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Abstract 

To solve the problems that server and network pressure is too large and tile response 

time is too long in tile spatial data transmission, a data cache preplacement method 

named Value Evaluation of Associated Tiles was put forward in this paper. This method 

combined the tiles of hierarchy and the correlation between adjacent tiles, and the value 

of tiles was defined. On the basis of this method, the tile value and cache space were 

abstracted as 0/1 knapsack problem, and solved by ant colony algorithm. Experimental 

results showed that this method was significantly improved in tile hit rate and byte hit 

rate, especially in the small cache capacity, the cache hit rate was significantly higher 

than other algorithms. 
 

Keywords: tile data; hierarchical relationship; correlation degree; cache replacement 

policy; Ant colony algorithm 

 

1. Introduction 

The development and integration between network technology with spatial information 

services bring geospatial information service network develops rapidly. It affects the 

quality of network spatial geographic information service that traffic surge due to 

sustained growth in the scale of users and mass properties of spatial data bring network 

congestion and server overload [1]. According to the users' requirement, Network spatial 

geographic information service based on tile granularity employ spatial data streaming 

transmission technology to transmit multiresolution tile data to users [2-5]. This 

on-demand service can avoid unnecessary spatial data transmission which effectively 

reduces the network bandwidth pressure and alleviates the pressure on server. Therefore, 

establishing a reasonable caching mechanism in the client side eases server pressure and 

reduces system requirements for network bandwidth and server performance. 

Many scholars have done some researches on tile-pyramid data cache mechanism at 

the client side [6-8, 15-16]. Tile cache lifetime excess and popularity replacement 

(TCLEPR) policy was proposed in reference [16], in which tiles that life span is beyond 

average cache life and access popularity is lowest are swap out. Based on tile granularity, 

TCLEPR brings higher cache-hit rate while it does not take into account tiles spatial 

relationship and size differences. Reference [7] mainly reported the tiles prefetching 

policy and replacement policy. It calculated neighbor tiles’ prefetching probability by the 

tile’s transition probability, and the tile with least transition probability was replaced by 

the tile with biggest prefetching probability. However, only the neighbor relation has been 

investigated and it is not been involved that the effect of hierarchy factors on the 

probability of tiles being called. Meanwhile this method computation amount is too large. 

In reference [8], multi-core location aware cache replacement policy (MLCR) was 
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proposed which is based on the history request number of tiles in the multicore GPU 

shared cache group to improve tile cache hit rate, while it is only aimed at the 3D scene in 

mobile devices. 

Users have their usage patterns when they use map services. For example, they tend to 

use spatial data that can provide maximum comfort and spatial data requested by single 

user tends to more centralized in space and more repeatable. In the network spatial 

geographic information service based on tile granularity, different resolution level is an 

important factor to affect the clarity and comfort of spatial data. On the client side, 

magnifying, shrinking, dragging are the most commonly used operating. Zooming into or 

zooming out of a map is in essence to call different resolution level data in the same 

geographic range; dragging is in essence to call neighbor tiles of the visual areas tiles. 

In this paper, we present a tile data cache replacement policy, Value Evaluation of 

Associated Tiles (VEAT), which is based on multi resolution hierarchical relations 

between tile data and relations between adjacent tiles. VEAT fully takes into account the 

impact on the user experience when to measure tiles storage value. Tile value is adjusted 

by level factor which is calculated according to the tile request history. Tile’s associated 

value is calculated by the value of neighbor tile. By tiles’ associated value and sizes, tile 

data cache replacement is abstracted into 0/1 knapsack problem which is settled by ant 

colony algorithm. 

