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Abstract 

In the field of pattern recognition due to the fundamental involvement of human perception 

and inadequacy of standard Mathematics to deal with its complex and ambiguously defined 

system, different fuzzy techniques have been applied as an appropriate alternative. A pattern 

recognition system has to undergo basically the steps of preprocessing, feature extraction and 

selection, classifier design and optimization. In our work the data we have analyzed is in the 

form of numerical vectors, with a number of clusters predefined. Therefore the fuzzy c-means 

technique of Bezdek has been considered for our work. Although in the fuzzy c-means 

technique Euclidean distance has been used to obtain the membership values of the objects in 

different clusters, in our present work along with Euclidean distance we have used other 

distances like Canberra distance, Hamming distance to see the differences in outputs.  
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1. Introduction 

The use of fuzzy set theory (FST), developed by Zadeh [1], has proliferated the research 

work especially in the field of modeling uncertainty. A complete presentation of all aspects of 

FST is available in the work of Zimmermann [2]. The applications of FST in dealing with 

ambiguous problems where uncertainty prevails have been reflected in the works of Dewit [3], 

Lemaire [4], Ostaszewski [5]. Pattern recognition is a field whose objective is to assign an 

object or event to one of a number of categories, based on features derived to emphasize 

commonalities. Zheng and He [6] reviewed the general processing steps of pattern 

recognition where they have discussed several methods used for the steps of pattern 

recognition such as Principal Component Analysis (PCA) in feature extraction, Support 

Vector Machines (SVM) in classification and so forth. Derring and Ostaszewski [7] have 

explained in their research work a method of pattern recognition for risk and claim 

classification. They have also made similar application to classify claims with regard to their 

suspected fraud content. Bezdek [8] has discussed in his fuzzy c-means technique that the 

data to be analyzed must be in the form of numerical vectors called feature vectors, and the 

number of clusters must be predefined for obtaining the membership values of the feature 

vectors. Bezdek and Pal [9] have described it in their classification technique as a numerical 

process description, the fuzzy c-means iterative algorithm. 

Sir Francis Galton [10] was the first psychologist who devoted his time in the study of 

individual differences. Each individual exhibits certain characteristics or features due to 

which it is possible to measure the degree of similarity between two individuals or to notice a 

minimal difference between two individuals. In our present study each feature vector (i.e. 

object or student) consists of three features namely Intelligent Quotient (IQ), Achievement 

Motivation (AM) and Social Adjustment (SA). We have predefined five cluster namely very 

superior (C1), high average (C2), average (C3), low average (C4) and borderline defective 
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(C5). Using fuzzy classification technique we will see that depending on degree of 

membership of each object in different clusters how the objects partially or fully belong to 

clusters. The respective ranges of initial clusters against each feature have been shown in 

Table 2 of Section 3. The data we have analyzed for students’ individual differences have 

been collected from different schools of Guwahati, Assam, India. The raw scores of the data 

for our present work have been given in table1 of Section 3. In our work the dataset is in the 

form of numerical vectors, with five clusters and three features predefined. Therefore the 

fuzzy c-means technique of Bezdek [8] has been considered for our work. Although in the 

fuzzy c-means technique Euclidean distance has been used to obtain the membership values 

of the objects in different clusters, in our present work along with Euclidean distance we have 

used other distances like Canberra distance, Hamming distance to see the differences in 

outputs.  

In Section 2 we have discussed the concept of fuzzy set and the mathematical algorithms 

needed to implement classification using fuzzy techniques. The findings of our work have 

been placed in Section 3. In Section 4 we make a comparison of the findings with respect to 

different distances. Section 5 consists of the field of application. The conclusion is given in 

Section 6. 
 

2. Fuzzy Set and Mathematical Algorithm for Classification  

A fuzzy subset Ã of X, universe of discourse, is defined by its membership function           

μÃ: X  [0, 1].  For any x  X, the value μÃ (x) specifies the degree to what x belongs to Ã . 

As uncertainty prevails in the field of finding individual differences in our work, therefore a 

fuzzy technique is required for the classification of the same. In our work we use a fuzzy 

pattern recognition technique given by Bezdek [8]. The basic task of a classification 

technique is to divide n patterns, where n is a natural number , represented by vectors in a p-

dimensional Euclidean space,  into c, 2≤ c <n , categorically homogeneous subsets which are 

called clusters. Let the data set be  

X= {x1, x2, ……….., xn }, where xk ={ xk1, xk2, ……….., xkp }, k= 1,2,3,……..,n. 

