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Abstract 

The related retrieval operation of cloud database is often very time-consuming, takes 

up a lot of storage and network transmission cost. MapReduce model provides processing 

framework for cloud database connection operation, but the processing performance 

should be further optimized. Based on the analysis of the MapReduce processing 

framework, this paper proposes a Map-Reduce-Join-Locate processing framework. The 

framework consists of four phases, Map, Reduce, Join and Locate. The new framework 

can be deployed on the original MapReduce framework without additional modification. 

Experiments show that the proposed framework enhances the performance of the 

associated cloud database retrieval in time and space. The framework also applies to the 

star-connected operation of the data warehouse and the associative retrieval operation of 

the application secondary indexes. 
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1. Introduction 

With the rapid development of e-commerce [1,2], telecommunications[3], finance [4] 

and other applications as well as telemedicine [5], smart home [6], etc., the data for 

supporting these applications take a rapid growth in a geometrical ratio. There exist great 

deals of structured and unstructured data. These data are stored by a distributed way and 

managed by a unified way. Cloud database for the storage massive amounts of data 

provides a viable platform [7,8]. Query processing for cloud data is mainly completed in 

the programming process framework, such as, MapReduce [9], and Dryad [10]. Although 

MapReduce can process data retrieval operation in parallel, it's still a consuming time and 

labor intensive operation in exceptionally large cloud database environment. On the one 

hand, MapReduce was originally designed to solve the isomorphic mapping data sets 

(map), aggregation (reduce). On the other hand, performing the connection operation will 

generate Cartesian data set and a large number of temporary intermediate results, storage 

and transmission. It is divided into n  or 2( 1)n  ) ( n  is the number of the connection data 

tables) MapReduce process. Each MapReduce needs to transmit the connecting size of the 

dataset, so that the more MapReduce needs, the greater amount of data transmission, and 

the more initialization MapReduce spending shuffling and sorting stages needed. To solve 

these problems, there are four major research approaches. The first is to perform a variety 

of connectivity algorithms on existing MapReduce framework. Second, by modifying 

existing MapReduce programming framework, the connection operation can be more 

convenient and efficient completion. The third is often performed for the data table 

connection to establish a connection index advance. The fourth establishes a connection 

view to the data table frequently performed connection. 
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In this paper, based on the suitable for connecting operations existing MapReduce 

framework, we expanded MapReduce processing framework further, and proposed Map-

Reduce-Join-Locate processing framework. The processing framework provides an 

efficient solution to associated retrieval beyond the conventional MapReduce. 

 

2. The Related Works 

On the conventional MapReduce framework, the whole process is divided into two 

processes, Map and Reduce. In the Map phase, it extracts data by conventional filtering 

algorithms. In the Reduce phase, it generates needed data set through aggregation 

algorithm. Its data processing model is the following. 

: ( 1, 1) ( 2, 2)Map key value list key value  

: ( 2, ( 2)) ( 2)Reduce key list value list value  

Overall process flow is shown in Figure 1. 

 

 

Figure 1. MapReduce Processing Model 

 

From Figure 1, we can find four main schemes for dealing with data. The schemes are 

the following. 

(1) The built-processing model of MapReduce is mainly used for processing 

homogeneous data sets by filtering - aggregating operations. 

(2) The mapping results are stored on the hard disk at the form of temporary 

intermediate key-value pairs. 

(3) Reduce phase extracts mapping results as input data to achieve aggregation of data. 

(4) The results of Reduce phase are stored in HDFS (Hadoop Distributed File System). 

However, if one implements directly associative retrieval of data sets in the 

MapReduce framework, A ⋈ B ⋈ C , as shown in Figure 2, he will encounter the 

following challenges. 

(1) When dealing with multiple processes involved in MapReduce, it needs more 

processing time, storage space cost. 

(2) The connecting results between data sets as a temporary intermediate result data are 

stored on the hard disk. This will lead to spend a great storage space. 

(3) Each MapReduce processing results are stored in HDFS, which increases the time 

cost of node check. 

(4) Massive amounts of data transmitted over the network will increase the network 

traffic and reduce network throughput. 
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Figure 2. Example of Associative Retrieval, A⋈ B ⋈C  

In order to overcome the challenges from the conventional MapReduce framework, a 

researcher takes lots of related study. The first scenario for the study primarily filters 

tuples which don't satisfy conditions. It is intended to reduce the amount of data generated 

when tables are on Cartesian connection. Implementation of the method is dependent on 

the development of the flow of program control to write the data stream realization 

[11,12]. 
 
