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Abstract 

Agent-oriented computing is a technique to run a big-scale system by cooperation 

among plural agents. An agent with learning ability is called a “Learning Agent”. A 

learning agent learns past actions, and changes the movement knowledge dynamically. A 

learning agent can solve a complicated problem in intellectual action. However, when a 

user wants to use a learning agent, little support exists for the development of a learning 

agent in an agent framework. Previous research proposed agent environment for 

developing single learning agent. However, effective multiagent learning environment has 

not realized yet, so agent developer has to implement learning function. To decrease the 

burden of developing the learning agents, in this paper, we newly introduce agent 

environment for developing cooperative learning multiagent into the DASH agent 

framework by applying the Nash-Q learning model. Moreover, we show the effectiveness 

of proposed mechanism through some experiments. 
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1. Introduction 

In recent years, various needs have arisen along with the rapid spread of the internet. 

Requests have propagated to satisfy them. Systems change frequently. Therefore, the need 

exists for a flexible system performing in a processing fitting environment. Agent-oriented 

computing can resolve this problem. Actually, agent-oriented computing is a technology 

using autonomous agents. Agents with intelligence are called learning agents. Learning 

agents can behave with intelligent action. An agent framework is necessary for 

development of an agent system. However, few frameworks provide development support 

of learning agents. Developers must perform all the implementation to use learning 

agents. Therefore, they must learn technical knowledge related to machine learning, and it 

is necessary to encode it in all agents. These are severe burdens.  

Previous research [1] proposed agent environment for developing single learning 

agent. However, effective multiagent learning environment has not realized yet, so 

agent developer has to implement learning function for cooperation of multiple 

agents. To decrease the burden of developing multiple learning agents, we newly 

propose agent environment for developing cooperative learning multiagent by 

applying the Nash-Q learning model. 

This paper includes following chapters. Chapter 2 explains the DASH agent framework 

[2] that is basic agent environment of this research. Chapter 3 describe the previous 

research and shows the existing problems. Chapter 4 explains the Nash-Q learning model 

that is effective method in multiagent environment and explains proposal mechanism. 

Chapter 5 shows the experiment and evaluation. Chapter 6 depicts comparison of related 

works. Finally, Chapter 7 describe our research summary and future work. 
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2. DASH Agent Framework 

In this research, the “Distributed Agent System based on Hybrid architecture (DASH) 

framework”, an agent framework, is used. The DASH framework is a framework for a 

multi-agent system with a repository for agent storage and a workplace in which agents 

are running compose a platform to develop an agent system. 

 

2.1. Outline 

The DASH framework [2] is a framework for a multi-agent system with a repository 

for agent storage and a workplace in which agents are running compose a platform to 

develop an agent system Figure 1. 

 

 

Figure 1. DASH Agent Framework 

• Agent Repository: An agent repository stores agent-developer-produced agents that can 

act immediately according to the user’s request. Additionally, it is a mechanism to 

generate an agent organization depending on the user’s request. The concrete functions of 

the agent repository include acceptance of user requests, selection of agents, decisions 

related to agent organization, and generation of agent organizations operating on the agent 

workplace. The agent repository fully supports the agent system lifecycle through these 

processes. 

• Agent Workplace: An agent workplace is an environment in which agent-repository-

generated agent systems operate. An agent workplace offers a function by which an agent 

system exchanges messages with other agent groups and carries out cooperative problem 

solving based on the behavioral knowledge stored in each agent. 

 

2.2. DASH Agent Architecture 

An agent architecture of the DASH framework is presented in Figure 2. 

An explanation about each mechanism is presented below. 

Cooperation Mechanism (CM) 

The CM exchange messages with another agent. It receives the message sent by 

other agents and it sends them to DK. The message format used in this 

architecture is based on the Knowledge Query Manipulating Language (KQML). 

 

Domain Knowledge-base (DK) 

DASH agent is a rule-based model agent. DK is a mechanism to decide an action 

Figure 3. Working Memory is storage of the agent’s own parameter and 

environmental information. The DASH agent behavior is explained below. 
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1) The inference engine controls the operation-knowledge searches for a rule 

that matches the content that is reformed to WM. 

