
International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

1

Dynamic Control and Construction Method for Multiagent Systems

Based on an Evolutional Agent System

Akiko Takahashi
1
 and Tetsuo Kinoshita

2

1
Sendai National College of Technology

2
Research Institute of Electrical Communication, Tohoku University

akiko@sendai-nct.ac.jp, kino@riec.tohoku.ac.jp

Abstract

We propose a novel multiagent system for controlling multiagent service-provisioning

systems while continuing to provide service. The new method uses “control possibility” and

“control effect” to reduce the degradation of Quality of Service to the absolute minimum. We

evaluate the effectiveness of the new method by implementing it in a multimedia

communication system. The results show that the proposed system can provide better

multimedia communication services compared with a conventional multimedia

communication system.

Keywords: system margin; QoS; multiagent system; multimedia communication system;

service composition; control possibility; control effect

1. Introduction

Operating environments for information and communication services include desktop PCs,

mobile computers, smartphones, broadband LAN, and wireless LAN. These platform and

network environments change randomly with changes in applications, hardware, and other

factors. To respond to these changes and maintain adequate service, most users must

construct and control the systems themselves. However, control of such complex systems

requires specialized experience that most users do not have [1, 2].

We seek an optimal situation in which network services are maintained with minimum

burden on a typical user; specifically, we seek an “autonomous service-provision system.” In

general, it is difficult to avoid some system instabilities with accompanying decreases in

Quality of Service (QoS), but such losses can be minimized. For example, existing

autonomous service-provision systems are controlled and constructed to restore QoS after

detecting a decrease in QoS, but they cannot always actually restore QoS [3].

In this paper, we propose a novel method for proactively controlling multiagent systems to

reduce the decrease in QoS from a service-provisioning system. The intent is to maintain

satisfactory service in response to irregular changes in user requirements, platform

environments, and network environments. We define “control possibility” and “control effect”

against QoS changes during service provision as a “system margin” based on an “Evolutional

Agent System” (EAS). Using these, we control the system to realize a method for providing

satisfactory service. Moreover, to evaluate its effectiveness, we implement the proposed

control system in a multimedia communication system. The results show that the

new system can provide better multimedia communication services compared with a

conventional multimedia communication system. This is because systems based on

conventional methods control themselves after detecting undesirable resource conditions

related to QoS.

The remainder of this paper is organized as follows. We describe related work and our

proposal in Section 2. Then we propose EAS and the system margin in Section 3. In Section 4,

we describe evaluation along with the design and implementation of a multimedia

communication system based on system margin. Finally, Section 5 summarizes our

conclusions.

2. Related Work and Proposal

2.1. Related work

In autonomous service-provision systems, users must construct and control the service-

provisioning system dynamically to maintain adequate service. But for some service-

provision systems based on multiagent systems, methods have been reported

[4, 5] for

constructing the overall system by combining software agents that work autonomously.

During service provisioning, these systems change parameter values and reorganize the

agents when the environment changes or when QoS otherwise degrades. Autonomous

service-provision systems based on these methods are scalable and flexible because the agents

need not consider the behavior of the overall system when individual members of the system

are added, replaced, or fail. Moreover, users are not required to perform complex tasks to

maintain service because agents construct the system to detect changes in environmental

conditions and to respond to those changes. Nevertheless, it is difficult to avoid temporary

undesirable situations because these methods cannot consider the effects of control and

reorganization [1].

One report describes an agent organization model to construct a system that autonomously

recovers from undesirable conditions when trouble occurs

[6]. This model has design member

agents to control the agent organization that monitors the condition of the overall agent

system. Through the autonomous behavior of the member agents based on the model, the

agent system is constructed systematically. During service provision, if some agent is aborted

or some trouble occurs, which does not satisfy the system purpose, then the agent

organization is reconstructed. Other models of multiagent systems have also been proposed.

One is an organizational model that defines the knowledge of the system’s organizational

structure and capabilities to enable dynamic system reorganization [7]. Another is a

mathematical model prescribing that the agents act by Markov chains to describe a system’s

emergent behavior as a Markov Decision Process

[8]. These methods can recover a system

autonomously; however, in recovering a system, it is difficult for them to avoid some

suspension in service.

Moreover, a multiagent system architecture that contains a policy to manage applications,

resources, and service provision has been proposed [9]. The policy leads to functions that can

construct systems on the basis of user requirements, recover from some troubles, and

optimize the system. However, the policy to recover from troubles restricts applicable

services and is redundant. Moreover, if the same policy is applied to every system component,

the overall system becomes overloaded.

In general, a multiagent system requires a self-organizing model and a self-control model.

Although self-organizing models have been proposed

[10–12], they specialize in constructing

the agent organization. For self-control models

[13, 14], the candidates are the control scheme

or the trust assurance of the overall agent system. However, if the model is to realize a

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

3

manageable, systematic, and reliable multiagent system, the design model for a multiagent

system must consider both a self-organizing model and a self-control model.

In the design models of previous studies, a semantic model for specifying and reasoning

about components of open distributed systems has been proposed [15]. In this model,

multimedia actor behaviors satisfy the specified requirements and provide the required

multimedia service. The behavior specification leaves open the possibility of various

algorithms for resource management. In other work, a quantitative performance model has

been reported to predict the performance of a component-based server-side application in the

design phase

[16]. The model requires input from an application-independent performance

profile of the underlying component technology platform; the model also needs a design

description of the application. The results from the model allow the architect to make early

decisions between alternative application architectures in terms of their performance and

scalability. However, the above issues remain obstacles to realizing flexible QoS control

functions for some network service systems that are designed and implemented as multiagent

systems.

