
 International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017), pp. 149-160

http://dx.doi.org/10.14257/ijhit.2017.10.1.13

ISSN: 1738-9968 IJHIT

Copyright © 2017 SERSC

Map-Reduce-Join-Locate: a Data Processing Framework for

Decreasing the Processing Cost on Large Data

Shu-Hai Wang
1, 2

, Gui-Lan Liu
1
, Li-Hua Han

1
 and Zhao-Hui Qi

1

1
College of Information Science and Technology, Shijiazhuang Tiedao University,

Shijiazhuang Hebei, China
2
The Key Laboratory for Health Monitoring and Control of Large Structures,

Hebei province, Shijiazhuang Hebei, China

wsh36302@126.com

Abstract

The related retrieval operation of cloud database is often very time-consuming, takes

up a lot of storage and network transmission cost. MapReduce model provides processing

framework for cloud database connection operation, but the processing performance

should be further optimized. Based on the analysis of the MapReduce processing

framework, this paper proposes a Map-Reduce-Join-Locate processing framework. The

framework consists of four phases, Map, Reduce, Join and Locate. The new framework

can be deployed on the original MapReduce framework without additional modification.

Experiments show that the proposed framework enhances the performance of the

associated cloud database retrieval in time and space. The framework also applies to the

star-connected operation of the data warehouse and the associative retrieval operation of

the application secondary indexes.

Keywords: MapReduce; Hadoop; Cloud platform; Connection; Query

1. Introduction

With the rapid development of e-commerce [1,2], telecommunications[3], finance [4]

and other applications as well as telemedicine [5], smart home [6], etc., the data for

supporting these applications take a rapid growth in a geometrical ratio. There exist great

deals of structured and unstructured data. These data are stored by a distributed way and

managed by a unified way. Cloud database for the storage massive amounts of data

provides a viable platform [7,8]. Query processing for cloud data is mainly completed in

the programming process framework, such as, MapReduce [9], and Dryad [10]. Although

MapReduce can process data retrieval operation in parallel, it's still a consuming time and

labor intensive operation in exceptionally large cloud database environment. On the one

hand, MapReduce was originally designed to solve the isomorphic mapping data sets

(map), aggregation (reduce). On the other hand, performing the connection operation will

generate Cartesian data set and a large number of temporary intermediate results, storage

and transmission. It is divided into n or 2(1)n ) (n is the number of the connection data

tables) MapReduce process. Each MapReduce needs to transmit the connecting size of the

dataset, so that the more MapReduce needs, the greater amount of data transmission, and

the more initialization MapReduce spending shuffling and sorting stages needed. To solve

these problems, there are four major research approaches. The first is to perform a variety

of connectivity algorithms on existing MapReduce framework. Second, by modifying

existing MapReduce programming framework, the connection operation can be more

convenient and efficient completion. The third is often performed for the data table

connection to establish a connection index advance. The fourth establishes a connection

view to the data table frequently performed connection.

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

150 Copyright © 2017 SERSC

In this paper, based on the suitable for connecting operations existing MapReduce

framework, we expanded MapReduce processing framework further, and proposed Map-

Reduce-Join-Locate processing framework. The processing framework provides an

efficient solution to associated retrieval beyond the conventional MapReduce.

2. The Related Works

On the conventional MapReduce framework, the whole process is divided into two

processes, Map and Reduce. In the Map phase, it extracts data by conventional filtering

algorithms. In the Reduce phase, it generates needed data set through aggregation

algorithm. Its data processing model is the following.

: (1, 1) (2, 2)Map key value list key value

: (2, (2)) (2)Reduce key list value list value

Overall process flow is shown in Figure 1.

Figure 1. MapReduce Processing Model

From Figure 1, we can find four main schemes for dealing with data. The schemes are

the following.

(1) The built-processing model of MapReduce is mainly used for processing

homogeneous data sets by filtering - aggregating operations.

