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Abstract 

The constitutive modeling relation of finite characteristic ratio theory (FCRT) for geo-

materials is presented. The finite characteristic ratio L, the ratio of a material internal 

measurement which represents statistic mechanical properties of a geo-material to the 

material external measurement, is considered as a phenomenological variable concerned 

with irrecoverable process; furthermore, the FCRT constitutive model for dilatancy of 

sand is originally proposed, and the accurate determination method of the only four non-

elastic material parameters in the model are presented based on the deformation feature 

of sand. The dilative shearing hardening response of sand is described correctly; 

especially, the relationship among the responses of sands with different particle size is 

initially formed upon the FCRT model. The comparing results between the FCRT model 

and tests shows the FCRT model can describes the different properties of sands which are 

of different grain sizes naturally and the depiction of the model is conformed well by the 

sand tests. 
 

Keywords: Finite characteristic ratio theory (FCRT), Geo-materials, Constitutive 
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1. Introduction 

It is well established from numerous laboratory tests and engineering practices that the 

mechanical responses of geo-materials mainly depend on the meso-scale (granular scale) 

mechanism for most soils [1-8], and even macro-scale mechanism for some rocks [9-12]; 

in other words, the characteristic ratio L of a material point (internal) characteristic 

measurement to the material or engineering structure’s external measurement is not small 

enough. Then, the analysis of a geotechnical problem might not include enough material 

points (namely volumetric elements in continuum mechanics) to adequately represent the 

mechanical behaviour of the whole. It means that the consideration of the “mathematical 

point” on the volume element might not be correct in geotechnical engineering generally. 

Therefore, a new descriptive method or theory is required to be developed for 

consideration of the effects of inter and/or outer characteristic measurement for a geo-

material on the mechanical responses of the geo-material. 

 

2. Basic Constitutive Relations of Finite Characteristic Ratio Theory  

The Finite Characteristic Ratio Theory (FCRT) was originally presented based on the 

observations [1] that ①  the material point which  represents statistic mechanical 

properties of a geo-material is a finite geometry point but is not a mathematical point, ② 

the finite characteristic ratio L defined above is a basic phenomenological variable which 

is related to the irrecoverable deformation and energy dissipation, and ③  L can be 

expressed as a function of stress or strain, temperature, and internal variables. With the 
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above concepts, the new constitutive relations are derived within the general frame of 

thermodynamics with internal variables. 

For determining the mechanical effect of the particles in geometrical size and the 

number of particles in any object or material, the characteristic length ratio L is defined as: 

/p sL L L    (1) 

where Ls is the characteristic length for any object or material, termed the external 

characteristic measurement, related to the initial property of any object or material; Lp 

represents the size of a particle group or volume element, which represents statistically 

the mechanical properties of the object at a time, termed the internal characteristic 

measurement. It is usually expressed as a function of stress ij or strain ij, temperature T 

and internal variable q. Similarly L also depends on those quantities mentioned above, 

and is expressed by the following relation: 

 , , ; , ,ij i jL f T q T q     (2) 

Usually it is assumed that free energy inside any object consists of two parts: reversible 

and irreversible deformation and they are: 

r iG G G     (3) 

where G is the Gibbs free energy; r and i represent the reversible and irreversible 

components respectively; Gr is the elastic energy and Gi is the dissipative energy, which is 

a function of the characteristic length ratio L: 

 i iG G L    (4) 

where L is replaced by its initial value L0 and then Gi is developed by Taylor’s series: 

         
2' ''

0 0 0 0 01/ 2 .......i i i iG G L G L L L G L L L        (5) 

Those terms which are higher than second order are neglected because L is small. So 

equation (5) is written as: 

         
2' ''

0 0 0 0 01/ 2i i i iG G L G L L L G L L L       (6) 

The first term Gi(L0) for equation (6), under an external condition represents the 

dissipation energy corresponding to the irreversible deformation process of an object. 