The second program of study includes Map-Join-Reduce [13], Map-Reduce-

Merge [14], Scatter-Gather-Merge [15], etc. The difference among researches is the time 

of executing connection. The third and fourth solution is a relational database connection 

reference index and view technology, respectively. Because the key-value is not 

compressed when storing key information view, the connection index is relatively more 

efficient than the view method. It only applies to the query conditions and accesses to 

property fixed. However, the storage cost of establishing connection index and connection 

view in massive cloud database will be unusually large. 

 

3. The Proposed Map-Reduce-Join-Locate Processing Framework 
 

3.1. The Proposed Map-Reduce-Join-Locate Model 

The proposed Map-Reduce-Join-Locate is an extended MapReduce model in terms of 

relevance search functions. It achieves filtering, aggregation, connectivity, position 

location operation by dividing associative retrieval into four stages, Map, Reduce, Join 

and Locate.  

Now, let AS  and BS  be connection data set, respectively. An attribute value of AS  

corresponds to a attribute value of BS . SAK  and SBK  represent key information data sets 

of AS  and BS , respectively, without any duplicate values. SAV  and SBV  represent value 

information data sets of AS  and BS , respectively. It only contains the used attribute value 

during the connection. list  denotes a collection with the same key information. Then, we 

can describe a process of data processing, AS ⋈ BS . 

1 1 2 2

1 1 2 2

: ( , ) ( ([ ,0], ))

( , ) ( ([ ,1], ))
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Map K V list K V
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


 

2 2

3 3 3 2 2

2 2
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In this processing model, the Map  function makes slice data sets as input data. It 

extracts key  information needed during the connection and  expresses it as key value  

pairs, based on the filter processing logic. In the Reduce  phase, it pulls provisional list of 

results from the mapping results. It hashes connection property values for each data set. It 

gathers key  information with the same attribute values together. They are described as 

[ ( , ), ]list key identity value . It filters out the data which do not meet the gather conditions of 

values or have only one identifier. Then the reatment results are delivered to the join node 

for joining processing. In Join  connection phase, it pulls data from the output of Reduce  

phase and performs the Join  operation. Finally it generates key value  pairs, 

( 3 3 3[ ,0], [ ,1],SA SB SAK K V ). In Locate  phase, it accesses data from specified node and data 

block according to the generated key  information during the connection phase. 

Eventually it returnes to the user. Unlike the original MapReduce model, the proposed 

new model at its Map  stage only extracts the needed properties of the connection process. 

These needed properties are described as the key value  pairs containing source of data 

identification. In Reduce  phase, it conbines the data with the same value  and the key  

connection attribute information from different data sets to generate the key list. The 

overall implementation process example of data processing, AS ⋈ BS , is shown in Figure 

3, where 1 1. .A SA B SBS F S F . 

 

 

Figure 3. Data Processing of the Map-Reduce-Join-Locate Model 

 

3.2. Associative Retrieval Algorithm 

This section includes four sub-algorithms about the four stages of the proposed Map-

Reduce-Join-Locate model when it performs a join query, A BS S . The four sub-

algorithms show the model how to work together and give the details of each part. 

 

Sub-algorithm 1, Map Algorithm  

Map Phase   

Input: k  is a key , v  is a tuple of each participating join datasets  

Output: a set of key value  pairs 

Map (const Key& k, const Value& v) { 
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              if it has constraint on dataset one or more attributes then 

                   filtering_map(v);    /* Filter data which does not satisfy the conditions of  

                                                  /* single-value tuples */ 

              end if; 

              Switch (v in which dataset) 

                           Case “SA”: 

                               Output_key = ([k,0]); 

                               Output_value = (v1);    /* v1 is the connection property values */ 

                           Break; 

                               Case “SB”: 

                               Output_key = ( [k ,1]); 

                               Output_value = v1;  

                           Break; 

              Emit (Output_key, Output_value); 

} 

 

Sub-algorithm 2, Reduce Algorithm  

Reduce Phase   

Input: k  is a key. v  is a value of each participating join datasets, and ( , )k v  is the 

result of  

            Map  

Output: a set of key value  pairs while the keys get together with the same join 

attribute 

Reduce (const Key& k, const Value& v){ 

              if it has aggregating constraint on dataset then 

                   filtering_reduce(v);    /* Filter data which does not satisfy the conditions of  

                                                      /* tuples aggregate functions */ 

              end if; 

              if the key comes from one dataset about v then 

                   filtering_reduce(v);    /* filter out only a single source of key value  pairs 

*/ 

              end if; 

              Emit (k, list(v)); 

} 

 

Sub-algorithm 3, Join Algorithm  

Join Phase   

Input: 1 2/k k  is a key towards a list with the same value from /A BS S , respectively. v  

is a  

           value, and 1 2([ ( ),0],[ ( ),1], )list k list k v  is the result of Reduce  phase. 