In general, conventional methods have difficulty avoiding temporary QoS degradation or

incomplete control because such methods control themselves after detecting undesirable

situations that occur while providing service to users.

2.2. Challenge and proposal

To restore a service-provisioning system from an undesirable situation, conventional

methods control the system after detecting QoS degradation. However, some conventional

methods cannot avoid temporary degradation of QoS or interruption of service, while others

cannot always manage to actually restore QoS. In this paper, we focus on methods for

inhibiting undesirable conditions (conditions that do not satisfy user requirements) and

controlling against QoS degradation by preparing for changes in resource status.

To date, it remains difficult for service-provisioning systems to assess the changes in

resources that cause undesirable conditions. Therefore, challenges remain for realizing an

autonomous service-provision system that controls itself, prepares for changes, and considers

the effects of those controls.

In this paper, we propose a policy for preparing for undesirable conditions in advance in

order to control a multiagent system. The policy is tolerant of changes in resource status and

performance characteristics of agents, which are the candidates of reorganization. It actively

reconstructs a system when the system cannot tune parameters sufficiently to restore QoS in

response to changes in resource status. Challenges inherent to realizing such a system include

the following.

(P1) Estimation of QoS after parameter tuning: the policy must estimate whether the

system can be controlled and whether the control can provide sufficient QoS while

providing services.

(P2) Estimation of QoS after reconstruction: the policy must assess the reconstruction plan

and its effects.

For these challenges, we propose a new policy of performance characteristics: the “system

margin.” This new policy estimates the possibility of control and their effects.

(S1) Margin of tuning: tolerance of systems to changes in resource status. This defines the

“control possibility” and the degree of QoS provided to users by tuning. If it is

difficult to maintain sufficient QoS, an advanced reconstruction is considered.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

4

(S2) Margin of alternative: the effects of system reconstruction. This defines the “control

effect” and the expected QoS provided by the candidate for the alternative agents in

reconstruction. A system based on this policy always includes reconstruction.

3. Control Method based on the System Margin

3.1. Evolutional Agent System

We have designed a control method based on the system margin using an EAS: a

multiagent system that controls and reconstructs itself actively to recover QoS. The EAS

analyzes the system environment rather than merely responding passively to change.

Specifically, the EAS controls itself actively when another system can provide better QoS and

functions than the system that is currently providing the service. For example, control is

provided when an agent organization exists that can improve QoS and characteristics of agent

behaviors. Therefore, in EAS, an evolutional mechanism exists to improve system

performance while analyzing behavioral characteristics and environment information. We

designed the system margin as an EAS mechanism.

3.2. Model of the Evolutional Agent System

This section describes an EAS in a syntactic manner. An EAS consists of EAS names,

requirements, EAS structure, functions, environment, and properties.

[Definition 1] An EAS is designed on the basis of ne, R, S, F, E, and P:

 EAS = <ne, R, S, F, E, P>

Here, ne is the name of the EAS, R is a set of requirements given to the EAS, S is the

structure of the EAS, F is a set of functions working in the EAS, E is the environment in

which the EAS operates, and P is the EAS property. □

Detailed elements of the EAS are defined next.

[Definition 2] R contains reqk (k = 1, 2, …, N-r), where reqk is the description of a required

service function req-fk and req-f-qk is the required quality of req-fk,

 R = {reqk | reqk = <req-fk, req-f-qk > ; k=1, .., N-r }.

Here, N-r is the total number of required functions. □

[Definition 3] S is an organization of the EAS. It consists of AG, STR, and AL-AG,

 S = <AG, STR, AL-AG>.

Here, AG is a set of member agents of the EAS, STR is the structure of an agent organization,

and AL-AG is a set of alternative agents that can be replaced with a member of AG. □

 AG contains agi (i = 1, .., N-a), where an agi is determined with the identifier nai, a set of

received messages M-agi, a set of services that can be provided by agi Sv-agi, a set of action

knowledge K-agi, processing load of agi w-agi, and the communication agent set CoAi:

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

5

 AG = {agi | agi = <nai, M-agi, Sv-agi, K-agi, w-agi, CoAi> ; i = 1,…, N-a}.

Here, N-a is the total number of services that can be provided.

 Sv-agi contains svai, which is determined as a provided function funci and the provided

quality of the funci func-qi:

 Sv-agi = {svai | svai = <funci, func-qi>; i = 1,…, N-a}.

 AL-AG contains agj (j = 1, .., N-alt),

AL-AG = {agj | agj = <naj, M-agj, Sv-agj, K-agj, nil, CoAj> ; j=1,…, N-alt}.

Here, N-alt is the total number of alternative agents.

 STR contains relij (i = 1, .., N-a, j = 1,…, N-alt), and relij is determined by rij, which is the

relation between agi and agj. Here, agj are contained in AG and rij are contained in a set of

relations between agents REL.

STR = {relij | relij = <rij, agi, agj>; agi, agj ∈ AG; relij ∈ REL}.

[Definition 4] F is a set of functions that behave so as to satisfy the required services in the

EAS. They are determined on the basis of a set of Sv-agi,

 F = ∪ Sv-agi, agi ∈ AG : i=1,…, N-a, N-n = |F|, N-r ≤ N-n. □

When an R is issued to the EAS, an F is determined in a design process.