Each xk is called a feature vector and xkj where j=1,2,…..p is the j
th
 feature of the k

th
 feature 

vector. 

A partition of the dataset X into clusters is described by the membership functions of the 

elements of the cluster. Let S1, S2,…….,Sc denote the clusters with corresponding 

membership functions  
1S , 

2S  , ……….,  
cS           

A c x n matrix containing the membership values of the objects in the clusters  

 

Ũ = nkcikx ,......,2,1,,.....,2,1S )]([
i    is a fuzzy c- partition if it satisfies the following conditions 
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Condition (1) says that each feature vector xk has its total membership value 1 divided 

among all clusters. Condition (2) states that the sum of membership degrees of feature vectors 
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in a given cluster does not exceed the total number of feature vectors. The algorithm of the 

fuzzy c-means technique of Bezdek [8] has been illustrated below. 

Step 1: Choose the number of clusters, c, 2≤c<n, where n is the total number of feature 

vectors. Choose m, 1 m . Define the vector norm ||   || (generally defined by the Euclidean 

distance), i.e., 

|||| ik vx   = 



p

j

ijkj vx
1

2)(                        (3) 

where kjx is the j
th
 feature of the k

th
 feature vector, for k=1,2,……,n; j=1,2,….,p and ijv ,      

j-dimensional centre of the i
th
 cluster for i=1,2,……,c; j=1,2,….,p; n, p and c denote the total 

number of feature vector , features in each feature vector and total number of clusters 

respectively. 

Choose the initial fuzzy partition  

nkciks x
i  1,1

)0((0) )]([U   

Choose a parameter >0 (this will tell us when to stop the iteration). Set the iteration 

counting parameter l equal to 0. 

Step 2: Calculate the fuzzy cluster centers ci

l

iv ,.....,2,1

)( }{     given by the following formula 








n

k

m

k

l

s

n

k

k

m

k

l

s
l

i

x

xx

v

i

i

1

)(

1

)(

)(

))((

))((





 for i = 1, 2 , ….. c;    k= 1, 2, , …..n.                                   (4) 

Step 3: Calculate the new partition matrix (i.e. membership matrix) 
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for i=1,2,……..,c and k=1,2,……..,n. If ,
)(l

ik vx  formula (5) cannot be used. In this case 

the membership function is 
iifk

ciiifkk

l

s x
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 1
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)1(
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(6)           

Step 4: Calculate   = |||| )()1( ll UU 
 

If   , repeat steps 2, 3 and 4. Otherwise, stop at some iteration count
*l . To make the 

result operational the fifth step had been introduced by Derring and Ostaszewski [7]. 

   Step 5: The final fuzzy matrix 
*lU is structured for operational use by means of the 

normalized  -cut, for some 0   1. All membership values less than  are replaced with 

zero and the function is renormalized (sums to one) to preserve partition condition (1). 
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3. Our Work and Findings 

In our present work the dataset we analyze consists of fifty (50) feature vectors with three 

(03) features (Intelligent Quotient (IQ), Achievement Motivation (AM) and Social 

Adjustment (SA)) each. We have predefined five (05) clusters namely very superior (C1), 

high average (C2), average (C3), low average (C4) and borderline defective (C5). The 

respective ranges of initial clusters against each feature have been shown in Table 2. The raw 

scores of the data for our present work have been given in Table 1. The fuzzy c-means 

technique of Bezdek [8] (see the algorithm in Section 2) has been used in our work as it has 

been considered to be the most appropriate. The membership values in initial partitions have 

been calculated by step1 of the algorithm (see Section 2). For this purpose, only one feature, 

IQ, out of the three features has been considered, i.e., depending on the value of the feature, 

IQ, of the feature vector, it will belong to any one of the clusters.  Therefore initially the 

membership value of a feature vector to a cluster will be either 0 or 1. Table 3 shows the 

membership values of the feature vectors in initial fuzzy partitions. 