2) The matched rule is executed. 

3) It returns to procedure 1 when the content of WM is updated by executing 

the selected rule. 

 

Task Processing Mechanism (TPM) 

TPM is an interface module for controlling BP directly. Computational Base 

Process (BP) BP is a computational base process in agent. For instance, BP 

corresponds to a process of UNIX OS, a Java object, etc. The agent can use 

information provided from BP. 

 

 

Figure 2. DASH Agent Architecture 

 

Figure 3. Domain Knowledge-base of the DASH Agent 

3. Previous Research 

This section provides an explanation of previous research [1][3]. 

 

3.1. Outline 

Itazuro [1] realized the support of development of learning single agent by adding 

development support functions for learning agent to a DASH framework. 

(F1) Automatic learning function 
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The rule priority is updated automatically using Q-Learning or Profit Sharing. 

Behavior of the automatic learning function is shown below Figure 4. 

 

 

Figure 4. Automatic Learning Function of Previous Research 

(1) Reference of the content of WM 

 The rule matching a current state is searched. 

(2) Transmission of the available rule set 

 All matched rules are sent to the Action Selection Engine. 

(3) Selection of the rule 

 The action is chosen. 

(4) Send DK selected rule 

 The rule selected in (3) is sent to the inference engine. 

(5) Execution of the rule 

 The rule sent in (4) is executed. 

(6) Update of WM 

 The effect of the action is used. 

(7) Update of the priority of the executed rule 

  The reward of the action is used for updating, and for judgment of the end. 

(F2) Preservation and reference of learning data function 

When an agent moves again, reopening of learning is enabled by reading the 

learning data file stored beforehand. 

(F3) Automatic drawing of the graph function 

This function drew a graph automatically to show the agent movement. 

 

3.2 Agent Development Support 

Previous research [3] proposed agent development environment called IDEAL Figure 5. 

IDEAL is the expansion of IDEA [4] that is developed by our research group to create the 

DASH agent efficiently. In order to support the design and implementation of DASH agents, 

IDEA has following four mechanisms. 
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・Mechanism of agent search support 

・Mechanism of agent programming support  

・Mechanism of agent simulation support 

・Mechanism of agent registration support 

Moreover, “Learning mechanism” is introduced and integrated to this environment. 

Consequently, the development work to create learning agent is more accelerated. 

 

 

Figure 5. IDEAL: Interactive Design Environment of Agent System with 
Learning Mechanism 

3.3. Problems of Previous Research 

(P1) There is unsuitable learning for the multi-agent system. 

Q-Learning and Profit Sharing might impede other agents under multi-agents 

because they are unable to consider the actions of other agents. 

(P2) Comparison of plural graphs is difficult. 

A graph is produced by each agent, so the comparison of the graph in plural 

agents is difficult. 

As a result, the support of learning agents is insufficient. 

 

4. Proposal Mechanism 

We solve existing problems by the expansion of previous research. 

 

4.1. Introduction of Nash-Q Learning 

As a solution for (P1), we suggest development support of a Nash-Q Learning agent. 

Q-Learning and Nash equilibrium compose Nash-Q Learning [5]. Nash-Q Learning 

predicts the strategies of other agents from the history of past action, and raises the 

priority of an action becoming a Nash equilibrium. The flow of the update priority is 

shown below. This algorithm is in [6]. One agent is agent A, other agent is agent B, “a” is 

action, “α” is learning rate, “γ” is reduction rate. 

1) Agent A has  and .  is agent B’s strategy predicted by 

agent A.  is shown below. 

 ≡  
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In a current state (  ∈ S), agent A chooses an action according to a policy(ε-greedy, etc.). 

2) Agent A will execute the action selected in procedure 1. Here, other agents act at the 

same time. By the action of all agents, the state switches to the next state( ), and 

agents receive reward ( ) from the environment. 

3) Agent A updates  by following expression 

 

And, updates  about  by following expression. 

 

 is a parameter to ascertain how to use the observed action selected by agent B. 

4) to t is added 1; then return to procedure 1 if it is not finished. 