(2) The mapping results are stored on the hard disk at the form of temporary

intermediate key-value pairs.

(3) Reduce phase extracts mapping results as input data to achieve aggregation of data.

(4) The results of Reduce phase are stored in HDFS (Hadoop Distributed File System).

However, if one implements directly associative retrieval of data sets in the

MapReduce framework, A ⋈ B ⋈ C , as shown in Figure 2, he will encounter the

following challenges.

(1) When dealing with multiple processes involved in MapReduce, it needs more

processing time, storage space cost.

(2) The connecting results between data sets as a temporary intermediate result data are

stored on the hard disk. This will lead to spend a great storage space.

(3) Each MapReduce processing results are stored in HDFS, which increases the time

cost of node check.

(4) Massive amounts of data transmitted over the network will increase the network

traffic and reduce network throughput.

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

Copyright © 2017 SERSC 151

Figure 2. Example of Associative Retrieval, A⋈ B ⋈C

In order to overcome the challenges from the conventional MapReduce framework, a

researcher takes lots of related study. The first scenario for the study primarily filters

tuples which don't satisfy conditions. It is intended to reduce the amount of data generated

when tables are on Cartesian connection. Implementation of the method is dependent on

the development of the flow of program control to write the data stream realization

[11,12].

The second program of study includes Map-Join-Reduce [13], Map-Reduce-

Merge [14], Scatter-Gather-Merge [15], etc. The difference among researches is the time

of executing connection. The third and fourth solution is a relational database connection

reference index and view technology, respectively. Because the key-value is not

compressed when storing key information view, the connection index is relatively more

efficient than the view method. It only applies to the query conditions and accesses to

property fixed. However, the storage cost of establishing connection index and connection

view in massive cloud database will be unusually large.

3. The Proposed Map-Reduce-Join-Locate Processing Framework

3.1. The Proposed Map-Reduce-Join-Locate Model

The proposed Map-Reduce-Join-Locate is an extended MapReduce model in terms of

relevance search functions. It achieves filtering, aggregation, connectivity, position

location operation by dividing associative retrieval into four stages, Map, Reduce, Join

and Locate.

Now, let AS and BS be connection data set, respectively. An attribute value of AS

corresponds to a attribute value of BS . SAK and SBK represent key information data sets

of AS and BS , respectively, without any duplicate values. SAV and SBV represent value

information data sets of AS and BS , respectively. It only contains the used attribute value

during the connection. list denotes a collection with the same key information. Then, we

can describe a process of data processing, AS ⋈ BS .

1 1 2 2

1 1 2 2

: (,) (([,0],))

(,) (([,1],))

SA SA SA SA

SB SB SB SB

Map K V list K V

K V list K V





2 2

3 3 3 2 2

2 2

:

([, 0],)
([(),0],[(),1],),

([, 1],)

SA SA

SA SB SA SA SB

SB SB

Reduce

K V
list K list K V when V V

K V


 



3 3 3 3 3 3

:

([(),0],[(),1],), ([(),0])*[(),1],)SA SB SA SA SB SA

Join

list K list K V list K list K V

4 4 5 5

:

([,0],[,1],) (,).SA SB SA SB

Locate

K K V V V

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

152 Copyright © 2017 SERSC

In this processing model, the Map function makes slice data sets as input data. It

extracts key information needed during the connection and expresses it as key value

pairs, based on the filter processing logic. In the Reduce phase, it pulls provisional list of

results from the mapping results. It hashes connection property values for each data set. It

gathers key information with the same attribute values together. They are described as

[(,),]list key identity value . It filters out the data which do not meet the gather conditions of

values or have only one identifier. Then the reatment results are delivered to the join node

for joining processing. In Join connection phase, it pulls data from the output of Reduce

phase and performs the Join operation. Finally it generates key value pairs,

(3 3 3[,0], [,1],SA SB SAK K V). In Locate phase, it accesses data from specified node and data

block according to the generated key information during the connection phase.