 

Table 1. Scores of Students Against Three Features 

OBJ IQ AM SA OBJ IQ AM SA OBJ IQ AM SA 

1 91 18 55 18 130 19 75 35 125 19 85 

2 85 16 40 19 90 17 55 36 80 18 60 

3 120 19 74 20 91 17 56 37 85 18 70 

4 90 18 75 21 140 22 82 38 145 25 90 

5 92 17 74 22 92 18 75 39 80 18 74 

6 82 17 55 23 101 18 55 40 92 17 55 

7 95 19 75 24 85 16 54 41 120 18 70 

8 89 18 74 25 97 19 54 42 145 30 80 

9 96 19 75 26 110 18 55 43 95 18 50 

10 90 17 55 27 100 16 40 44 80 16 36 

11 97 16 54 28 100 18 75 45 90 17 55 

12 125 21 74 29 70 14 30 46 115 23 84 

13 100 19 75 30 105 17 55 47 100 18 80 

14 90 17 54 31 79 14 35 48 80 14 35 

15 100 18 84 32 80 15 34 49 105 19 75 

16 95 19 75 33 125 20 75 50 120 21 74 

17 130 23 85 34 100 19 75         

OBJ: ID of student IQ: Intelligent Quotient , AM: Achievement 

motivation, SA: Social adjustment  

 
Table 2. Initial Cluster of Individual Difference 

  IQ AM SA 

Borderline defective 70-79 11-14 30-34 

Low average 80-89 15-16 35-54 

Average 90-109 17-18 55-74 

High average 110-139 19-22 75-84 

Very superior 140-169 23 & above 85 & above 

IQ: Intelligent Quotient , AM: Achievement motivation, SA: Social adjustment 



International Journal of Energy, Information and Communications 

Vol. 4, Issue 1, February, 2013 

 

 

5 

 

 
Table 3. Membership Values of the Feature Vectors in the Initial Fuzzy Partition 

 
 

 

After finding the membership values of the feature vectors in the initial partitions we 

combine all three features (IQ, AM and SA) (see step 3 of algorithm of Section 2) and find 

the membership values of the feature vectors in the next level of partition. This process 

continues till the value of Δ > . In each case the values of the variables while implementing 

the algorithm have been considered as given below  
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n=50, p=3, c=5, m=2, epsilon () = 0.05, aCut (-cut) = 0.20.  

In our present work along with Euclidean distance we have tested two more distances 

namely Hamming distance and Canberra distance to find the distances of the feature vectors 

from the cluster centers of different clusters and based on which the membership values of the 

feature vectors in different clusters have been calculated. 

Let  },.......,,{},,........,,{ 2121 ipiiikpkkk vvvvxxxx   be two p-dimensional vectors.  

The vector norms |||| ik vx  with respect to the three different distances used in our work 

have been given in the following 

    

Euclidean distance   |||| ik vx   =  



p

j

ijkj vx
1

2)(         (7) 

Canberra distance   |||| ik vx   =  
 

p

j ijkj

ijkj

vx

vx

1 ||||

||
        (8) 

Hamming (or city block) distance |||| ik vx   = 



p

j

ijkj vx
1

||         (9) 

        

First we have tested our dataset by defining the vector norm by Euclidean Distance (see 

equation 7) in the algorithm (see Section 2). We have reached the final clusters after 4
th
 

iteration. The membership values of the feature vectors in the final clusters after taking  – 

cut =0.20 have been shown in Table 4. A graphical representation of the results in Table 4 has 

been shown in Figure 1. Here full membership value and partial membership value of a 

feature vector in a cluster have been represented by a diamond and a rectangle respectively. 

Next we have used the same algorithm (see Section 2) on the same dataset (see Table 1) 

but by defining the vector norm by Canberra distance (see equation 8) to see the differences 

of membership values of the feature vectors in different clusters. The initial partitions remain 

same as shown in Table 3. With this vector norm we have reached the final clusters after 13
th
 

iterations. The membership values of the feature vectors in the final clusters after taking  – 

cut =0.20 have been shown in Table 5. Figure 2 represents the graphical view of the results in 

Table 5. 

After Canberra distance we have tested the same dataset (see Table 1) with the same 

algorithm (see Section 2) by defining the vector norm by Hamming distance, also called city 

block distance (see equation 9). Here also the initial partitions remain same as shown in Table 

3. With this vector norm we have reached the final clusters after 8
th
 iterations. The 

membership values of the feature vectors in the final clusters after taking  – cut =0.20 have 

been shown in Table 6. A graphical representation of the results in Table 6 has been shown in 

Figure 3. 
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Table 4. Membership Values of the Feature Vectors in the Final Clusters after 

taking  – cut =0.20 while Defining the Vector Norm by Euclidean Distance 
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Figure 1. Partial and Full Membership of Feature Vectors in Final Clusters after 

Taking   – cut =0.20 while Defining the Vector Norm by Euclidean Distance 
 

 

 