 

1) Working example: 

We show the example that Nash-Q Learning is effective. Two agents exist in 3 × 3 

grids. Each agent aims at the diagonal goal (Fig. 6). Details of this experiment are 

presented below. 

• One trial ends if either agent arrives at its own goal. 

• Even if two agents collide, they are reopened using an immediate state. One trial is not 

ended. 

• Each agent receives a positive reward (+100) if they arrive at a goal. They get a negative 

reward (-10) if they collide. 

• Agents have rules, “up”, “down”, “left”, “right”, and “stay”. They choose a rule, which 

is not to hit the wall. 

In multi-agent systems, it is not desirable to interfere with other agents. This set up of 

rewards is therefore useful for multi-agent systems. We test it for two Q-Learning agents 

and two Nash-Q Learning agents. One trial is conducted at 1,000 times. 

 

2) Result: 

Table 1 shows the result. It is the average of the number of times which performed 

three trials. It is often case that an agent of either arrives at a goal as for the Q-Learning, 

and it is rare to arrive at a goal at the same time. Nash-Q Learning gets much number of 

times of Agent A and B each arrive at a goal simultaneously. 

 

 

Figure 6. Route Search by Two Agents 
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Table 1. The Number of Times that Agents Arrive at Goal 

 
 

 

Figure 7. Movement of the Q-Learning Agent 

 

Figure 8. Movement of the Nash-Q Learning Agent 

3) Consideration: 

There is much number of times that Nash-Q Learning makes a goal simultaneously 

than Q-Learning. Because the Q-Learning agents consider only the profit of own, they 

cannot avoid other agents (Fig. 7). Nash-Q Learning agents accumulate the action history 

of other agents, so they can make mutual concessions Figure 8. In a cooperation action, 

Nash-Q Learning is superior to Q-Learning. 

 

4.2. Knowledge Mechanism for Nash-Q Learning Agent 

Development support of Nash-Q Learning is introduced by expansion to an automatic 

learning function of earlier research. This supports the development of a Nash-Q Learning 

agent, and reduces the burden on the developer. Nash-Q Learning can learn an action and 

avoid disturbing other agents. Figure 9 depicts a concept diagram of an expanded 

automatic learning function. We describe the flow of development support for Nash-Q 

Learning. 

 

(1) Reference of the content of WM 

The rule matching a current state is sought. 

(2) Transmission of the available rule set 

  All matched rules are sent to the Action Selection Engine. 

(3) Selection of the rule 

  The action is chosen. 

(4) Send DK selected rule 

  The rule selected in (3) is sent to the inference engine. 
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(5) Execution of the rule 

  The rule sent in (4) is executed. 

(6) Update of WM 

  The effect of the action is used. 

(7) Update of the other agent database 

  The action selected by the other agent is used. 

(8) Reference of other agent database 

 When a priority is updated, the learning engine uses information of the other 

agent’s database. 

(9) Update of the priority of the executed rule 

  The reward of the action is used for updating, and for judgment of the end. 

 

 

Figure 9. Automatic Learning Function of the Proposed Mechanism 

We explain the mechanism we added. 

1) Other agent database: 

It is used only when development support of the Nash-Q Learning agent is used. 

Whenever other agents act, the other agents’ databases store a history of the action. The 

learning engine refers to it for update priority. 

2) Learning engine: 

The learning engine examined in previous studies is expanded to use Nash-Q Learning. 

After its own actions, it updates the priority of the rule it chose. A developer can select Q-

Learning, Profit Sharing, and Nash-Q Learning for each system. 

 

4.3. Improvement of Automatic drawing of the graph function 

Collection of the graphs made by agents is a solution for (P2). Furthermore, a graph 

viewer that can plot the learning data chosen by the user is added. The developer can 

compare the result with the past learning data. Details of each function are shown below.  

1) Collection graph: 

Moving of automatic drawing of the graph function to the framework from each agent 

produces a drawing of the information that all agents in the environment have. In this way, 

graphs are displayed on two axes. Thereby, a comparison graph can be produced easily 

Figure 10. 