Output: a set of key value  pairs 

Join (const list<Key1>& k1, const list<Key2>& k2, const Value& v){ 

              Cartesian (k1, k2); 

              Emit (list ([k1i, 0], [ k2j, 1])); 

end if; 

} 

 

Sub-algorithm 4, Locate Algorithm  

Locate Phase   

Input: k  is the result of Join  phase 
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Output: the final results 

Locate (const Key& k) { 

              ts = GetDetails (k); 

              return ts;  

} 

 

3.3. Cost Evaluation of Model 

In the implementation of associative retrieval, retrieval efficiency can be measured 

from both time cost and storage space occupied. The storage space can be easily solved 

by increasing the storage capacity of a computer. The user is primarily concerned with its 

waiting time. So in this paper, it considers the time cost of the Map-Reduce-Join-Locate 

processing model. To analyze its retrieval efficiency, the time cost can be represented by 

the following formula. 

total tr traversal storage transmission re resultsT C T T T C T     

The parameters trC  and reC  are impact factors related to hardware compute speed. The 

cost traversalT  denotes the time of traversing the data set. The resultsT  is the time of returning 

results. For the two costs, different treatment frameworks are almost consistent with one 

another. So, here the costs are considered as constants. The data storage time storageT  can 

be measured by the I/O quantity. On the other hand, the transmission time transmissionT  is 

proportional to the amount of network transmission. It can be measured by the amount of 

the transmission data through the network considering to estimate the time. Now, let N  

be the amount of data. The P  denotes the percentage of the storage data. Then the total 

time cost totalC  can be represented as the following formula. 

/( )total tr re st I O trs transmissionC C C P N C N C N     

From the formula, we can find that for a fixed query, reducing the amount of data 

storage and data transfer amount is equivalent to the reduction of the total time of the 

query. Throughout the process, the Map  phase reads the fragmented data as input and the 

processing results are stored into disk. At the Reduce  phase, the results of Map  phase are 

used to the input of this phase. Then the outputs of Reduce  phase and Join  phase are 

directly used to the inputs of their next phases. So in Reduce  phase and Join  phase, there 

is no writing I/O cost due to no data into the disk. In Join  phase and Locate  phase, there 

is no reading I/O cost due to no data from the disk. Only in Locate  phase, the final results 

will be written to HDFS. Therefore, we can compute the cost of the proposed model as 

the following. 

/

1

| |
n

I O i

i

MapRead SE


   

iSE , the i-th data set of the connection; | |iSE  is the amount of data set i ; n , the 

number of pieces of data. 

/ /

1

| |
n

I O I O i mi

i

MapWrite ReduceRead SE P


     

miP  is the proportion of data after filtering in the Map  stage; 

1

| |
n

reduce join i i ri

i

D KP L P



     

iKP , the number of key value  pairs after aggregation; | |iL , the amount of data of 

key value  pair after gathering in Reduce  phase; riP , the proportion of data after 

removing the data without meeting the conditions in Reduce  phase; 
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| |
n

join-locate i i i

i 1

D KP Tr Pr


    

| |iTr , the transmission cost of data location according to the aggregated key value  

pairs; 
iPr , the selection probability of each data set i . 

/

1

| |
n

I O i i i

i

LocateWrite KP LW Pr


    

| |iLW , the writing cost of data location to HDFS. 

So, we can get the overall estimation cost 
totalC  of the proposed Map-Reduce-Join-

Locate processing model.  

/ / / /

1 1 1 1

| | 2 | | | | | | | |

total I O I O I O reduce join join-locate I O

n n n n n

i i mi i i ri i i i i i i

i i i i 1 i

C MapRead MapWrite ReduceRead D D LocateWrite

SE SE P KP L P KP Tr Pr KP LW Pr



    

     

               

 

For the same data set, the connection only extracts the used properties. The transmitted 

data of the proposed model are less than the original model MapReduce. The I/O cost of 

the new model is relatively small. However, the new model adds a new stage, Locate  

phase. This will bring some location cost. For a small amount of data, the proposed model 

has no more advantage. But, when the data amount is large, the overall data transferring 

cost of the original MapReduce model will be great. 

 

4. Integrating the Map-Reduce-Join-Locate Model with MapReduce 

The proposed Map-Reduce-Join-Locate model can be built on the original MapReduce 

framework. The original MapReduce-based programs can be easily transplanted to the 

Map-Reduce-Join-Locate. The Map  phase of new model is inserted to the Map phase of 

MapReduce framework. Then Reduce  phase of MapReduce is replaced by the Reduce-

Join-Locate of new model. Figure 4 gives the integrated framework. 

