
International Journal of Energy, Information and Communications 

Vol. 3, Issue 4, November, 2012 

 

 

21 

 

Automatic Recognition of Digital Communication Signal 
 
 

Milad Azarbad
1
, Saeed Hakimi

2
 and Ataollah Ebrahimzadeh

1
 

1
Department of Electrical & Computer Engineering, BABOL Univ. of Tech.        

 
2
Department of Electrical & Computer Engineering, Ferdowsi Univ. of Mashhad 

azarbadmilad@yahoo.com, hakimi.saeed@yahoo.com, e_zadeh@nit.ac.ir 

Abstract 

Automatic recognition of digital communication signals has seen increasing demands 

nowadays in various applications. This paper investigates the design of high efficient system 

for classification of the digital communication signals. The system includes two main modules: 

feature extraction and classification. In the feature extraction module we have used a novel 

balanced combination of the higher order moments (up to eighth), higher order cumulants 

(up to eighth) and spectral characteristics. In the classifier we have investigated the 

performances of the radial basis function (RBF) neural network, probability neural network 

(PNN) and multilayer perceptron (MLP) neural network. Then we have compared these 

systems. Experimental results show the proposed systems have high percentage of correct 

classification to discriminate the different types of digital signals even at very low SNRs. 
 

Keywords: Pattern Recognition; Higher-order moments and cumulants; Neural Networks; 

Spectral characteristics 
 

1. Introduction 

Automatic signal classification is one of the most important parts in military and civil 

domains. Due to the increasing usage of digital signals in novel technology such as wireless 

communications, the recent researches have been focused on identifying these signal types. 

Generally, digital signal type identification methods fall into two main categories: decision 

theoretic (DT) methods and pattern recognition (PR) methods. DT methods use probabilistic 

and hypothesis testing arguments to formulate the recognition problem [1-3]. PR methods can 

be further divided in two main subsystems: the feature extraction subsystem and the classifier 

subsystem. In [4], the authors proposed a technique for identification ASK2, ASK4, PSK2, 

PSK4, FSK2 and FSK4 signals. The classifier is based on a decision flow. These digital 

signal types have been identified with a success rate around 90% at SNR=10 dB. 

In [5], a method based on instantaneous information is presented for recognition of ASK2, 

ASK4, FSK2, FSK4, PSK2, PSK4 and QAM16 modulations. It is found that the success rate 

is over 99 % when SNR is 10 dB, while the success rate is over 95 % when SNR is 5 dB. As 

artificial neural network (ANN) is a good classifier, further work is focused on adoption of 

ANN approaches [6]. In [7-8] a method based on the combination of clustering and neural 

network is presented for recognition of BPSK, QPSK, 8PSK, 16QAM, 32QAM and 64QAM 

when SNR is higher than 4 dB, the classification rates of four modulation types: BPSK, 

QPSK, 8PSK and 16QAM all reach 100%. The classification rates of 32QAM and 64QAM 

are much higher too. For instance, the classification rate of 32QAM reaches 98% when SNR 

is 8 dB, and the classification rate of 64QAM is 86.4% even when SNR is 4 dB. In [9], author 

proposed a kernel method for recognition of AM, CW, 2FSK, 4FSK, 8FSK, BPSK, QPSK, 

8PSK and SSB. The value of 95.44 and 97.67 accuracies are achieved at SNR=0 and 5 
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respectively. The recognition rate is increasing with SNR increasing. When SNR is more than 

10dB, classification accuracy gets to 100%. 

In [10] the authors used a MLP neural network as the classifier. This identifier showed a 

success rate about 93% at SNR=8dB for identification of ASK4, ASK8, PSK2, PSK4, PSK8, 

QAM8, QAM16, QAM32, QAM64 digital signals. In [11] the authors introduced a 

modulation classifier based on a combination set of the entropy and energy of the signal, 

variance of the coefficients wavelet packet transform, fourth order of moment and zero-

crossing rate. The considered signal types were: 2ASK, 4ASK, 2PSK, 4PSK, 2FSK, 4FSK 

and 16QAM. In the classifier module, the two structures of the neural networks are used: 

multi-layer perceptron (MLP) neural network and radial basis neural networks. The accuracy 

rates of the MLP and RBF classification are 99.84% and 97.57 for SNR=5dB, respectively. 

The advantage with neural network is that it is capable of handling noisy measurements 

requiring no assumption about the statistical distribution of the monitored data. It learns to 

recognize patterns directly through typical example patterns during a training phase. In [12], 

Subtractive and c-means methods identified ASK4, ASK8, PSK2, PSK4, PSK8, QAM8, 

QAM32 and QAM64 modulations with a high rate of around 81.89 and 97.03% for SNR=0 

respectively. 

In this paper, we introduced two automatic techniques for recognition of digital signals by 

pattern recognition approaches. In them for the feature extraction part, we proposed a 

balanced combination of the higher order statistics. For identification we have used the neural 

networks as classifiers. The rest of paper is organized as follows: Section 2 presents the 

feature extraction. Section 3 presents the neural networks. Section 4 shows some of our 

simulation results. Finally, Section 5 concludes the paper. 