2) Graph viewer: 

The developer can compare a learning agent and learning agents which worked in the 

past on this function. In the previous research, Gnuplot was used for graph drawing, but 

we introduced new graph viewer in the framework to get rid of installation. 
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Figure 10. Graph for Grasping the Total Rewards 

4.4. Addition of Automatic Parameter Adjustment Function 

We added a function to coordinate three parameters (α ,γ ,θ) automatically. When 

developers use Nash-Q Learning, they can use Nash-Q Learning agents without 

knowledge of machine learning. 

 

5. Experiment and Evaluation 

We performed two evaluation experiments for the proposed mechanism. 

 

5.1. Evaluation Experiment 1 

We performed an evaluation to ascertain the quantity of code to describe one 

Nash-Q Learning agent. 

1) Outline: 

We calculated the rate of reduction of quantity of description. Here, A is  the 

quantity of description necessary to use the agents with the conventional DASH 

framework. Also, B is the quantity of description necessary to make Nash-Q 

learning agents with the proposed mechanism. It is noteworthy that A and B do not 

include the rule description. They are quantities of description necessary to 

introduce learning characteristics into an agent. The rate of reduction is independent 

of the environment. The unit is the steps.  

 

2) Result: 

Results are shown in Table 2. Rate of reduction is 98.5%. Then, we confirmed the 

reduction of developer burden.  

Table 2. Reduction Rate for Agent Programming 

 
 

 

 



International Journal of Energy, Information and Communications 

Vol.8, Issue 1 (2017) 

 

 

48  Copyright ⓒ 2017 SERSC 

5.2. Evaluation Experiment 2 

We performed a questionnaire to ascertain whether proposal mechanism is useful. 

We evaluate the easiness of creating Q-Learning agent and Nash-Q learning agent. 

1) Outline: 

We asked ten students of our research group use it to evaluate it in 1-5. 

2) Result: Results are presented in Table 3. All subjects of the questionnaire 

responded that proposal mechanism execute great support to create learning agents.  

We confirmed high usefulness of our proposal mechanism.  

Table 3. Evaluation of Usefulness 

 
 

5.2. Evaluation Experiment 3 

We performed a questionnaire to ascertain whether an improvement of 

“Automatic draw of the graph function” and “Automatic parameter adjustment 

function” are useful. 

1) Outline: 

We asked six students of our research group use it to evaluate it in 1-5. 

2) Result: Results are presented in Table 4. All subjects of the questionnaire 

responded that this improvement is appropriate. We confirmed high usefulness for 

this function.  

Table 4. Evaluation of New Functions 

 
 

6. Comparison of Related Work 

We compared our proposal mechanism with famous agent frameworks. Comparison 

target are IDEA[4], IDEAL[3], ABLE[7], JADE[8], OMAS[9]. 

Evaluation points are three items, the one is development support of single agent 

learning. Next one is development support of multiagent learning. Last one is availability 

of software. 

We show the comparison result in Figure 11. 

IDEA is agent design environment for multiagent system developed by our research 

group. There are no support functions to develop learning agents. 

IDEAL is focus on the support of single agent learning, so support of multiagent 

learning are few. 

ABLE produced by IBM supports both single agent learning and multiagent learning, 

but software provisioning has finished and software is not available now. 
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JADE produced by Telecom Italia Lab is famous agent framework in Europe and 

FIPA-compliant standard agent platform. This software is available but there are no 

support functions to develop learning agents. 

OMAS produced by France research group is lisp based agent framework. This 

software is available but there are no support functions to develop learning agents. 

Our proposal mechanism is available now. Moreover, this mechanism support not only 

single agent learning, but also multiagent leaning. 

As a result, proposal mechanism is best agent framework to creating intelligent 

multiagent system. 

 

 

Figure 11. Comparison among Agent Frameworks 

7. Conclusion 

This research was conducted to realize sufficient development support of a learning 

agent. We realized the proposed mechanism by expansion of results of previous research. 

We also confirmed the usefulness of each function through evaluation experiments. 

Future work are refinement of GUI, shorten of learning time and application to creation of 

learning robots. 
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