 

2. Tile Cache Index Design 

The tiles stored in the tile-based server of network geographical information service 

are generated from hierarchical cutting map data in spatial database (such as setting the 

size of tiles as 256×256 pixel) [9-10]. These tiles constitute the multi resolution 

hierarchical spatial data tile Pyramid model, as shown in Figure 1 In the multi resolution 

layer pyramid model of tiles, the topper the level is, the bigger the level is and the higher 

the resolution is. At different levels, the geographical range represented by all tiles on the 

same level is same. When users request tiles, the client can send a request to the server for 

a couple of tiles at the corresponding resolution level based on the field of view and 

resolution. One specific tile through two-dimensional coordinates and level number 

obtains unique identification. 

When users request tiles, according to the user's current window angle center and the 

window boundary latitude and longitude range to determine the required tiles’ resolution 

level (level) and two dimensional coordinate range ({Xmin,Ymin} to {Xmax,Ymax}). On 

the client side, cache index and tile data are stored separately. The tile cache index can 

uniquely determine if a tile is present in the cache and where the tile is stored. When 

building tile index, the hierarchy, row and column of tile data are encoded into a string 

(TileID). Each tile data has a unique TileID which can uniquely identify a tile map block: 

𝑻𝒊𝒍𝒆𝑰𝑫 = (𝒊, 𝒋, 𝒍𝒆𝒗𝒆𝒍)                                     (1) 

Where level represents tile hierarchy, i represents tile’s line number in the level 

hierarchy, j represents tile’s column number in the level hierarchy. TileID(i,j,level) 

represents the encoding of tile whose hierarchy is level, line number is i and column 

number is j. To quickly locate the index entry, index entry uses hash storage. 
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Figure 1. Tile Pyramid Model 

Assume index term is ind and TileID is the keyword for ind. TileID is the unique 

identification of ind. Assume index is an index set for storing data in the cache: 

∀ 𝒊𝒏𝒅 𝝐 𝑰𝒏𝒅𝒆𝒙 , 𝒊𝒏𝒅 = (𝑻𝒊𝒍𝒆𝑰𝑫, 𝒔𝒊𝒛𝒆, 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚, 𝑻𝒍𝒂𝒔𝒕, 𝑻𝒇𝒊𝒓𝒔𝒕, 𝒍𝒆𝒗𝒆𝒍, 𝒗𝒂𝒍𝒖𝒆)  (2) 

 ind(TileID) ϵ Index represents index entry ind whose key is TileID in index set 

Index. size represents space occupied by the tile. T_first represents the first time the tile is 

cached and T_last represents the last time the tile is hit. frequency represents hit counts of 

the tile after T_first. In order to avoid the sudden increase in frequency when tile data is 

requested multiple times in short time which impact tile value evaluation, cache 

protection policy is set for tiles cached. Static time is defined with T_least. A tile’s 

frequency only increased by 1 if the tile is hit repeatedly within time T_least. value 

represents value of the cache entry which is evaluated by algorithm in each cache 

replacement. 

 

3. VEAT Strategy 
 

3.1 Determination of Cache Update Value of VEAT Algorithm 

When new tile enters and the cache space cannot contain it, tiles of low cache value in 

the cache area should be replaced through cache replacement strategy. The traditional 

cache replacement strategies are as follows [11-12]. In LRU (Least Recently Used) 

strategy, every tile’s last hit time is recorded and tiles in the cache area that have not been 

hit for the longest duration are replaced and excluded from the cache area. In LFU (Least 

Frequently Used) strategy, the times of tiles being hit are recorded and tiles with the 

fewest times within a specific period are replaced and excluded from the cache area. In 

FIFO (First In First Out) strategy, tiles that first enter the cache are replaced and excluded 

from the cache area. In SIZE algorithm, the tile with the greatest performance indicators 

or a couple of tiles with relatively greater indicators are replaced and excluded from the 

cache area. 