Without considering the preloading pressure history of a solid mass, Gi(L0) is zero and the 

second order tensor will be neglected if L is very small. Finally Gi(L) can be expressed as: 

    '

0 0 0

i i iG G L G L L L      (7) 

From reversible thermodynamics,  

/ij ijG       (8) 

Alternatively, it may be expressed at small strain level as: 

r i

ij ij ij       (9) 

where r
ij is reversible strain and i

ij  is irreversible strain. Combining equation (3) with (8) 

and (9), these two important items can be given as follows: 

/r r

ij ijG       (10) 
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/i i

ij ijG       (11) 

where Gi is given by equations (5), (6) or (7). Equations (8), (9), (10) and  (11), and (5), (6) 

or (7) are the basic constitutive relations of the finite characteristic ratio theory. The 

following evolution relation is derived for the condition of a homo-thermal process [9]: 

 / ijdq dz f     (12) 

where z is the so-called intrinsic time, which is a function related to the irreversible 

deformation accumulation. 

 

3. A Fcrt Model for Geo-materials 
 

3.1 A Fcrt Model 

The characteristic length ratio L for geo-materials has a close correlation with 

deviatoric stress, mean stress (or static water pressure) and internal variables. In order to 

evaluate the dilative shear failure and hardening property of the material, L in the 

consistent condition, will be given as follows if the temperature is constant: 

 2

0 1 1 2 2 3 4 1ij i j ij jL L a I a J a S q a q qi        (13) 

where I1 is the first stress invariant, J2 the second deviatoric stress invariant, Sij the 

deviatoric stress, q the internal variable of second order, which is usually expressed by the 

irreversible volume accumulation. a1, a2, a3 and a4 are positive constants for different and 

L0 is the initial value of L. Combining equation (7) with (11) and (13), yields a new 

relation for i
ij  as follows: 

 1 1 2 32i

ij G kk ij ij i jL a a S a q        (14a) 

where LG1=Gi ′(L0) L0 is the non-negative constant, which should be multiple of L0, 

kk=I1,and  is Kronecker . 

Another relation is obtained by combining equation (12) with (14a): 

  1 1 2 32i

ij G kk ij i j ijd L a d a dS a F dz      
 

  (14b) 

where F(ij) is a tensor function which is related to the deviatoric stress, and mean stress, 

in general. Considering a non-coupling relation of the stress’ deviatoric quantity with the 

volumetric quantity, a new relation should be as follows: 

     1 2i j i j kkF F S F      (15) 

Then the irreversible volumetric deformation can be expressed as: 

 

 

1 1 3

1 1 3

2

or

2

i

kk G kk kk

i

kk G kk kk

d L a d a F dz

d L a d a dq

  

 

   

 

   (16a) 

In total quantity form, we have: 

 1 1 32i

kk G kk kkL a a q      (16b) 

As the internal variable is usually expressed in the irreversible volume accumulation, 

the deviatoric part of the strain is:  

1 2

i

ij G i jde L a dS    (17a) 

or  
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1 2

i

ij G i je L a S    (17b) 

 

3.2. Discussion of Parameters in the Constitutive Model 

The results from normal compression and cyclic-loading tests have shown that both 

medium dense and dense saturated sand, in drained or un-drained conditions, will have 

the properties of shearing dilatancy and hardening at certain stress levels [8]. After soil 

samples change in phase and enter a dilatancy zone, the ratio of deviatoric stresses to 

confining pressure tends to be in a critical state (a failure plane in three-dimensional stress 

state), and remains a constant, which increases with deviatoric stresses q, the mean 

normal pressure p, as shown in Figure 1. 

Dilative shear failure will occur with an increase of shearing strain, and which in 

practice could be more easily caused by a strong earthquake for example. It is imperative 

to set up a constitutive relation for describing this failure. The purpose of this paper is, 

with reference to the finite characteristic ratio theory, to consider how to set up the 

appropriate constitutive relations and identify their natural meaning. 

 

 
 

 

Figure 1. The Process of Dilative Shear Failure of a Soil Mass 

In order to explain the natural meaning of the parameters in the constitutive relations 

mentioned earlier, triaxial tests for soil sample in un-drained condition will be discussed. 

As it is well known that compressive stress or strain are positive from the accustom 

expression of geomechanics. 