[Definition 5] In a design process, the EAS is feasible and an F is determined when all

requirements and functions are compared and matched,

 if reqk = <req-fk, req-f-qk> ∈ R is issued and svai = <funci, func-qi> ∈ S exists,

 req-fk = funci, and req-f-qk = func-qi,

 then F is determined. □

The design process selects those agents that have a function needed to realize the

requirement. The agent is organized when an F is determined, that is, when AG, STR, and AL-

AG, which are elements of S, are determined.

[Definition 6] E represents a set of information about the behavioral environment. It consists

of information about agent platforms Ag-Plfms, distributed platforms Ds-Plfms, and agent

repositories Ag-Rpgs:

 E = < Ag-Plfms, Ds-Plfms, Ag-Rpgs >. □

Ag-Plfms contains api (i = 1,…, N-ap), where an api is determined by an identifier of the

agent platform napi, the type of agent platform ap-typi, the processing efficiency ap-pefi, the

number of agent processing tasks Mg-agi, and a number of functions S-APi:

 Ag-Plaf={api| api=<napi, ap-typi, ap-pefi, Mg-agi, S-AP >; i = 1,…, N-ap}.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

6

Here, N-ap is the total number of the agent platforms.

 Ds-Plfms contains dpi (i = 1,…, N-dp), where a dpi is determined as an identifier of a

distributed platform ndpi, the type of distributed platform dp-typi, the processing efficiency

dp-pefi, a number of services Sv-dpi, and a number of functions S-APi:

Ds-Plaf={dpi| dpi=<ndpi, dp-typi, dp-pefi, Sv-dpi>; i=1,…, N-dp}.

Here, N-dp is the total number of distributed agent platforms.

 Ag-Plfms consists of the main agent repository p-AgR and a set of agent sub-repositories s-

AgRs:

 Ag-Rpgs = <p-AgR, s-AgRs>

 P is the operating property of the EAS. It is determined by the evolutional mechanism of

the EAS. If the system can recover its performance, then the evolutional mechanism actively

controls the system based on the operating status of the multiagent system and information

about the system environment. In this study, we design the evolutional mechanism as a meta-

agent mag. It manages P as internal information.

[Definition 7] mag consists of an identifier of mag n-magi, a set of the mag’s received

messages M-magi, a set of services that can be provided by magi Sv-magi, a set of mag’s

action knowledge K-magi, the main agent on agent organization t-ag, the operation mode op-

mode, the history of P, and the operation property Prop:

 mag = <n-magi, M-magi, Sv-magi, K-magi, t-ag, op-mode, History, Prop>

Here, Prop includes detectable properties propi (i = 1, 2, …, N-p)

 Prop = {propi | i = 1,…,N-p}

where N-p is the total number of detectable properties. □

3.3. Change and control in EAS

In an EAS, a change during operation is detected as a change in a component of the EAS.

For example, if ∆S represents the amount of S changes, then the change in S is S+∆S.

[Definition 8] In an EAS, changes observed in an observable object obj(t) at time t describe

Ch(obj(t), ψ, t)). Here, the change from t−∆t to t is represented by ch(obj(t–∆t), obj(t)) or

∆obj(t), its rate is represented by rat(∆obj(t), obj(t)), or rat_∆obj(t), and ψ is a threshold value

of rat_∆obj(t). Ch(obj(t), ψ, t)) can be represented by the following.

 if ∆obj(t) ≠ 0 and rat_∆obj(t) > ψ,

 where ∆obj(t) = ch(obj(t–∆t), obj(t)),

 rat_∆obj(t) = rat(∆obj(t), obj(t))

 then ∆obj(t) = Ch(obj(t),ψ, t). □

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

7

[Definition 9] Among Ch(obj(t), ψ, t) in the EAS, degradation is described by Dg(obj(t), ε, t),

which is an undesirable change for the EAS. Here, ε is a threshold value for the degradation:

 if Ch(obj(t), ε, t) is detected

 and ∆obj(t) < 0, rat_∆obj(t) > ε,

 then ∆obj(t) = Dg(obj(t), ε, t). □

[Definition 10] When a change in the EAS is detected, the EAS behaves as follows: (1) it

detects the change, (2) it sets an objective, (3) it operates, and (4) it evaluates the result. After

processing, the EAS changes to another EAS: EAS’. Representing the conditions of the

components of the EAS as EAS/<ne, R, S, F, E, P>, the transition of EAS is represented by

 EAS/<ne, R, S, F, E, P> → EAS’/<ne, R+∆R, S+∆S, F+∆F, E+∆E, P+∆P> □

Moreover, the operation in the EAS can be classified into Tuning, Reorganization, E-

Reorganization, and E-Redesign. In the Tuning phase, the changed P’ is recovered by

controlling some parameters, and the EAS is returned to the original P. In the Reorganization

phase, the EAS is reorganized when it cannot recover in the Tuning phase. Then an EAS
+

resembling the original EAS is constructed. The difference between EAS and EAS
+
 is less

than a threshold θ. In the E-Reorganization phase, if a more suitable EAS exists as EAS
*
, for

which P is P
*
, then EAS is reorganized to EAS

*
. In the E-Redesign phase, the EAS cannot

recover the phases described above. The EAS demands its redesign from the EAS designer.

[Definition 11] Classification of operations is as follows.