Eventually it returnes to the user. Unlike the original MapReduce model, the proposed

new model at its Map stage only extracts the needed properties of the connection process.

These needed properties are described as the key value pairs containing source of data

identification. In Reduce phase, it conbines the data with the same value and the key

connection attribute information from different data sets to generate the key list. The

overall implementation process example of data processing, AS ⋈ BS , is shown in Figure

3, where 1 1. .A SA B SBS F S F .

Figure 3. Data Processing of the Map-Reduce-Join-Locate Model

3.2. Associative Retrieval Algorithm

This section includes four sub-algorithms about the four stages of the proposed Map-

Reduce-Join-Locate model when it performs a join query, A BS S . The four sub-

algorithms show the model how to work together and give the details of each part.

Sub-algorithm 1, Map Algorithm

Map Phase 

Input: k is a key , v is a tuple of each participating join datasets

Output: a set of key value pairs

Map (const Key& k, const Value& v) {

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

Copyright © 2017 SERSC 153

 if it has constraint on dataset one or more attributes then

 filtering_map(v); /* Filter data which does not satisfy the conditions of

 /* single-value tuples */

 end if;

 Switch (v in which dataset)

 Case “SA”:

 Output_key = ([k,0]);

 Output_value = (v1); /* v1 is the connection property values */

 Break;

 Case “SB”:

 Output_key = ([k ,1]);

 Output_value = v1;

 Break;

 Emit (Output_key, Output_value);

}

Sub-algorithm 2, Reduce Algorithm

Reduce Phase 

Input: k is a key. v is a value of each participating join datasets, and (,)k v is the

result of

 Map

Output: a set of key value pairs while the keys get together with the same join

attribute

Reduce (const Key& k, const Value& v){

 if it has aggregating constraint on dataset then

 filtering_reduce(v); /* Filter data which does not satisfy the conditions of

 /* tuples aggregate functions */

 end if;

 if the key comes from one dataset about v then

 filtering_reduce(v); /* filter out only a single source of key value pairs

*/

 end if;

 Emit (k, list(v));

}

Sub-algorithm 3, Join Algorithm

Join Phase 

Input: 1 2/k k is a key towards a list with the same value from /A BS S , respectively. v

is a

 value, and 1 2([(),0],[(),1],)list k list k v is the result of Reduce phase.

Output: a set of key value pairs

Join (const list<Key1>& k1, const list<Key2>& k2, const Value& v){

 Cartesian (k1, k2);

 Emit (list ([k1i, 0], [k2j, 1]));

end if;

}

Sub-algorithm 4, Locate Algorithm

Locate Phase 

Input: k is the result of Join phase

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

154 Copyright © 2017 SERSC

Output: the final results

Locate (const Key& k) {

 ts = GetDetails (k);

 return ts;

}

3.3. Cost Evaluation of Model

In the implementation of associative retrieval, retrieval efficiency can be measured

from both time cost and storage space occupied. The storage space can be easily solved

by increasing the storage capacity of a computer. The user is primarily concerned with its

waiting time. So in this paper, it considers the time cost of the Map-Reduce-Join-Locate

processing model. To analyze its retrieval efficiency, the time cost can be represented by

the following formula.

total tr traversal storage transmission re resultsT C T T T C T   

The parameters trC and reC are impact factors related to hardware compute speed. The

cost traversalT denotes the time of traversing the data set. The resultsT is the time of returning

results. For the two costs, different treatment frameworks are almost consistent with one

another. So, here the costs are considered as constants. The data storage time storageT can

be measured by the I/O quantity. On the other hand, the transmission time transmissionT is

proportional to the amount of network transmission. It can be measured by the amount of

the transmission data through the network considering to estimate the time. Now, let N

be the amount of data. The P denotes the percentage of the storage data. Then the total

time cost totalC can be represented as the following formula.