In the axi-symmetric stress condition, combining equation (16) with (17), it can be 

solved through a few mathematic steps: 
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     2 3 1 3/ 2 / 3 6 /kkdq dqD a a a a MD     (18) 

/i i

kk qD d d     (18a) 

11 33 / 3kkq p        (18b) 

/M q p    (18c) 

 11 332 / 3q       (18d) 

And the rest are the same as those relations mentioned above (note: dqkk is still the 

increment of internal variable. dq is the increment of stress difference q, as expressed in 

Figure1).  

In the following, the property of dilative shear failure will be employed to determine 

the parameters of the constitutive model mentioned above. Figure 1 has shown that there 

is a criterion of dilative shear failure in un-drained condition: 

0, 0, 0kkq Mp d dp       (19) 

From the elastic constitutive relations, we will find: 

 / , / 3r r

kk qd dp K d dq G      (20) 

where K and G are elastic volume modulus and shear modulus respectively and another 

form for equation (20) is: 

,r i r i

kk kk kk q q qd d d d d d            (21) 

Combining equation (19) with (20) and (21), another relation is obtained: 

 / 1/ 3 1/ ( )qd dq G KMD      (22) 

Comparing equation (18) with (22), we find: 

 3 1/ 6K a a    (23a) 

 3 2/ 2G a a    (23b) 

/q kkd dq D     (23c) 

where a1 is the parameter corresponding to response of materials under mean pressure, a2 

is a coefficient related to the material’s shape change, and a3 change of inner structure. 

Equation (16), (17) and the first two of equation (23) (4 equations in total) show that it 

is easy to obtain Sij from normal tri-axial tests and not so hard to determine i
kk and ei

ij 

from cyclic-loading tests, and qkk is determined through the last formula of the equation 

(23) or (12). The elastic bulk modulus K and the shearing modulus G are obtained from 

the equal pressure test in three directions and pure shear test. Finally there are only four 

constants a1, a2, a3 and a4 to be determined in these four dependent equations. So these 

four constants can be completely given by the four equations mentioned. So far, all of the 

parameters required for determining the dilative shear failure can be determined. 

From the viewpoint of the process of determining of the parameters of the constitutive 

model mentioned, there is clear natural meaning for each parameter, which can prevent 

them from being determined arbitrarily.  

Under the tri-axial condition, when i=1, j=1，equation（17a）becomes: 

1 2

2

3
q Gd L a dq     (24) 

where 
qd  is the deviatoric strain-increment, and dq is a deviatoric stress-increment 

defined as in soil mechanics; 
1GL  is related to the grain (or inner) size of the soil particles, 

and also related to the external characteristic size, which is the ratio between the two 

values. According to the basic meaning, it is taken as: 
1
4

50
1 1 50 1( , )G G

d
L L d b  


   (25) 
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where 1b  is a material parameter related to the characteristic ratio,d50 is the average grain 

size of soil,   is the outer characteristic size and here is taken as the diameter of the tri-

axial sample. 

In addition, if the second order of L is maintained, (in the case of large-sized particle 

and the soil sample unchanged in size), the irreversible strain  can be kept, and the 

irreversible strain  only consisting of first order of L can be expressed as: 

  1 2 01 /iL i

ij G G ijL L L L         (26) 

where   00

''

2 LLGL i

G   is a material constant which is function of L0 , non-negative. 

Obviously, always
0LL  , then   1 2 01 / 1G GL L L L      ,so 

iL i

ij ij  . 

Equation (27) shows that, if the stress and classification of the sand are unchanged, the 

irreversible deformation for a large-sized soil mass is higher than that for a small-sized 

one. Thus it can predict the influence of the material’s internal structure on its properties. 

It is thought to be one of the important features of finite characteristic ratio theory. 

 

4. Tri-Axial Tests and Determination of the Model Parameters  
 

4.1 Compression 

The Auto-controlling KTG Triaxial Testing Equipment is strain controlled. Test types 

including undrained tests, consolidated-undrained tests, and consolidated-drained tests etc. 

could be selected by the computer controlling programme, and the shear strain rate could 

be adjusted depending upon the test type. The test data are stored within the hard disk of 

computer. 