 Tuning: EAS’⇒ EAS, P’ → P,

 Reorganization: EAS’ ⇒ EAS, P’ → P
+
, ||P

+
− P|| ≤ θ,

 E-Reorganization: EAS’ ⇒ EAS
*
, P’ → P

*
, P

* ≥ P,

 E-Redesign: EAS
*
 with δR ⇒ EAS

**
. □

When changes are detected, an EAS invokes δF and δS, which are counter operations given

to an F and S. Fundamentally, the EAS implements δF and δS against changes. During the E-

Reorganization and E-Redesign phases, the counter operation given to P δP is invoked. Only

in the Re-design phase is the counter operation given to R (δR) necessary. Operations are

classified into the following patterns. Here, A⇒B signifies that the EAS changes from A to B.

1. A change in R: ∆R

∆R ⇒ δF, δS

EAS’/<ne, R+∆R, S, F, E, P’> ⇒EAS
+
/<ne, R+∆R, S, F+δF, E, P

+
>|

EAS
**

/<ne, R+∆R, S+δS, F+δF, E, P
**

>

2. A change in S: ∆S

∆S ⇒ δF, δS

EAS’/<ne, R, S, F+∆F, E, P’> ⇒EAS
+
/<ne, R, S+∆S+δS, F+δF, E, P

+
>|

EAS
*
/< ne, R, S+∆S+δS, F+δF, E, P

*
>|

EAS
**

/< ne, R+δR, S+∆S+δS, F+δF, E, P
**

>

3. A change in F: ∆F

∆F ⇒ δF, δS

EAS’/< ne, R, S, F+∆F, E, P’> ⇒EAS/<ne, R, S, F+∆F+δF, E, P>|

EAS
+
/<ne, R, S+δS, F+∆F+δF, E, P

+
>|

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

8

EAS
*
/< ne, R, S+δS, F+∆F+δF, E, P

*
>|

EAS
**

/< ne, R+δR, S+δS, F+∆F+δF, E, P
**

>

4. A change in P: ∆P

∆P ⇒ δF, δS

EAS’/<ne, R, S, F, E, P+∆P> ⇒EAS/<ne, R, S, F+δF, E, P>|

EAS
+
/<ne, R, S+δS, F+δF, E, P

+
>|

EAS
*
/< ne, R, S+δS, F+δF, E, P

*
>|

EAS
**

/< ne, R+δR, S+δS, F+δF, E, P
**

>

5. A change in E: ∆E

∆E ⇒ δF, δS

EAS’/<ne, R, S, F, E+∆E, P’> ⇒EAS/<ne, R, S, F+δF, E+∆E, P>|

EAS
+
/<ne, R, S+δS, F+δF, E+∆E, P

+
>|

EAS
*
/< ne, R, S+δS, F+δF, E+∆E, P

*
>|

EAS
**

/< ne, R+δR, S+δS, F+δF, E+∆E, P
**

> □

Finally, we describe the general forms of the EAS. They are summarized functions based

on designs and changes.

[Definition 12] General forms of counter operations as yielded by function are shown below.

1. State translations to EAS/EAS
+

Tuning:

δF←TFi(t, Dg(obj, ε, t), R, S, F, E, P, τi)

Reorganization:

δS←ROi(t, Dg(obj, ε, t), R, S, F, E, P, τi)

Recover:

AS←Rcvi(t, Dg(obj, ε, t), R, S, F, E, P, τi)

2. State translations to EAS
*
/EAS

**

 E-Tuning:

δP←EGi(t, Ch(obj, ε, t), R, S, F, E, P, τi)

δF←ETi(t, Ch(obj, ε, t), R, S, F, E, P, τi)

E-Reorganization:

δP←EGi(t, Ch(obj, ε, t), R, S, F, E, P, τi)

δS←ERi(t, Ch(obj, ε, t), R, S, F, E, P, τi)

E-Redesign:

δR←User: given by user,

δP←EGi(t, Ch(obj, ε, t), R, S, F, E, P, τi) □

The operations presented above are designed and implemented as the knowledge of a

meta-agent. Autonomous operations are achieved because the operational characteristics and

the counter operations are implemented in the meta-agent on the basis of detectable changes

and conditions of each element in the EAS.

3.4. System margin

To design a control mechanism based on the system margin, we define a margin of tuning

Tm and a margin of alternative Al as the elements of propi. They are derived by an R, F and S.

Based on the formula, Tm and Al are derived by the EAS at regular intervals during service

provision. Observing the changes of Tm and Al, the EAS evaluates the operational status and

controls them.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

9

We define Tm as the degree of recovery and stability of QoS by tuning. We quantify the

tunable degree of the system based on Tm and estimate the “control possibility” as a

possibility of tuning. Therefore, Tm is derived on the basis of QoS provided and the

maximum QoS that can be provided.

[Definition 13] The provided QoS is derived from an F in the EAS. A set of services

provided to users corresponds to a set of functions that provide services. The set of these

functions is F. Consolidating func-qis determines the overall QoS that is provided. Here, a set

of functions that provides the maximum QoS by tuning is represented by F
*
, and Tm is

derived on the basis of F and F
*
,

 Tm = FTm(F
*
, F). □

We define Al as the degree of recovery and stability of QoS by reconstruction. We quantify

the provided QoS in reconstruction based on Al and estimate the “control effect” as an effect

of reconstruction. Therefore, Al is derived on the basis of the QoS provided and on the QoS

that will be provided after reconstruction.

[Definition 14] The QoS provided by a reconstruction is calculated on the basis of AL_AG.