Figure 2. Partial and Full Membership of Feature Vectors in Final Clusters after 

Taking  – cut =0.20 while Defining the Vector Norm by Canberra Distance 
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Table 5. Membership Values of the Feature Vectors in the Final Clusters after 

Taking  – cut =0.20 while Defining the Vector Norm by Canberra Distance 
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Table 6. Membership Values of the Feature Vectors in the Final Clusters after 

Taking  – cut =0.20 while Defining the Vector Norm by Hamming Distance 
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Figure 3. Partial and Full Membership of Feature Vectors in Final Clusters after 

Taking  – cut =0.20 while Defining the Vector norm by Hamming Distance 
 

In our work C ++ has been used as a programming language to implement the fuzzy c-

means algorithm. We have also used MS-Excel in the analysis section. 
 

4. Analysis  

In our work the vector norm has been defined with three different distances separately on 

the same algorithm and has been applied on the same dataset. It reveals the following 

differences in the results.  

First, the algorithm takes the least number of iterations, only four, while the vector norm 

has been defined by Euclidean distance, to reach the final clusters (see Table 7). On the other 

hand the algorithm takes the most number of iterations, thirteen, while the vector norm has 

been defined by Canberra distance, to reach the final clusters (see Table 7). This implies that 

the algorithm produces the result fastest when Euclidean distance is considered to define the 

vector norm, and it produces the result slowest when the vector norm is defined by Canberra 

distance. The graphical representation of the same has been shown in Figure 4. 

Secondly, we obtain cluster-wise total number of full membership and partial membership 

values of feature vectors with respect to three different vector norms defined by three 

different distances (see Table 8). The graphical representation of the same has been given in 

Figure 5. Here we observe that in most of the cases the least number of feature vectors exhibit 
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full membership values and the most number of feature vectors exhibit partial membership 

values in the final clusters while considering Euclidean distance to define the vector norm in 

the algorithm. On the other hand while considering Canberra distance to define the vector 

norm in the algorithm, in most of the cases the most number of feature vectors exhibit full 

membership values and the least number of feature vectors exhibit partial membership values 

in the final clusters.  

Since individual difference in our dataset is not a crisp concept but a fuzzy one, therefore 

for each feature vector, instead of full membership to a single cluster, partial membership to 

more than one cluster is expected. 

From this point of view we may say that out of the three distances, the algorithm shows the 

most expected result when the vector norm has been defined by Euclidean distance and the 

least expected one when the vector norm has been defined by Canberra distance.  

 

Table 7. No. of Iterations after which the Loop Stops with Respect to Three 
Different Distances 

EUCLIDEAN DISTANCE 4 

CANBERRA DISTANCE 13 

HAMMING DISTANCE 8 

-cut = 0.20 , = 0.05 

 

 

Figure 4. No. of Iterations after which the Loop Stops with Respect to Three 
Different Distances 

 

Table 8. Cluster-wise Total No. of Full Membership and Partial Membership 
with Respect to Three Different Distances 

  Full membership Partial membership 

  C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

EUCLIDEAN DISTANCE 3 6 12 14 6 3 5 5 5 1 

CANBERRA DISTANCE 4 6 14 15 5 1 3 3 3 2 

HAMMING DISTANCE 3 6 13 15 6 3 4 2 3 2 

- cut = 0.20 ,        = 0.05 
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Figure 5. Cluster-wise Total No. of Full Membership and Partial Membership 
Values of Feature Vectors in Different Clusters with Respect to Three Different 

Distances 
 

5. Application 

We have tested the fuzzy c-means technique of Bezdek [8] (see the algorithm in Section 2) 

on a dataset of individual differences (see Table 1) to see the membership value of an 

individual in the clusters. As the data we have analyzed is in the form of numerical vectors, 

therefore the same algorithm can be applied in other relevant field like vehicular pollution (as 

for example) where the data is in the form of numerical vectors.  

 

6. Conclusion 

As the dataset we have analyzed is in the form of numerical vectors and the number of 

clusters has been predefined, the fuzzy c-means algorithm of Bezdek has been considered for 

the classification of the same. Although in general, Euclidean distance has been used in the 

fuzzy c-means algorithm, we tried it with two more distances namely Canberra distance and 

Hamming distance to see the differences in the results. It has been reflected in the results of 

our work that out of the three distances, the algorithm produces the fastest as well as the most 

expected result when Euclidean distance has been considered and the slowest as well as the 

least expected one when Canberra distance has been considered (see analysis in Section 4).  
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