/()total tr re st I O trs transmissionC C C P N C N C N   

From the formula, we can find that for a fixed query, reducing the amount of data

storage and data transfer amount is equivalent to the reduction of the total time of the

query. Throughout the process, the Map phase reads the fragmented data as input and the

processing results are stored into disk. At the Reduce phase, the results of Map phase are

used to the input of this phase. Then the outputs of Reduce phase and Join phase are

directly used to the inputs of their next phases. So in Reduce phase and Join phase, there

is no writing I/O cost due to no data into the disk. In Join phase and Locate phase, there

is no reading I/O cost due to no data from the disk. Only in Locate phase, the final results

will be written to HDFS. Therefore, we can compute the cost of the proposed model as

the following.

/

1

| |
n

I O i

i

MapRead SE




iSE , the i-th data set of the connection; | |iSE is the amount of data set i ; n , the

number of pieces of data.

/ /

1

| |
n

I O I O i mi

i

MapWrite ReduceRead SE P


  

miP is the proportion of data after filtering in the Map stage;

1

| |
n

reduce join i i ri

i

D KP L P



  

iKP , the number of key value pairs after aggregation; | |iL , the amount of data of

key value pair after gathering in Reduce phase; riP , the proportion of data after

removing the data without meeting the conditions in Reduce phase;

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

Copyright © 2017 SERSC 155

| |
n

join-locate i i i

i 1

D KP Tr Pr


  

| |iTr , the transmission cost of data location according to the aggregated key value

pairs;
iPr , the selection probability of each data set i .

/

1

| |
n

I O i i i

i

LocateWrite KP LW Pr


  

| |iLW , the writing cost of data location to HDFS.

So, we can get the overall estimation cost
totalC of the proposed Map-Reduce-Join-

Locate processing model.

/ / / /

1 1 1 1

| | 2 | | | | | | | |

total I O I O I O reduce join join-locate I O

n n n n n

i i mi i i ri i i i i i i

i i i i 1 i

C MapRead MapWrite ReduceRead D D LocateWrite

SE SE P KP L P KP Tr Pr KP LW Pr



    

     

               

For the same data set, the connection only extracts the used properties. The transmitted

data of the proposed model are less than the original model MapReduce. The I/O cost of

the new model is relatively small. However, the new model adds a new stage, Locate

phase. This will bring some location cost. For a small amount of data, the proposed model

has no more advantage. But, when the data amount is large, the overall data transferring

cost of the original MapReduce model will be great.

4. Integrating the Map-Reduce-Join-Locate Model with MapReduce

The proposed Map-Reduce-Join-Locate model can be built on the original MapReduce

framework. The original MapReduce-based programs can be easily transplanted to the

Map-Reduce-Join-Locate. The Map phase of new model is inserted to the Map phase of

MapReduce framework. Then Reduce phase of MapReduce is replaced by the Reduce-

Join-Locate of new model. Figure 4 gives the integrated framework.

Figure 4. Workflow of the Map-Reduce-Join-Locate model

In Map phase, it reads data set in splits. It extracts valuable property information

through a custom Mapper function, filters tuples which is not satisfied conditions. The

data set is described as the form of key value . The Hash attribute of key values is

used to assign them to the matched reducing nodes. Next, the Reducer function takes the

output of Mapper function as input. It removes the data which does not satisfy the

conditions. Then the tuples with the same connection properties are merged together. the

Reducer function directly passes the merged tuples to the Joiner function for the

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

156 Copyright © 2017 SERSC

connection processing. Locater function pulls key information from Joiner function.

Finally, it gets the needed data from the corresponding data sets based on keys and returns

the final results to users.

5. Experiment and Analysis

Experiment environment is on the cloud platform, Hadoop. It creates two tables for

connection, UserInfo and Blog. The table UserInfo records names of users. The table

Blog records the blogs published by users. Here, our task is to build the connections

between UserInfo and Blog. Two methods, MapReduce and Map-Reduce-Join-Locate

framework, are used to finish this task. The intermediate data and the time cost for this

task is used to evaluate and analyze the performance of the proposed Map-Reduce-Join-

Locate model.