The dry density of the sands and the initial condition of the tests are shown in Table 1. 

The test results are presented on Figure 2 and Figure 3. 

Table 1. The Dry Density of the Sand Samples and the Initial Condition in 
Tests 

Sand type 
Dry density 

(g/cm3) 

Sample 

name 

Moisture 

Content 

(%) 

Initial 

void 

ratio 

Initial confine 

Pressure(kPa) 

Back 

Pressure 

(kPa) 

Degree of 

saturation 

(%) 

Coarse 1.435 
cs3 41.6 0.598 200 280 99 

cs5 40.9 0.587 200 280 99 

Medium 1.434 
zs1 43.2 0.620 200 200 99 

zs2 41.7 0.599 200 240 99 

Fine 1.325 
xs2 51.6 0.685 200 260 99 

xs3 48.5 0.642 200 200 99 
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Figure 2. (σ1- σ3)-ε1 Relations for the Coarse, Medium and Fine Sand from 
Triaxial Tests  
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Figure 3-1. εv－q/p Relations for the Coarse, Medium and Fine Sand from 

Triaxial Tests  
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Figure 3-2. The ε1-εv Relations for the Coarse, Medium and Fine Sand from 
Triaxial Tests 
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4.2. Determination of Model Parameters 

 

4.2.1 Calculation Relation under Tri-axial Pressure Condition 

Since the same constitutive model is adopted for the coarse, medium and fine sand the 

analysis is shown for the medium sand sample (No. zs1）as an example. The analyses for 

the other sands are carried out similarly same as that. 

Under the tri-axial condition, since ，σ22=σ33=const, σ11= is variable，then, the total 

axial strain 11  is expressed by the  recoverable and irrecoverable part 
r

11  ,
i

11 , 

11 11 11

r id d d       (28) 

The recoverable part can be expressed by linear elastic relation as  

11 11 33

1
( 2 )rd d d

E
        (29) 

Under constant confining pressure,  i.e.  

11
11

r d
d

E


     (30) 

The irrecoverable part under a constant confining pressure (
33 0d   ) is expressed 

according to formula (14)   as  

11 1 1 2 11 3

2
[(2 ) ]

3

i

G kkd L a a d a dq       (31) 

 

4.2.2. Determination of the Model Parameters 

The target function is taken as for determination of the parameters:  
1

* 2 2

1

( ) ( ( ( ) ) )
m

i i

i

F X X 


     (32) 

where )(Xi  is the calculation value,
*

i  is a test value, and X is a reverse-analysis 

parameter. The target function should be minimized for seeking for X under a certain 

condition, i.e. 

 

(1) Determination of the parameter 2a   

From formula (24), we have 

2

1

3

2

q

G

d
a

L dq


    (33) 

Due to 
qd  can be expressed by dq , i.e. )(dqd q   , 

2a  could be expressed as the 

function of dq , i.e.  

2 ( )a dq    (34) 

Upon the test data analyses, the expression of 2a  is obtained as 

2

2 0 0 0 1 0( ) / whenGa a b q c q L q q       (34a) 

2 1

2 0 0 0 1 0( ) / whenGa a b q c q L q q      (34b) 

The values of parameters q0, a0, b0 and c0 for the coarse, medium and fine sand are 

shown in Table 2. 
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Table 2. Values of Parameter 
2a  for the Coarse, Medium and Fine Sands 

Sands q0(kPa) Relation a0 b0 c0 

coarse 502 
q≤q0 -4.2859E-5 3.3887E-7 -1.5486E-10 

q＞q0 5743.9 70.328 -0.12161 

medium 748 
q≤q0 -1.1132E-5 9.8955E-8 -1.9731E-11 

q＞q0 -64740 255.24 -0.19212 

fine 986 
q≤q0 9.4859E-6 -4.4990E-8 6.4878E-11 

q＞q0 -3496.1 6817.9 -3.2945 

 

(2) Determination of the evolution function 
kkdq  

From equations (12) and (15), we have 

( )kk kkdq F dz     (35) 

The above formula can be also expressed as follows:  

( , )kk kkdq H d q    (36) 

Based on test results we get 

 
2

( )( )i i

kk kk kkdq a EXP b q c d d e d          (36a) 

The values of parameters q0, a, b, c, d and e are shown in Table 3.  