VEAT algorithm uses cache update value to replace cache. Firstly, the evaluation 

model of cache value is determined, in which value of each tile is evaluated in order to 

maximize the total cache value of all tiles stored in the cache. The request intensity of 

tiles is closely related to the visit frequency determined by times of history visits of tiles 

Fre(TileID) and survival time in cache T_present-T_first (TileID). Taking times of being 
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hit in history and survival time into account, the cache value of one tile is determined as 

follows: 

{
𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = (

𝑭𝒓𝒆(𝑻𝒊𝒍𝒆𝑰𝑫)

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕−𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫)
)𝝈

𝑻𝒊𝒍𝒆𝑰𝑫 =  (𝒍𝒆𝒗𝒆𝒍, 𝒊, 𝒋)
                                       (3) 

where 𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) is the cache value of the tile in i line , j row and level hierarchy, 

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕 is the time of the system at present, 𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫) is the time the tile first 

enters cache, and Fre(TileID) is the visit frequency during its cache time, and δ is the 

accommodation coefficient of the equation and is fitted by experimental data. 

Different solution and geographical ranges of multi-solution tiles affect the elaborate 

degree and comfort degree of tile map, which makes multi-solution tiles call frequency be 

variation in different levels. In network spatial geographical information service, some 

users prefer some specific levels’ tiles data. As a result, when cache value is the same 

determined by other factors, users are estimated to use tiles that can bring them more 

comfort. The comfort degree function is set as M(level) which indicates the comfort 

degree in level hierarchy: 

𝐌(𝐥𝐞𝐯𝐞𝐥) = 𝜷 × 𝑪(𝒍𝒆𝒗𝒆𝒍)                                                (4) 

C(level) is the level factor, suggesting the visit rate in history of level. Users prefer data 

that bring them maximum comfort when visiting tile data with different resolution levels 

and identical geographical ranges. Consequently, level factor C(level) can be regarded as 

positively correlated to comfort factor M(level). Level factor can be calculated as follows: 

𝑪(𝒍𝒆𝒗𝒆𝒍) =
𝑺(𝒍𝒆𝒗𝒆𝒍)

∑ 𝑺(𝒍)𝒏𝒖𝒎
𝒍=𝟎

=  
𝑺(𝒍𝒆𝒗𝒆𝒍)

𝑺𝑼𝑴
                                            (5) 

where S(level) refers to the total number of tiles in level hierarchy in the cache, and 

num refers to total number of levels. Therefore, ∑ 𝑺(𝒍) 𝒏𝒖𝒎
𝒍=𝟎 represents the total number of 

tiles in all resolution levels in cache, which means that the total number of tiles in the 

cache is represented by SUM. 

Introducing comfort degree function M to the evaluation model of cache: 

{
𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = 𝜶 × (

𝑭𝒓𝒆(𝑻𝒊𝒍𝒆𝑰𝑫)

𝑻𝒑𝒓𝒆𝒔𝒆𝒏𝒕−𝑻𝒇𝒊𝒓𝒔𝒕(𝑻𝒊𝒍𝒆𝑰𝑫)
)

𝝈

+𝜷 × 𝑴(𝒍𝒆𝒗𝒆𝒍)𝜸

𝑻𝒊𝒍𝒆𝑰𝑫 =  (𝒍𝒆𝒗𝒆𝒍, 𝒊, 𝒋)

                                   

(6) 

where α, β, and γ are accommodation coefficients of the equation and fitted by 

experimental data. And α+β=1. 

When a tile is requested, tiles that have same resolution level with requested tile and 

the space distance from the tile within limits are called association tiles. Windows used by 

users are usually rectangle. It is hypothesized that window is made up of row*column 

tiles. When tiles data need to be loaded into the windows, row*column tiles whose spatial 

location is proximate in the same resolution level should be loaded. When one tile is 

requested, tiles in the same resolution level and proximate two-dimensional coordinates 

are very possible to be requested simultaneously. After one tile is requested, when users 

carry out translation operation of maps, tiles close to tiles requested are also very likely to 

be requested due. Therefore, cache value of tiles is influenced by cache value of relation 

tiles in addition to inherent properties. 

