamic Caching Middlewware”, Bulletin of Surveying and Mapping, vol. 1, (2014), pp. 37-40.

[6] H. Wang, “Massive Spatial Data Cache Replacement Policy Based on Tile Lifetime and Popularity”,

Geomatics & Information Science of Wuhan University, vol. 34, no. 6, (2009), pp. 667-670.

[7] R. García, E. Verdú, L. M. Regueras, J. P. D. Castro, “A neural network based intelligent system for tile

prefetching in web map services”, Expert Systems with Applications, vol. 40, no. 10, (2013), pp.

4096-4105.

[8] M.F. Uluat, V. İşler, “Ensemble adaptive tile prefetching using fuzzy logic”, International Journal of

Geographical Information Science, vol. 30, no.6, (2016), pp. 1117-1136.

[9] L. Yi, “Parallel Batch-Building Remote Sensing Images Tile Pyramid with MapReduce”, Geomatics &

Information Science of Wuhan University, vol. 38, no.3, (2013), pp. 278-282.

[10] J. Liu, Q. Gan, Y. Zhang, R. Chunlei, “Implementation of fast spatial matching and image fusion

algorithm for tile map”, Science of Surveying and Mapping, vol.40, no.11, (2015), pp. 85-88.

[11] L. Liu, X. Xiong, “Least Cache Value Replacement Algorithm”, Journal of Computer Applications, vol.

33, no.4, (2013), pp. 1018-1022.

[12] J.-L. Wu, Q. Yang, “A Web Cache Replacement Algorithm Based on Collaborative Filtering”,

Computer Engineering & Science, vol. 37, no.11, (2015), pp. 2128-2133.

[13] K. Nagar, Y. N, Srikant, “Fast and Precise Worst-Case Interference Placement for Shared Cache

Analysis”, ACM Transactions on Embedded Computing Systems, vol. 15, no.3, (2016), pp. 1-26.

[14] M. Dorigo, V. Maniezzo, A. Colorni, “Ant system: optimization by a colony of cooperating agents”,

IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE

Systems Man & Cybernetics Society, vol. 26, no.1, (1996), pp. 29-41.

[15] Y.-K. Kang, Ki-Chang Kim, “Probability-Based Tile Pre-fetching and Cache Replacement Algorithms

for Web Geographical Information Systems”, Advances in Databases and Information Systems, Vilnius,

Lithuania, (2001) September 25-28.

[16] C.C. Hsiao, S.L. Chu, S.S. Dai, “Efficient rendering and cache replacement mechanisms for hierarchical

tiling in mobile GPUs”, Global High Tech Congress on Electronics, (2012), pp. 170-175.

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

Copyright © 2017 SERSC 21

Authors

XingHan Chen, he received his Master degree from Beijing

Forestry University.His research interests include WebGIS and

Mobile GIS.

International Journal of Hybrid Information Technology

Vol. 10, No. 7 (2017)

22 Copyright © 2017 SERSC