Experiment 1, about the comparison of intermediate data by different methods

A large number of temporary intermediate results when performing operations on the

data sets will bring more storage and transmission cost. The conventional MapReduce

produces many temporary intermediate results because of Cartesian operations on data

sets. In Experiment 1, we recorded the temporary intermediate data by the two different

methods, as shown in Figure 5.

Figure 5. Comparison of Intermediate Data by Different Methods

As one can see from Figure 5, when considering a small amount of data (less than

100000 records), we can find that the intermediate data by MapReduce is approximately

10 times as much as by the proposed the Map-Reduce-Join-Locate model. With the

increase of data in the database entries, in Map phase the intermediate data by

MapReduce shows a sharp increase. However, the growth of the intermediate data by the

Map-Reduce-Join-Locate model generates more gentle.

Experiment 2, about the comparison of database connections by different methods

In experiment 1, we have discussed the amount of intermediate data by two methods.

The intermediate data is directly related to the cost of data storage and data transmission.

Next, for simplification, in this experiment 2 we only consider the cost of database

connection by different methods instead of database connection, data storage and data

transmission. Figure 6 describes the time cost of database connections in two child nodes

by two different methods.

From Figure 6, the time cost of the Map-Reduce-Join-Locate model is more than the

MapReduce framework. This is because the Map-Reduce-Join-Locate model adds several

processing steps, such as Join and Locate . At the same time, we can find that with the

growth of data records in the database, the difference of the time cost by two methods is

In
te

rm
ed

ia
te

 d
at

a
in

 M
ap

 p
h

as
e

(M
B

)

Data records (10000)

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

Copyright © 2017 SERSC 157

less and less. That is to say, for database connections, the newly added processing steps in

proposed model are almost negligible when data scale is quite large. Next, on the basis of

experiment of Figure 6, we add a sub-node. The results are show in Figure 7. The total

time cost has been reduced due to three child nodes. The change tendency of the time cost

by two methods is similar to two child nodes.

Figure 6. Time Cost of Database Connections in Two Child Nodes

Figure 7. Time Cost of Database Connections in Three Child Nodes

In the above two experiments, we have not considered the transmission cost of data in

network. It is well-known that the more the transmission data in network is, the more the

time cost is. As can be seen from the experiments, the intermediate results are greatly

different from each other. Obviously, the intermediate results determine the time cost of

network transmission. As for the proposed model of this paper, it can obtain less time cost

because of less intermediate results.

6. Conclusions

Due to limitations of MapReduce in processing connection operation, we propose a

Map-Reduce-Join-Locate processing framework. Compared with the original

MapReduce, the proposed Map-Reduce-Join-Locate model adds two new processing

steps, Join and Locate , after implementing Map and Reduce stage. The Join stage

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

158 Copyright © 2017 SERSC

carries out the connections of data sets. The Locate stage takes the positioning operation

of the final results. Next, the proposed Map-Reduce-Join-Locate model is deployed on the

original MapReduce processing framework. Some developed programs of MapReduce is

easily ported to deal with the new framework. Then, based on the cloud platform,

Hadoop, the new model is implemented. Experiments show that the proposed framework

enhances the time and space performance of the associated cloud database retrieval. The

framework can also take other applications, such as the star-connected operation of the

data warehouse and the associative retrieval operation of the application secondary

indexes.

Acknowledgments

This work supported by the National Natural Science Foundation of China (Grant No.

61304176, 61272254), and by the Science and Technology Plan of Hebei Province, China

(Project No. 15212203D)

References

[1] B. Youcef, “From e-commerce to social commerce: a framework to guide enabling cloud computing”,

Journal of theoretical and applied electronic commerce research, vol. 8, no. 3, (2013), pp. 12-38.

[2] S. Lee and Y. Park, “The classification and strategic management of services in e-commerce:

Development of service taxonomy based on customer perception”, Expert Systems with Applications,

vol. 36, no. 6, (2009), pp. 9618-9624.