By reconstructing the EAS, an AL_AG is selected as a new member of the EAS, replacing AG

with AL_AG. Here, a set of functions provided by reconstruction is represented as Falt, and Al

is derived on the basis of F and Falt:

 Al = FAl(Falt, F). □

3.5. Agent behavior design based on Tm and Al

The architecture of the service-provisioning system based on Tm and Al is presented in

Figure 1 [17]. In the figure, “Agent Workplace” is the behavioral platform that controls the

agent organization and each agent to provide services for users. “Agent Repository” is the

agent server; it constructs agent organizations and manages the stored agents. “Ag” is an

agent providing services to users as the member of the agent organization and is a component

of an AG and an AL_AG. Moreover, “UA,” “EA,” “META,” and “Manager” are used. A UA

is a user agent that receives user requirements and reports those requirements to a META. An

EA is an environment-monitoring agent that collects platform and network environment

information and then reports that information to the META. The META is a meta-agent.

Based on information from the UA and the EAs in the Agent Workplace, the META

evaluates operating conditions and manages control. A Manager is a manager agent that

constructs and manages agent organizations in the Agent Repository.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

10

Figure 1. Architecture of the service-provisioning system
 based on Tm and Al

Using this architecture, agent behaviors are designed as follows. A UA obtains a

requirement from users, and then, the UA informs a META about the requirement. The

META requests environment information from EAs. The META sends a service requirement

to a Manager on the basis of the user requirement and the platform and network environment

information. Then, the Manager constructs an agent organization that satisfies the

requirement. The agents instantiate to Agent Workplaces. During service provision, the

Manager sends information of AL_AG, as an alternative agent, to the META. Then, the

META calculates Tm and Al and controls the EAS. The META garners agent conditions and

environment information, predicts the maximum QoS, and calculates Tm. Then, Al is

calculated on the basis of alternative agent information and the QoS to be provided by the

agents.

The flow of information of C from A to B is written as C:A → B; the process described

above is as follows. The (step1) – (step12) in Figure 1 denotes the following flow of (step1) –

(step12).

Flow of information:

(step 1) R:User → UA, then R:UA → META,

(step 2) E:EA → META,

(step 3) R, E:META → Manager with request-organization,

(step 4) R, E:Manager → Ag,

(step 5) F is designed by Manager based on R and E, AG is determined according to F,

(step 6) AG is instantiated to agent workplace and

(step 7) AL_AG:Manager → META.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

11

Calculation of Tm and AL in META:

(step 8) acquire and update the information of F and E,

(step 9) select F
*
 from Sv-agi in AG,

(step 10) design Falt based on R and Sv-agi in AL_AG,

(step 11) calculate Tm based on F and F
*
 and

(step 12) calculate Al based on F and Falt.

If Tm was degraded and QoS could not be recovered using Tunings and if Al was raised

and QoS could be recovered by reorganization, then the EAS decides to conduct E-

Reorganization. Here, we define thresholds for Tm and Al as εTm and εAl, respectively, and

define thresholds for time durations of Tm and Al as γTm and γAl, respectively. Reorganization

based on the system margin is described by the following.

[Definition 15]

Degradation of system quality:

 if ∆Tm < 0 and rat_∆Tm > εTm,

 then degradation of Tm is detected at time t, ∆Tm = Dg(Tm, εTm, t);

 if ∆Al < 0 and rat_∆Al > εAl,

 then degradation of Al is detected at time t, ∆Al = Dg(Al, εAl, t).

Reorganization:

 if ξTm ≥ γTm and 0 < ξAl < γAl

 where ξTm is the duration of Dg(Tm, εTm, t)

 and ξAl is the duration time of Dg(Al, εAl, t),

 then EAS’/ <ne, R, S, F, E, P+∆P> ⇒ EAS
*
/ <ne, R, S+δS, F, E, P

*
>,

 where δS = ERi(t, Dg(Tm, εTm, t), R, S, F, E, P, τi>. □

By implementing these models as behavioral knowledge of the META, E-Reorganization

is realized.

4. Evaluation

4.1. Application to a multimedia communication system

We redesigned and reimplemented a Flexible Multimedia Network Middleware

(FMNM) [17, 18] to test the EAS and the system margin. The FMNN is an agent-based

multimedia communication system dynamically providing adequate multimedia

communication services on the basis of user requirements. Every agent of FMNM is

implemented as an ADIPS/DASH agent [19–24]. In this study, we realized not only

passive self-recovery of the FMNM against a QoS change but also a forestalling of QoS

degradation. Thereby, better service could be provided.

In the FMNM, the quality of the provided service and the platform and network

resource conditions are used as QoS parameters in the multimedia communication

system. Consequently, in the prototype system of this study, every QoS parameter is

implemented as a component of design specifications; the parameters of a user

requirement function and its quality are implemented as req-fk and req-f-qk, respectively.

Therefore, if we implement the priority of req-fk as req-f-pk, R is described as follows:

R = {reqk | reqk = <req-fk, req-f-qk req-f-pk > ; k=1, .., N-r }.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

12

Every agent has knowledge of the service that the agent can provide via components of

a set of Sv-AG.

When a user requirement, R, is issued, an F that fulfills R, i.e. F
*
, is selected and

agent organization, which is required by the FMNM, is performed in the Agent

Repository. If there are other agents that can become a member of the F, then they are

Sv-AG. If there are other agent organizations that are not selected as the F, then they are

alternative agents Sv-AL-AG. Consequently, Tm is calculated on the basis of Sv-AG and

F and Al is calculated using Sv-AL-AG and F.

4.2. Purpose and environment of experiments

To evaluate the proposed method, we performed an experiment using a prototype

multimedia communication system. This experiment demonstrated that the proposed

method could provide adequate service; that is, user requirements were satisfied.