Since the wide range of association tiles with the specific tiles and difficult to specify, 

calculation of all association tiles brings too much complexity. As a response, this paper 

selects representative tiles of four directions as relation tiles. T(level,i,j) refers to the tile 

of i line and j row of level hierarchy. If T(level,i,j) is the center of the window which 

suggests the tiles in window rectangle area ranging from T(level, i-row+1, j-column+1) to 

T(level,i+row-1,j+column-1). At the same moment, the likelihood of users carrying out 

translation operation in up, down, left, right directions is regarded as identical. Tiles 

selected in the four directions are T(level,i-(row-1)/2,j-(column-1)/2)，T(level ,i-(row-1)/2, 
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j+(column-1)/2), T(level, i+(row-1)/2,j-(column-1)/2) ， and T(level, 

i+(row-1)/2,j+(column-1)/2) respectively, in which “/”suggests exact division. 

Introducing association tiles to the evaluation of cache value: 

𝑹𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) = 𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) ∗ 𝑹𝟏 + (𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 −
𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 −

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 −

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 +

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 +

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 −

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
) + 𝑯𝒍𝒆𝒗𝒆𝒍 (𝒊 +

𝒓𝒐𝒘−𝟏

𝟐
, 𝒋 +

𝒄𝒐𝒍𝒖𝒎𝒏−𝟏

𝟐
)) ∗ 𝑹𝟐                                                         (7) 

where 𝑹𝑯𝒍𝒆𝒗𝒆𝒍(𝒊, 𝒋) is the association cache value of tile T(level,i,j), 𝑹𝟏、𝑹𝟐 are 

regulatory factors of the equation and fitted by experimental data, and 𝑹𝟏 +𝑹𝟐=1. When 

tiles of cache are replaced, association value of tiles is regarded as evidence of 

replacement. 

 

3.2 Knapsack Problem Abstraction with the VEAT Strategy 

Due to limited cache space, when cache value of one tile is considered, the space that 

the tile takes up should also be taken into account. This question can be otherwise solved 

by 0/1 knapsack problem[13]. The maximum bearing capacity of a knapsack is W, n 

items are provided, the weight of item i is 𝒘𝒊, and how to select items to maximize the 

total value without exceeding the maximum bearing capacity should be solved. 

If the total number of tile Indexes in the cache is N, TileID(z) represents the TileID of 

the z index, the size of the tile corresponding to TileID is Size(z), and the association 

cache value of the tile is RH(z). The cache space can be abstracted to the size of the 

knapsack which is V. The state variable of the tile is State(z). When tiles are selected into 

the cache, State(z) is 1, otherwise it is 0. The total value of all the tiles of the cache is 

∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 , and the total space they take up is∑ 𝑺𝒊𝒛𝒆(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵

𝒛=𝟏 . The 

solution to 0/1 knapsack problem maximizes the total cache value 

∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏  through determining the value of State(z)(z=1,2,3,…,N). 

{

𝑴𝒂𝒙 ∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏

𝑺𝒕𝒂𝒕𝒆(𝒛) ∈ *𝟎, 𝟏+    𝒛 ∈ *𝟏, 𝟐, 𝟑, … , 𝑵+

 ∑ 𝑺𝒊𝒛𝒆(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏 ≤ 𝑽

                                   (8) 

 

3.3 Ant Colony Algorithm Solution with the VEAT Method 

To enlarge the total value of cache as much as possible, and to avoid the convergence 

to a locally optimal solution, ant colony algorithm, a member of the heuristic algorithm 

family, is applied to solve computational problems. Ant colony algorithm is a simulated 

evolutionary algorithm which is proposed based on the behavior of ants in the natural 

world
 
[14]. While passing a trail, ants would lay down pheromone to send information to 

other ants, the existence and strength of which can be sensed within limits. The 

pheromone density will become higher with the increase in ant number, and over time, the 

pheromone will evaporate. 