 

 

Figure 4. Workflow of the Map-Reduce-Join-Locate model 

In Map  phase, it reads data set in splits. It extracts valuable property information 

through a custom Mapper function, filters tuples which is not satisfied conditions. The 

data set is described as the form of key value . The Hash  attribute of key values  is 

used to assign them to the matched reducing nodes. Next, the Reducer function takes the 

output of Mapper function as input. It removes the data which does not satisfy the 

conditions. Then the tuples with the same connection properties are merged together. the 

Reducer function directly passes the merged tuples to the Joiner function for the 
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connection processing. Locater function pulls key information from Joiner function. 

Finally, it gets the needed data from the corresponding data sets based on keys and returns 

the final results to users. 

 

5. Experiment and Analysis 

Experiment environment is on the cloud platform, Hadoop. It creates two tables for 

connection, UserInfo and Blog. The table UserInfo records names of users. The table 

Blog records the blogs published by users. Here, our task is to build the connections 

between UserInfo and Blog. Two methods, MapReduce and Map-Reduce-Join-Locate 

framework, are used to finish this task. The intermediate data and the time cost for this 

task is used to evaluate and analyze the performance of the proposed Map-Reduce-Join-

Locate model. 

Experiment 1, about the comparison of intermediate data by different methods 

A large number of temporary intermediate results when performing operations on the 

data sets will bring more storage and transmission cost. The conventional MapReduce 

produces many temporary intermediate results because of Cartesian operations on data 

sets. In Experiment 1, we recorded the temporary intermediate data by the two different 

methods, as shown in Figure 5.  

 

 
 

Figure 5. Comparison of Intermediate Data by Different Methods 

As one can see from Figure 5, when considering a small amount of data (less than 

100000 records), we can find that the intermediate data by MapReduce is approximately 

10 times as much as by the proposed the Map-Reduce-Join-Locate model. With the 

increase of data in the database entries, in Map  phase the intermediate data by 

MapReduce shows a sharp increase. However, the growth of the intermediate data by the 

Map-Reduce-Join-Locate model generates more gentle. 

Experiment 2, about the comparison of database connections by different methods 

In experiment 1, we have discussed the amount of intermediate data by two methods. 

The intermediate data is directly related to the cost of data storage and data transmission. 

Next, for simplification, in this experiment 2 we only consider the cost of database 

connection by different methods instead of database connection, data storage and data 

transmission. Figure 6 describes the time cost of database connections in two child nodes 

by two different methods.  

From Figure 6, the time cost of the Map-Reduce-Join-Locate model is more than the 

MapReduce framework. This is because the Map-Reduce-Join-Locate model adds several 

processing steps, such as Join  and Locate . At the same time, we can find that with the 

growth of data records in the database, the difference of the time cost by two methods is 
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less and less. That is to say, for database connections, the newly added processing steps in 

proposed model are almost negligible when data scale is quite large. Next, on the basis of 

experiment of Figure 6, we add a sub-node. The results are show in Figure 7. The total 

time cost has been reduced due to three child nodes. The change tendency of the time cost 

by two methods is similar to two child nodes. 

 

 

Figure 6. Time Cost of Database Connections in Two Child Nodes 

 

Figure 7. Time Cost of Database Connections in Three Child Nodes 

In the above two experiments, we have not considered the transmission cost of data in 

network. It is well-known that the more the transmission data in network is, the more the 

time cost is. As can be seen from the experiments, the intermediate results are greatly 

different from each other. Obviously, the intermediate results determine the time cost of 

network transmission. As for the proposed model of this paper, it can obtain less time cost 

because of less intermediate results. 

 

6. Conclusions 

Due to limitations of MapReduce in processing connection operation, we propose a 

Map-Reduce-Join-Locate processing framework. Compared with the original 

MapReduce, the proposed Map-Reduce-Join-Locate model adds two new processing 

steps, Join  and Locate , after implementing Map  and Reduce  stage. The Join  stage 
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carries out the connections of data sets. The Locate  stage takes the positioning operation 

of the final results. Next, the proposed Map-Reduce-Join-Locate model is deployed on the 

original MapReduce processing framework. Some developed programs of MapReduce is 

easily ported to deal with the new framework. Then, based on the cloud platform, 

Hadoop, the new model is implemented. Experiments show that the proposed framework 

enhances the time and space performance of the associated cloud database retrieval. The 

framework can also take other applications, such as the star-connected operation of the 

data warehouse and the associative retrieval operation of the application secondary 

indexes. 
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