We used the degree of satisfaction of user requirements as the measure of the QoS

provided by the system. The degree of satisfaction of a user requirement, which is

normalized as requirement satisfaction rate rsrk, is 100% when the user requirement

matches the providing QoS parameter of the multimedia communication service. In

addition, the degree of satisfaction of the manager requirement, which is normalized as

rsrk, is 100% when the manager requirement matches the unused resource status of the

machine and network. rsrk is derived as follows:

rsrk = (funck / req-f-qk) * 100 [%].

Therefore, considering the priority 𝛼k, the average of rsrk RSR is described by

RSR={∑k(𝛼k⨯rsrk)}/ ∑k𝛼k [%](k=1,….,6).

We used Tm and Al as the measures of tuning and reconstructing by the system. Here,

if we represent F
*
 as follows:

F
*
 = {sva

*
 | sva

*
 = <func

*
k, func

*
-qk>; k = 1,…, N-r} ,

considering the priority 𝛼k, Tm is derived as

Tm = FTm(F
*
, F) = {∑k(𝛼k⨯func

*
-qk) – ∑k(𝛼k⨯func-qk)}/ ∑k𝛼k (k=1,….,6).

Moreover, if we represent Falt as follows:

Falt = {svaalt | svaalt = <funcalt k, funcalt-q k>; k = 1,…, N-r} ,

considering the priority 𝛼k, Al is derived as

Al = FAl(Falt, F) = {∑k(𝛼k⨯funcalt-qk) – ∑k(𝛼k⨯func-qk)}/ ∑k𝛼k (k=1,….,6).

In this experiment, the service is accredited as adequate when RSR is greater than

90%. When the RSR continues to be 90% or less, some failures occur in the service. In

this paper, we present the results of experiments using these four systems:

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

13

Figure 2. Experimental system configuration

System 1. Conventional multimedia communication system (no agents),

System 2. FMNM using Tm,

System 3. FMNM using Tm and a reorganization mechanism without Al, and

System 4. FMNM using Tm and Al.

We compared and evaluated the degree of satisfaction of RSR produced by these

systems.

Figure 2 depicts the configuration of the experimental system. A sender-side PC was

connected to a 100-Mbps Ethernet LAN. A receiver-side PC was also connected to the

LAN with an 11-Mbps link of IEEE802.11b via a wireless access network. As the index

of QoS, we specifically examined the frame rate of a playing movie as it streamed from

the sender PC to the receiver PC. The initial experimental conditions were the

following.

R = {reqk | reqk = <req-fk, req-f-qk, req-f-pk>; k = 1,…., N-r}

 = {(quality, 0.6, 0.5), (size, 58800, 0.5), (frame rate, 15, 1.5),

 (sender CPU, 40, 0.8), (receiver CPU, 40, 0.8), (bandwidth, 150, 0.8)}.

The threshold of Tm was 0.10 and that of Al was 0.15.

4.3. Results of experiments

Results of experiments using systems 1–4 are shown in Figures 3–6. In each figure,

the x-axis shows time and the y-axis shows the RSR value.

Experimental results for system 1.

Figure 3 presents the experimental results for system 1, which was a conventional

multimedia communication system without agent control functions. We used Java

Media Framework as the conventional multimedia communication system [25].

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

14

Figure 4. Experimental results for system 2:
FMNM based on Tm

Figure 3. Experimental results for system 1:

a conventional multimedia communication system

After service provision started, RSR was more than 90% and QoS was stable; the

user requirement was sufficiently satisfied. However, when the CPU load on the

receiver PC was increased, RSR decreased. Thereafter, the user requirement was not

satisfied because system 1 was incapable of independently controlling the situation.

Experimental results for system 2.

Figure 4 shows the results for service provision with system 2, which was based on

an FMNM controlling itself using a Tm.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

15

After service provision started, RSR was more than 90% and QoS was stable; the

user requirement was satisfied sufficiently. Furthermore, because the value of Tm was

0.22, the system was tunable. When the CPU load on the receiver PC was increased,

RSR decreased, but the system QoS was recovered through tuning. But as a result, the

value of Tm decreased to 0.08. Then, when the CPU load on the sender PC was

increased, RSR decreased, and the Tm decreased to −0.01. At that point, RSR could not

be recovered because the system could not be tuned further and because system 2 was

incapable of system reorganization.

Figure 5. Experimental results for system 3:

FMNM based on Tm and the conventional reorganization mechanism

Figure 6. Experimental results for system 4:

FMNM based on Tm and Al

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

16

Experimental results for system 3.

Figure 5 shows the experimental results for system 3. This system was based on an

FMNM and controlled it using Tm and the FMNM’s original reorganization mechanism

without Al.

After service provision started, RSR was more than 90% and the QoS remained

stable; user requirements were satisfied sufficiently. Because the value of Tm was 0.18,

the system was tunable. When the CPU load on the receiver PC was increased, RSR

decreased, but the system QoS recovered through tuning. At that point, the Tm value

had decreased to 0.07. Then, after the CPU load on the sender PC was increased, RSR

again decreased. Now, the Tm decreased to 0.01, so the system could not be tuned

further. Therefore, the system invoked reorganization. However, because the

reorganization mechanism did not consider the effects of reorganization, RSR did not

recover.

Experimental results for system 4.

The results in Figure 6 are for system 4. This system was based on an FMNM and

controlled it using Tm and Al.