Ants would leave such pheromone on something, tiles in this case, and once choices 

are completed, they would find out a set of, or sets of, optimum solutions, whose tiles 

would then be left with more pheromone than others. Pheromone, therefore, can be 

updated as follows when ant colony algorithm is applied to solve the 0/1 knapsack 

problem: 

𝑻𝒛(𝒕 + 𝒑) = (𝟏 − 𝝆)𝑻𝒛(𝒕) +△ 𝑻𝒛                                          (9) 

𝑻𝒛(𝒕) is the amount of pheromone on tile Z at t. ρ∈(0,1) is the pheromone 

evaporation coefficient，(1-ρ) is the pheromone residual coefficient，and △ 𝑻𝒛 is the 

amount of pheromone added within p. The added amount of pheromone △ 𝑻𝒌 can be 

represented as:  
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△ 𝐓𝐳 = {
𝛒𝐓𝐳(𝐭) + 𝟎. 𝟏, 𝐳 𝐢𝐬 𝐭𝐡𝐞 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐫𝐨𝐮𝐧𝐝

−
𝐒𝐢𝐳𝐞(𝐳)

𝐕
𝛒𝐓𝐳(𝐭), 𝐳 𝐢𝐬 𝐧𝐨𝐭 𝐭𝐡𝐞 𝐨𝐩𝐭𝐢𝐦𝐚𝐥 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐫𝐨𝐮𝐧𝐝

   (10) 

The influence of tile size on pheromone is considered in this formula. The bigger the 

tile, the more cache storage space it occupies; under the condition that nothing is hit, a tile 

that occupies more cache space has higher pheromone evaporation coefficient. 

In the ant colony algorithm, the probability of each tile being selected by ants is called 

selection probability. The probability of ant k selecting tile z at t is: 

𝑷𝒛
𝒌(𝒕) = {

𝑻𝒛
𝝁(𝒕)𝜼𝒛

𝝊(𝒕)

∑ 𝑻𝒎
𝝁 (𝒕)𝜼𝒎

𝝊 (𝒕)𝒎∉𝒕𝒂𝒃𝒖𝒌

, 𝒛 ∉ 𝒕𝒂𝒃𝒖𝒌

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒔
                                  (11) 

𝒕𝒂𝒃𝒖𝒌 is a tabu list, in which tile that has been judged by ant k is deposited and 

cannot be selected any more.  𝜼𝒛(𝒕) is a heuristic function, representing the desirability 

of ant k’s independent choice of tile z. μ is a pheromone factor representing the influence 

of pheromone on ants’ selection results, and υ is a desirability heuristic factor representing 

the influence of cache content property on ants’ selection results. The bigger the value of 

μ，the more likely for later ants to follow the former ones selections; the bigger the value 

of υ, the more likely for ants to use heuristic function to make independent selection. 

The heuristic function 𝜼𝒛(𝒕) represents the judgement made by ants according to the 

value of cache tile without the influence of pheromone. Based on the associated cache 

value of tile and the size of tile, the heuristic function can be defined as:  

𝜼𝒛(𝒕) =
𝑹𝑯(𝒛)

𝑺𝒊𝒛𝒆(𝒛)
                                (12) 

 

3.4 VEAT Algorithm Procedure 

When a new tile needs to gain access to the memory cache or local cache, and the 

cache space is insufficient, cache replacement of contents can be carried out based on the 

VEAT algorithm, so that the total value of data stored in the cache can be maximized and 

the hit rate of tile can be increased. Since the tiles called in the client windows are 

consecutive, requests for multiple consecutive tiles will generally be sent. If N new tiles 

are requested at the same time, the cache replacement algorithm needs to be executed for 

N times. To improve the algorithm performance, this paper carries out an integrated 

processing of those multiple tiles that are requested consecutively, together with only one 

cache replacement. 