Table 3. The Parameter Values of Evolution Function 
kkdq  for the Coarse, 

Medium and Fine Sands 

Sands q0 (kPa) Relation a b c d e 

coarse 502 
q≤q0 0.04202 0.00646 

0.00298 -0.1389 -7.1428 
q＞q0 1 0 

medium 748 
q≤q0 0.23067 0.00179 

0.00557 -0.1470 -16.7340 
q＞q0 1 0 

fine — — 1 0 0.00713 -0.1125 -6.4335 

 

4.3 Calculation and Analysis  

For the coarse sand, d50=1.5mm (take the average values of 1~2mm)，=39.1mm,and 

Young’s modulus E=32MPa，Poisson’s ratio   =0.42  were got from the test. 

To combine formula (23) with the relations of elastic constants in elasticity, we have  

3

13(1 2 ) 6

aE
K

a
 


   (23a) 

3

22(1 ) 2

aE
G

a
 


   (23d) 

From formula (25) 
2

1 12.830 10GL b     (37) 

Then, based on (23b)  
3

4

3 2 2 2

32 10
2 2 2.2536 10

2(1 ) 2(1 0.42)

E
a a a a




       

 
  (38) 

Combining equation (23a) with (38): 

3
1 2 2

3(1 2 ) 1 2 4

6 2(1 ) 71

a
a a a

E

 



 
   


   (39) 
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The following demonstrates the calculation process. For the initial confining 

pressure
11 22 33 200kPa     , the first level loading is carried out: 

(1) (1)

11141 , 141 ,q kPa d kPa     (40) 

then , 

(1) 11 332
247

3
p kPa

 
     (41) 

and from the test 
(1) (1) 20.13 10kk vd d      , therefore, from equation (34a), 

5

2 16.51 10 /a b    

upon（36a），have dqkk=0.000292  

therefore， 

(1) 2

11 1 1 2 11 3

2
[(2 ) ] 0.0190 10

3

i

G kkd L a a d a dq         (42) 

The elastic strain is 
(1)

(1) 211
11 0.441 10r d

d
E


       (43) 

Total strain is 
(1) (1) (1) 2

11 11 11 0.460 10r id d                   (44) 

Other calculation is as above. The type calculation results on axial stress-strain of the 

coarse, medium and fine sands are shown in Table 4. 

Table 4. The Model Calculation Results of Axial Stress-strain for the Coarse, 
Medium and Fine Sands 

Coarse 

sand 

σ11(kPa) 341 509 660 710 770 

ε11 (%) 0.460 2.023 4.050 5.055 7.689 

Medium 

sand 

σ11(kPa) 343 630 914 1060 1104 

ε11 (%) 0.416 1.974 4.392 6.859 8.998 

Fine 

sand 

σ11(kPa) 453 862 1156 1279 1295 

ε11 (%) 0.648 1.982 3.989 5.671 8.461 

 

5. Conclusions 

Comparing the results of the model theory with the data of the tests as show in figure 4, 

it can be obtained as following: 

(1) The axial stress-strain relation of FCRT theory model and that of tri-axial tests for 

the coarse, medium and fine sands match well. That shows the specialty of the FCRT 

model that the model can describe the different properties of sands which are of different 

grain sizes naturally; this response differences come from the difference of the (inner and 

outer) characteristic ratio.    

(2) The FCRT model does not adopt the conception of “yield” which is an imagination 

for geo-materials; and this model can describe the initial non-linear and the coupling 

between recoverable and irrecoverable deformation easily. 

(3) The parameter determination method of the model is quite easy; the parameters for 

given sand are determinate and the arbitrariness in the parameters determination is 

avoided. 
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Figure 4. The Compare of Axial Stress-strain Relation Curves of FCRT 
Theory Model and Tri-axial Tests for the Coarse, Medium and Fine Sands 

(TT and TY represent the test and theory result respectively) 
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