After service provision started, RSR was more than 90% and the QoS was stable;

therefore, the user requirement was satisfied sufficiently. Because the value of Tm was

0.33 and that of Al was 0.18, the system could be tuned and reorganized. Therefore,

when the CPU load on the receiver PC was increased, RSR decreased. But the system

QoS recovered through tuning. At that point, the value of Tm had decreased to 0.15 and

Al had increased to 0.24. But because the value of Tm was decreasing and the value of

Al was high and because the system might be stabilized by reorganization, the system

conducted E-Reorganization. The results in Figure 6 show that Tm recovered to 0.2 and

the system was stable again. Consequently, after the CPU load of the sender PC was

increased, RSR decreased, but the system remained stable because this system not only

could provide service but also could improve the subsequent status of the system.

These results demonstrate that the proposed method maintains stable service against

service degradation. Moreover, the proposed method resolves the causes of degradation

by estimating the subsequent status of the system, conducting evolutional tuning, and

conducting evolutional reorganization.

Using the proposed Tm, control incorporating a “control possibility” is achieved

when a change of environment occurs. If tuning of QoS is difficult, then the system

detects it as a degradation of Tm and reconstructs the system. Therefore, a solution to

problem (P1) is available.

In addition, using the proposed Al, control incorporating a “control effect” is

achieved through reorganization of the service provision agents. Moreover, by selecting

alternative agent organizations when an agent organization is constructed,

reorganization of the agent organization is achieved based on information of an

alternative agent organization during service provision. Therefore, a solution to

problem (P2) is available.

5. Conclusion

We have proposed a new method for proactively controlling multiagent systems by

using “control possibility” and “control effect” to reduce the QoS decrement to the

absolute minimum in a service-provisioning system based on multiagency. To evaluate

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

17

the effectiveness of the proposed method, we implemented the method in a multimedia

communication system. We confirmed that the system can maintain adequate

multimedia communication services, and we compared its behavior to those obtained

using a conventional multimedia communication system.

In the future, we will apply the proposed method to other types of services, providing

systems based on multiagent systems in a ubiquitous environment. Using such systems,

we will further evaluate the proposed method and improve the EAS and system margin.

Acknowledgments

This research was partly supported by a Grant-in-Aid for Young Scientists (B), Japan

Society for the Promotion of Science, 22700087, 2010-2012, and by a Grant-in-Aid for

Scientific Research (C), Japan Society for the Promotion of Science, 22500116, 2010-2012.

References

[1] IBM, http://www.research.ibm.com/autonomic/manifesto/.

[2] G. D. M. Serugendo, M. -P. Gleizes and A. Karageorgos, Infomatica, vol. 30, no. 1, (2006), pp. 45.

[3] A. Takahashi, T. Suganuma, T. Abe, Y. Iwaya and T. Kinoshita, “A Behavioral Characteristics Model for

Flexible Distributed System”, Proceedings of The IEEE 20th Int. Conf. on Advanced Information Network

and Applications (AINA2006), vol. 1, (2006), pp. 275-280.

[4] N. R. Jennings, Artif. Intell., vol. 177, no. 2, (2000), pp. 277.

[5] A. Takahashi, T. Suganuma and T. Kinoshita, IPSJ Journal, vol. 45, no. 2, (2004), pp. 366.

[6] W. H. Oyenan and S. A. DeLoach, “Design and Evaluation of a Multiagent Autonomic Information System”,

Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, (2007),

pp. 182-188.

[7] M. Randles, D. Lamb and A. Taleb-Bendiab, “Engineering Autonomic Systems Self-organization”,

Proceedings of the Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems, (2008),

pp. 107-118.

[8] S. A. DeLoach, W. H. Oyenann and E. T. Matson, Auton. Agent. Multi-ag., vol. 16, no. 1, (2008), pp. 13.

[9] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O. Kephart and S. R. White, “A

Multi-Agent Systems Approach to Autonomic Computing”, Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems, vol. 1, (2004), pp. 464-471.

[10] F. Zambonelli, N. R. Jennings and M. Wooldridge, LNCS, vol. 1957, (2001), pp. 235.

[11] J. M. Serrano and S. Ossowski, WIAS, vol. 5, no. 2, (2007), pp. 197.

[12] W. Jiao, J. Debenham and B. Henderson-Sellers, WIAS, vol. 3, no. 2, (2005), pp. 67.

[13] L. K. Wickramasinghe and L. D. Alahakoon, WIAS, vol. 1, no. 3, (2005), pp. 31.

[14] M. Xu, L. Padgham, A. Mbala and J. Harland, WIAS, vol. 1, no. 5, (2007), pp. 31.

[15] N. Venkatasubramanian, C. Talcott and G. A. Agha, ACM T. on Softw. Eng. Meth., vol. 13, no. 1, (2004), pp.

86.

[16] Y. Liu, A. Fekete and L. Gorton, IEEE Trans. Softw. Eng., vol. 31, no. 11, (2005), pp. 928.

[17] A. Takahashi and T. Kinoshita, IJPCC, vol. 6, no. 2, (2010), pp. 192.

[18] A. Takahashi and T. Kinoshita, WIAS, vol. 9, no. 2, (2011), pp. 161.

[19] S. Fujita, H. Hara, K. Sugawara, T. Kinoshita and N. Shiratori, The International Journal of Applied

Intelligence, Neural Network and Complex Problem-Solving Technologies, vol. 9, no. 1, (1998), pp. 57.

[20] T. Kinoshita and K. Sugawara, “ADIPS framework for flexible distributed systems”, In Proceedings of

Multiagent Platforms, T. Ishida, ed., LNAI, vol. 1599, (1998), pp. 18-32.