Descriptions of the VEAT Algorithm: 

 1）When a new tile needs to gain access to cache, cache objects will be created and 

initialized based on the attribute information of this new tile, such as level, line number, 

column number and size. TilesID should be determined according to the level, line 

number and column number of the tile, the frequency of cache should be initialized as 1, 

and the built-up time of cache should be recorded. 

 2）Whether the cache space can be used to store this tile? If the cache space is 

insufficient, then please go to step 3; if not, store this tile. 

 3）Initialize the parameters of the ant colony algorithm. The pheromone on each tile 

𝑻𝒛(𝒕) should be initialized as a fixed value 𝑻𝟎; the maximum iteration number of this 

algorithm should be set as TMAX and the number of ants should be set as 𝑵𝒂𝒏𝒕. The tabu 

list of all ants 𝒕𝒂𝒃𝒖𝒌 should be initialized as null, and the solution set list of each ant 

 𝒓𝒆𝒔𝒖𝒍𝒕𝒌 should also be initialized. Such parameters as 𝛅、𝜶、𝜷、𝜸、𝑹𝟏、𝑹𝟐、υ、μ should 

be given a value. 

4）According to formula (11), ant k calculates the probability of every tile being 

visited and gets 𝑷𝒛
𝒌(𝒕). Based on the probability value, ant k then chooses the next tile z 

to be stored into cache and adds the tile z to the tabu list 𝒕𝒂𝒃𝒖𝒌. Try to put tile z to the 

solution set list 𝐫𝐞𝐬𝐮𝐥𝐭𝐤. If the total volume of tiles in the solution set list is smaller than 
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cache capacity V, then add tile z to this solution set list by changing the State (z) into 1; if 

not, new judgement should be made until all remaining tiles cannot be added to the 

solution set list any more. Cycle this process until all ants obtain the solution set. 

 5）Find out the solution set that can maximize the value of ∑ 𝑹𝑯(𝒛)𝑺𝒕𝒂𝒕𝒆(𝒛)𝑵
𝒛=𝟏  in 

the solution sets of all ants. If the total cache value of this solution set is bigger than that 

of the global optimum solution, then replace the current optimum solution. If the iteration 

number is smaller than TMAX, then update pheromone and go to step 4); if not, go to step 

6). 

 6）If the newly arrived data is in the optimum solution, then store it into cache and 

replace the data that is not in the optimum solution with the newly arrived data; if not, do 

not store the newly arrived data. The VEAT algorithm execution ends. 

 

4. Experiment Evaluation 
 

4.1 Experiment Environment 

This experiment applies Fiddler to collect the request log data of users who do not set 

cache, and 213,200 records are collected, with a storage size of 1.747 G. The resolution of 

tiles is 256×256, the biggest tile occupies 26.6 kb, and the smallest one occupies 197 b. 

SimpleScalar is used as the simulation platform in the experiment. The experiment 

environment is Lenovo T440，CPU 1.60GHz，RAM 4G. First, the log data of users are 

processed to extract the level, line number, column number and size of tiles, and request 

time. Based on these data, the process of calling tiles on the client will then be simulated. 

In this process, each tile will be evaluated with the VEAT algorithm to turn the relation 

between cache space and cache tiles into the 0/1 knapsack problem; if the cache space is 

insufficient, then apply the ant colony algorithm to carry out a cache replacement. 

Parameter settings in the VEAT algorithm are as follows: 

1）In the experiment, the values of σ and γ are fitted, and when 0.8 is chosen for σ 

and 0.6 for γ, optimal results can be achieved. 

2）α and β stand for the influence ratio of the factor of tile level. When 0.8 is chosen 

for α, the average hit rates of cache are optimal, so 0.8 is chosen for α and 0.2 for β. 

3）The values of 𝑹𝟏 and 𝑹𝟐 stand for how much influence associated tiles can 

exert on the associated value of tiles. 0.9 is chosen for 𝑹𝟏 and 0.1 for 𝑹𝟐. 

