
International Journal of Energy, Information and Communications 

Vol.7, Issue 2 (2016), pp.1-8 

http://dx.doi.org/10.14257/ijeic.2016.7.2.01 

 

 

ISSN: 2093-9655 IJEIC 

Copyright ⓒ 2016 SERSC 

Solving the Generation Scheduling with Cubic Fuel Cost Function 

using Simulated Annealing 
 

 

Ismail Ziane* and Farid Benhamida 

Irecom laboratory, UDL university of Sidi Bel Abbes Sidi Bel Abbes,  

P.B. 22000, Algeria 

ziane_ismail2005@yahoo.fr, farid.benhamida@yahoo.fr 

Abstract 

This paper gives the optimal of economic load dispatch when the fuel cost function can 

be defined as cubic function. The fuel cost is described with 4 parameters. In this work, 

we use simulated annealing method to find the optimal solution. The SA algorithm is used 

to minimize the fuel cost and the losses in the power systems. In this study, in order to 

evaluate the performance of the SA algorithm, it is tested on 2 different unit systems. The 

results obtained from the proposed method are compared other methods reported 

previously in the literature. The results show that the SA algorithm is better than the 

others at solving such a problem. 

 

Keywords: economic dispatch, cubic fuel cost function, power losses, Simulated 
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1. Introduction 

The cost of electrical production is described with three main sources: facility 

construction, ownership cost, and operating costs. The operating cost is the most 

significant of these three, and so the focus will be on the economics of the 

operation. The solution accuracy of economic dispatch problems is associated with 

the accuracy of the fuel cost curve parameters. The solution precision of the 

economic load dispatch is associated with the precision of fuel cost curve 

parameters. Therefore, updating of these parameters is a very important issue to 

further improve the final accuracy of economic dispatch problems [1].  

The fuel cost function optimizes the total cost of active power generation, assuming 

that every generator has a convex cost curve related to its own active power, every 

generator has upper and lower active power generating limits and it is also assumed that 

the sum of all active powers of generator must be equal to a given total system load plus 

total system losses. A major challenge for all power utilities is to satisfy the consumer 

demand for power at minimal cost [2].  

To solve the economic load dispatch problems, researchers may use algorithms [3] that 

terminate in a finite number of steps, Iterative methods [4] that converge to a solution (on 

some specified class of problems), and heuristics [5] that may provide approximate 

solutions (A ‘good’ feasible solution) to some problems. 

Several strategies such as Genetic Algorithm (GA) [6], [7], Simple Recursive approach 

[8], Multi-Objective Evolutionary Algorithms(MOEA) [9], Refined Genetic Algorithm 

(RGA) [10], Particle Swarm Optimization (PSO) [11], Biogeography Based Optimization 

(BBO)[12], Differential Evolution (DE) [13], Non-Dominated Sorting Genetic Algorithm 

(NSGA-II) [14], Artificial Bee Colony (ABC) [15], ABC-PSO [16], Gravitational Search 

Algorithm (GSA) [17] and Parallel Synchronous Particle Swarm Optimization (PSPSO) 

[18] have been proposed to solve a multi objective dispatch problem. 
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2. Mathematical Model of Fuel Cost Curve 

Generator cost curves are usually not smooth. However the curves can usually be 

adequately approximated using piece-wise smooth, functions. So that, the fuel cost curve 

can be presented as a smooth function. The smooth fuel cost function is defined by 

polynomial functions as three representations predominate: 

 

 Linear function: 
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  Quadratic function: 
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 Cubic function: 
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Figure 1. Three Types of Fuel Cost Function Curves 

 Power balance constraints 


i D L

P P P   (4)

where PD is the load demand and PL is the total transmission network losses. 

 

 Generator limit Constraints 

Generators have limits on the minimum and maximum amount of power they can 

produce. Often times the minimum limit is not zero. This represents a limit on the 

generator’s operation with the desired fuel type because of varying system economics 

usually many generators in a system are operated at their maximum MW limits.  


m in m axi i i

P P P   (5)

where Pi min is the minimum generation limit of unit i and Pi max is the maximum generation 
limit of unit i. 

 Power balance constraints 


i D L

P P P                           
(6)

where PD is the load demand and PL is the total transmission network losses. 
The simplest form of loss equation is George’s formula, which is given by: 
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Bij is called the loss coefficient 

 

 Generator limit Constraints 

The power generation of unit i should be between its minimum and maximum limits.  

 
m in m axi i i

P P P   (8)

where Pi min is the minimum generation limit of unit i and Pi max is the maximum generation 

limit of unit i. 

 

3. A Simulated Annealing Algorithm for Economic Dispatch Problem 

The simulated annealing method [19] is a heuristic optimization technique and it has 

the ability to find global or near global optimum solutions for large combinatorial 

optimization problems. This method is similar to the local search technique in 

optimization, which can only guarantee a local optimum solution. Simulated annealing is 

proposed in Kirkpatrick, Gelett and Vecchi [20] in 1983 and Cerny [21] in 1985 for 

finding the global minimum of a cost function that may presses several local minima [22]. 

The name simulated annealing comes from an analogy between combinatorial 

optimization and the physical process of annealing. In physical annealing a solid is cooled 

very slowly, starting from a high temperature, in order to achieve a state of minimum 

internal energy. It is cooled slowly so that thermal equilibrium is achieved at each 

temperature. Thermal equilibrium can be characterized by the Boltzmann distribution. 