[3] M. Owczarczuk, 2009, “Churn models for prepaid customers in the cellular telecommunication industry

using large data marts”, Expert Systems with Applications, vol. 37, no. 6, (2009), pp. 4710-4712.

[4] B. Chandramouli, M. Ali, J. Goldstein, B. Sezgin and B.S. Raman, “Data stream management systems

for computational finance”, Computer, vol. 43, no. 12, (2010), pp. 45-52.

[5] J. Clark, H. Muller and X.H. Gao, “Medical imaging and telemedicine - from medical data production,

to processing, storing, and sharing: A short outlook”, Computerized medical imaging and graphics, vol.

30, no. 6-7, (2006), pp. 329-331.

[6] D.N. Monekosso and P. Remagnino, “Data reconciliation in a smart home sensor network”, Expert

systems with applications., vol. 40, no. 8, (2013), pp. 3248-3255.

[7] G.C. Deka, “A survey of cloud database systems”, It Professional., vol. 16, no. 2, (2014), pp. 50-57.

[8] T. Ivanov, I. Petrov and A. Buchmann, 2012, “A survey on database performance in virtualized cloud

environments”, International Journal Of Data Warehousing And Mining, vol. 8, no. 3, (2012), pp. 1-26.

[9] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool”, Communications of the ACM,

vol. 53, no. 1, (2010), pp. 72-77.

[10] M. Isard, M. Budiu and Y. Yu, “Dryad: distributed data-parallel programs from sequential building

blocks”, ACM SIGOPS Operating Systems Review, vol. 41, no. 3, (2007), pp 59-72.

[11] K.S. Beyer, V. Ercegovac and R. Gemulla, 2011, “Jaql: A scripting language for large scale

semistructured data analysis”, Proceedings of the 37th International Conference on Very Large Data

Bases, Washington, USA, (2011).

[12] S. Blanas, J.M. Patel and V. Ercegovac, “A comparison of join algorithms for log processing in

mapreduce”, Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,

New York, USA, (2010).

[13] D. Jiang, A. Tung and G. Chen, “MAP-JOIN-REDUCE: Toward scalable and efficient data analysis on

large clusters”, IEEE Transactions on Knowledge and Data Engineering,. vol. 23, no. 9, (2011), pp.

1299-1311.

[14] H. Yang, A. Dasdan and R.L. Hsiao, 2007, “Map-reduce-merge: simplified relational data processing on

large clusters”, Proceedings of the 2007 ACM SIGMOD international conference on Management of

data, Beijing, China, (2007).

[15] H. Han, H. Jung and H. Eom, 2011, “Scatter-Gather-Merge: An efficient star-join query processing

algorithm for data-parallel frameworks”, Cluster Computing, vol. 14, no. 2, (2011), pp. 183-197.

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

Copyright © 2017 SERSC 159

Authors

Shu-Hai Wang, he is a professor in College of Information

Science and Technology at Shijiazhuang Tiedao University. He

received the PhD in computer engineering from Tianjin

University, China, in 2010. His research interests in Big data and

Computer Information System.

Gui-Lan Liu, she is a student in College of Information

Science and Technology at Shijiazhuang Tiedao University. Her

research interests in big data and software developing.

Li-hua Han, she is an associate professor in College of

Information Science and Technology at Shijiazhuang Tiedao

University. She received the Master of education technology from

Beijing Jiaotong University, China, in 2007. Her research interests in

Information System and Network education.

Zhao-Hui Qi, he is a professor in College of Information Science

and Technology at Shijiazhuang Tiedao University. He received the

MS and the PhD in computer science from Tianjin University, China,

in 2003 and 2006. His research interests in Bioinformatics and

Pattern Recognition.

International Journal of Hybrid Information Technology

Vol. 10, No.1 (2017)

160 Copyright © 2017 SERSC