[21] T. Uchiya, T. Maemura, L. Xiaolu and T. Kinoshita, “Design and Implementation of Interactive Design

Environment of Agent System”, Proceedings of 20th International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems, LNAI, vol. 4570, (2007), pp. 1088-1097.

[22] DASH, “Dash-distributed agent system based on hybrid architecture!”, http://www.agent-

town.com/dash/index.html.

[23] IDEA, “Idea-interactive design environment for agent system”,

http://www.k.riec.tohoku.ac.jp/idea/index.html.

[24] T. Uchiya, Y. Nakashima, I. Takumi, T. Kinoshita, H. Hara and K. Sugawara, IJEIC, vol. 2, no. 4, (2011), pp.

47.

[25] JMF, http://java.sun.com/javase/technologies/desktop/media/jmf/.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

18

Appendix

The summary of the definitions of all the notations the figure in section 3 is as follows:

[Definition 1]

ne The name of the EAS.

R A set of requirements given to the EAS.

S The structure of the EAS.

F A set of functions working in the EAS.

E The environment in which the EAS operates.

P The EAS property.

[Definition 2]

reqk The description of req-fk and req-f-qk.

req-fk A required service function.

req-f-qk The required quality of req-fk.

N-r The total number of required functions.

[Definition 3]

AG A set of member agents of the EAS.

STR The structure of an agent organization.

AL-AG A set of alternative agents that can be replaced with a member of AG.

agi A member of AG.

nai The identifier of agi.

M-agi A set of received messages of agi.

Sv-agi A set of services that can be provided by agi.

K-agi, A set of action knowledge of agi.

w-agi The processing load of agi.

CoAi The communication agent set of agi.

N-a The total number of services that can be provided.

svai A member of Sv-agi.

N-alt The total number of alternative agents.

REL A set of relations between agents.

[Definition 6]

Ag-Plfms Information about agent platforms.

Ds-Plfms Information about distributed platforms.

Ag-Rpgs Information about agent repositories.

api A member of Ag-Plfms.

napi The identifier of the agent platform.

ap-typi The type of agent platform.

ap-pefi The processing efficiency.

Mg-agi The number of agent processing tasks of api.

S-APi A number of functions.

N-ap The total number of the agent platforms.

dpi A member of Ds-Plfms.

ndpi An identifier of a distributed platform.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

19

dp-typi The type of distributed platform.

dp-pefi The processing efficiency of dpi.

Sv-dpi A number of services of dpi.

S-APi A number of functions of dpi.

N-dp The total number of distributed agent platforms.

p-AgR The main agent repository.

s-AgRs A set of agent sub-repositories.

[Definition 7]

mag A Meta-agent.

n-magi An identifier of mag.

M-magi A set of the mag’s received messages.

Sv-magi A set of services that can be provided by magi.

K-magi A set of mag’s action knowledge.

t-ag The main agent on agent organization.

op-mode The operation mode of mag.

History The history of P.

Prop The operation property of mag.

N-p The total number of detectable properties.

[Definition 8]

obj(t) An observable object.

Ch(obj(t), ψ, t)) A changes observed in an obj(t) at time t.

ch(obj(t–∆t), obj(t)), ∆obj(t) The change from t−∆t to t.

rat(∆obj(t), obj(t)), rat_∆obj(t) A ∆obj(t)’s rate.

ψ A threshold value of rat_∆obj(t).

[Definition 9]

Dg(obj(t), ε, t) A degradation of Ch(obj(t), ψ, t).

ε A threshold value for the degradation.

[Definition 11]

δF The counter operation given to an F.

δS The counter operation given to a S.

δP the counter operation given to P.

δR The counter operation given to R.

[Definition 13]

Tm The degree of recovery and stability of QoS by tuning.

F
*
 A set of functions that provides the maximum QoS by tuning.

[Definition 14]

Al The degree of recovery and stability of QoS by reconstruction.

Falt A set of functions provided by reconstruction.

International Journal of Energy, Information and Communications

Vol. 4, Issue 2, April, 2013

20

[Figure 1]

Agent Workplace The behavioral platform that controls the agent organization and

each agent to provide services for users.

Agent Repository The agent server; it constructs agent organizations and manages

the stored agents.

Ag An agent providing services to users as the member of the agent

organization.

UA A user agent that receives user requirements and reports those

requirements to a META.

EA An environment-monitoring agent that collects platform and

network environment information and then reports that

information to the META.

META A meta-agent.

Authors

Akiko Takahashi

She received both a B.E degree in Information Engineering and a M.S

degree in Information Science from Tohoku University in 2002 and

2004, respectively, and a Ph.D. degree from Tohoku University in 2007.

She is currently an Assistant Professor at Sendai National College of

Technology. Her current research interests are intelligent agents,

multiagent systems, and ubiquitous computing.

Tetsuo Kinoshita

He received a B.E. degree in electronic engineering from Ibaraki

University in 1977, and M.E. and Dr. Eng. degrees in information

engineering from Tohoku University in 1979 and 1993, respectively. He

is currently a Professor at Research Institute Electrical Communication of

Tohoku University. His research interests include knowledge engineering,

agent engineering, knowledge-based systems, and agent-based systems.

He received the IPSJ Research Award, the IPSJ Best Paper Award, and

the IEICE Achievement Award in 1989, 1997, and 2001, respectively.

He is a member of IEEE, ACM, AAAI, IEICE, IPSJ, JSAI.