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(9)

The SA algorithm for dispatch problem is stepped as follows [23]: 

 
Initialization 
Choose an initial solution S X ; 

S* ← S; 

C ← 0; (Global iteration count) 

T ← T0; (T0 Initial system temperature) 

Iterative Processes 

Nbiter ← 0; 

While (Nbiter < nb_iter) 

C ← C+1; Nbiter ← Nbiter+1; 

Generate randomly a solution  
'

S N S ; 

ΔF ← F(S)-F(S); 

if (ΔF <0) then 

S←S’; 

Otherwise 

Prob (ΔF, T) ← exp (-ΔF/T); 

Generate q uniformly in the interval: [0,1]; 
If (q< prob (ΔF, T)) then 

S ← S’; 

If F(S) < F(S*) then 

S* ← S; 

T= α T ; (0 < α <1 cooling coefficient). 
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Figure 2. Simulated Annealing Flowchart 

4. Results and Discussion  

The proposed optimization algorithm is applied to a 2 unit systems to verify its 

effectiveness. The networks used are Wollenberg’s network and Liang’s network. 

For conducting the test, the initial temperature is fixed at 20 C°, alpha is fixed at 0.4 

and max tries is 10000. The final temperature is 1e-10 C°. 

 

4.1. Wollenberg Network Power System 

The generator cost coefficients and generation limits of Wollenberg’s network are 

taken from [24] and listed in Table 1. The load demand of this system is 2500 MW. 

Table 1. Parameters of Wollenberg’s Network System 

 ai bi ci di Pmax Pmin 

P1 749.55 6.950 0.000968 1.27E-07 800 320 

P2 1285 7.051 0.0007375 6.45E-08 1200 300 

P3 1531 6.531 0.00104 9.98E-08 1100 275 

Table 2. Comparison of Economic Load Dispatch Result of Wollenberg’s 
Network System 

 Wollenberg 

[24] 

PRPGA 

[ 25] 

SA 

P1 726.9000 724.991408 725.01284 

P2 912.8000 910.153159 910.18417 

P3 860.4000 864.855433 864.80299 

Demand (MW) 2500.1000 2500.0000 2500.0000 

Fuel cost ($/h) 22730.2167 22729.324579 22729.32458 
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Figure 3. Convergence of Fuel Cost Minimization  
(Wollenberg’s Network System) 

The optimal total cost achieved by the proposed SA method is 22729.32458 $/h. The 

power outputs of generators 1, 2, and 3 are 725.01284 MW, 910.18417 MW, and 

864.80299 MW respectively. 
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Figure 4. Power percent (%) for each Generator  
(Wollenberg’s Network System) 

4.2. Liang’s Network Power System 

The generator cost coefficients, generation limits and B-coefficients of Liang’s network 

are taken from [26] and listed in table 3 and table 4 respectively. The load demand of this 

system is 1400 MW. 

Table 3. Parameters of Liang’s Network System 

 ai bi ci di Pmax Pmin 

P1 11.2 5.10238 -2.6429e-3 3.33e-06 500 100 

P2 -632 13.01 -3.0571e-2 3.33e-05 500 100 

P3 147.144 4.28997 3.0845e-4 -1.77e-07 1000 200 

Table 4. Bi, J Loss Parameters for Liang’s Network System 

7.50E-05 5.00E-06 7.50E-06 

5.00E-06 1.50E-05 1.00E-05 

7.50E-06 1.00E-05 4.50E-05 



International Journal of Energy, Information and Communications 

Vol.7, Issue 2 (2016) 

 

 

6  Copyright ⓒ 2016 SERSC 

Table 5. Comparison of Economic Load Dispatch Result of Liang’s Network 
System 

 Liang 

[26] 

SA 

P1 360.2000 359.7034 

P2 406.4000 406.5985 

P3 676.8000 677.1375 

Demand (MW) 1400 1400 

Losses (MW) 43.4000 43.4395 

Fuel cost ($/h) 6642.2600 6642.6628 
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Figure 5. Convergence of Fuel Cost Minimization (Liang’s Network System) 

The optimal total cost achieved by the proposed SA method is (6642.6628 $). The 

power outputs of generators 1, 2, and 3 are (359.7034 MW), (406.5985 MW), and 

(677.1375 MW) respectively. The power losses of this system are (43.4395 MW). Form 

figures 6 and 7, it can be seen that the power losses present 3.01% from the total power 

generation. 

P1 P2 P3 Losses

0

100

200

300

400

500

600

700

P
o

w
e

r 
o

u
tp

u
t 
(M

W
)

Generator number

 

Figure 6. Power Output for each Generator (Liang’s Network System) 
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Figure 7. Power Losses Percent (%) (Liang’s Network System) 

4. Conclusion 

A proposed SA method has been developed for solving constrained ELD considering 

power losses with cubic fuel cost curve. Two test systems are used to validate the 

proposed method. The studied case has cubic cost characteristics with transmission losses, 

and comparison is made with other methods in literatures. Based on the simulated results, 

the proposed SA method provides superior result than previously reported methods. SA 

algorithm has superior features, including quality of solution and good computational 

efficiency. The results show that SA is a promising technique for solving complicated 

problems in power system. 
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