4）In the ant colony algorithm, 0.4 is chosen for parameter μ, and 0.6 for parameter υ. 

 

4.2 Experiment Results and Analysis 

The processing results of users’ request log data are set as data set A, data set B, data 

set C and data set D. FIFO, LFU, LRU and VEAT are applied respectively to each set, to 

simulate the calling of tiles under the condition of different cache capacities, and to 

calculate their byte hit rates and tile hit rates. Figure 2 and Figure 3 show the byte hit rates 

and tile hit rates of the four algorithms applied under the condition that the cache sizes are 

10M, 20M, 30M, 40M, 50M, and 60M. 

The experiment results in Figure 2 and Figure 3 indicate that both byte hit rates and 

tile hit rates of the four algorithms will become higher with the increase in cache size. 

When the cache capacity is enlarged to a certain point, however, the increase of cache hit 

rates will level off, and the cache hit rates of the four algorithms get close to each other. 

Among the four algorithms, FIFO has the lowest cache hit rates in most cases, with 

values far smaller than those of the other algorithms. LRU is better than FIFO, which 

considers making adjustment to cache items after cache hits. LFU is, however, better than 

LRU, which can avoid the influence of periodical and accidental events on LRU hit rates. 

VEAT has cache hit rates higher than the other three algorithms do, especially so or more 

so when the cache capacity is low. VEAT algorithm not only considers such factors as the 
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time and the space tiles occupy, but also the influence of such spatial factors as tile level 

relations and associated tiles on the hit rates; and besides, this algorithm also considers as 

much valuable information as possible that is related to tile data. Optimal results, 

therefore, are achieved for different data sets under the condition of different cache 

capacities. In general, the order from high to low of the cache hit rates of the four 

algorithms is VEAT, LFU, LRU and FIFO. 

 
Figure 2. Byte Hit Rate 
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Figure 3. Tile Hit Rate 

This experiment shows the results of byte hit rates and tile hit rates of the four 

algorithms. In addition, another experiment is carried out to explore the cache hit rates of 

the four algorithms at every stage in the data reading process. For the limit of space, this 

paper only mentions the simulation results of the byte hit rates and request hit rates in the 

recording process in the data set B, achieved by the four algorithms under the condition of 

20M cache capacity, as shown in Figure 4. 

Figure 4 indicates the variation of cache hit rates in the recording process in the data 

set B. The experiment results suggest that the cache hit rates of the four algorithms finally 

level off after they fluctuate for a period of time. VEAT algorithm gains an edge in cache 

hit rates when 10% to 20% of data is read, indicating that this algorithm can adjust the 

value of tiles based on a small number of tile requests to obtain relatively high cache hit 

rates. 

 

Figure 4. Trends of Cache Hit Rate of Data Set B 



International Journal of Hybrid Information Technology 

Vol. 10, No. 7 (2017) 

 

 

20   Copyright © 2017 SERSC 

5. Conclusion and Discussion 

In this paper, we design a tile cache index, and propose a cache replacement policy 

named VEAT for tile which combines the level of relationship and tile correlation degree. 

In VEAT, cache capacity and tiles’ associated value are abstracted as 0/1 knapsack 

problem and solved with ant colony algorithm. 

The results show that VEAT algorithm is superior to LFU algorithm in byte hit rate and 

tile hit rate. And, VEAT algorithm combined with multiple factors can still play its 

advantage to get a higher hit rate while FIFO, LRU, LFU algorithms are limited when the 

cache space is limited or the amount of data is less. 

In the experimental results of byte hit rate and tile hit rate, the byte hit rate is higher 

than the tile hit rate with the same data set and the same cache capacity. For this result, 

this paper makes a hypothesis that users tend to access tiles that contain large amounts of 

information. In the next step, we will focus on the influence of tile size, location, and the 

level of tiles on the tile value. 
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