 

2. Feature Extraction 

In digital communications, according to the changes in the message parameters, we have 

three main digital signal types: ASK, PSK and QAM. Most of them are used in M-ary form 

[13]. These different types of radio signals have different characteristics. Therefore finding 

the proper features for recognition of them is a critical problem. In this paper the considered 

radio signals are included as: ASK4, ASK8, PSK2, PSK4, PSK8, QAM8, QAM16, QAM32 

and QAM64. For simplifying the indication, these signals are substituted with P1, P2, P3, P4, 

P5, P6, P7, P8 and P9 respectively. Based on the extensive experiments and researches, a 

suitable combination of the higher order moments up to eighth and higher order cumulants up 

to eighth and spectral features are considered as the prominent features. Following phrases 

describe briefly these features. 
 

2.1. Spectral Features 

Spectral features were demonstrated to be suitable for signals which contain hidden 

information in a single domain, instantaneous amplitude, instantaneous phase or 

instantaneous frequency. In this paper, according to the considered digital signals, the 

following spectral features are selected: 

2.1.1. aa  : Standard deviation of the absolute value of the normalized-centered 

instantaneous amplitude of a Signal, which is defined: 
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Where )(iAcn
 is value of normalized-centered instantaneous at time, 

),...,2,1(/ ss Nifit  , 
sf is sampling rate and 

sN  is the number of samples per signal 

segment.
ta  is the threshold value for )(iAn

 below which the estimation of the 

instantaneous phase is very noise sensitive.  
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1 . It can be used to identify the ASK2 and ASK4. 

Because for ASK2, the absolute value of its instantaneous amplitude is a constant.  

2.1.2. ap : Standard deviation of the absolute value of the centered non-linear 

components of the instantaneous phase evaluated over non-weak segment of received 

signal.  
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Where C is the number of samples in  )(iNL  (at instant time 
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2.1.3. af : Standard deviation of the absolute value of the normalized-centered 

instantaneous frequency over non-weak segments of the intercepted signal: 
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Where sr  is symbol rate of digital sequence, C is the number of samples in  )(ifN
 (at 

instant time
sf

it  ) for which 
tn aiA )(  namely non-weak points.  

2.1.4. max : is maximum value of the power spectral density of the normalized-

centered instantaneous amplitude of the intercepted signal segment, and is defined by:  

scn NiAFFT /))((max
2

max       (5) 

This feature can express the character of signal’s envelope and was added to 

differentiate between the modulation schemes that carry amplitude modulation and 

those that do not.  For example, max has a higher value for QAM8 than for ASK4 

because the former has amplitude levels 1 and 3 whereas the latter has amplitude levels 
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1 and 1/3. For frequency modulated signal, there is no amplitude modulated information, 

so this parameter is very small.  

 

2.2. Higher Order Moments and Higher Order Cumulants 

  

Probability distribution moments are a generalization of concept of the expected 

value. Recall that the general expression for the 
thi  moment of a random variable is 

given by [14]: 

dssfms i
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Where m is the mean of the random variable. The definition for the 
thi moment for a 

finite length discrete signal is given by: 
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Where N   is the length of data. In this study signals are assumed to be zero mean. Thus: 
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Next, the auto-moment of the random variable may be defined as follows: 
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Where p  is called the moment order and 
s  stands for complex conjugation of s . 

Assume a zero-mean discrete based-band signal sequence of the form kkk jbas  . 

Using the definition of the auto-moments, the expressions for different orders may be 

easily derived. For example: 
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Consider a scalar zero mean random variable s with characteristic function: 

}{)(ˆ jtseEtf          (11)                                                                                                                                  

Expanding the logarithm of the characteristic function as a Taylor series, one obtains:  
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The constants 
rk  in (12) are called the cumulants (of the distribution) of s . The 

symbolism for 
thp order of cumulant is similar to that of the 

thp  order moment. More 

specially: 
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For example: 
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The 
thn order cumulant is a function of the moments of orders up to (and including)

n . Moments may be expressed in terms of cumulants as: 
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Where the summation index is over all partitions ),...,( 1 qvvv   for the set of indexes

),...,2,1( n , and q  is the number of elements in a given partition. Cumulants may be 

also be derived in terms of moments:  
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Where the summation is being performed on all partitions ),...,( 1 qvvv   for the set of 

indictes ),...,2,1( n . We have computed all of the features for the digital signal types 

that are considered. Although all of these features may carry good classification 

information when treated separately, there is little gain if they are combined together 

(due to sharing the same information content). Then we have done extensive 

experiments and have selected the best features that make the highest performance for 

identification of the considered radio signals. Based on regarding to the structure of the 

classifier that will be explained in following sections, we have considered the second, 

fourth, sixth and eighth order of the moments and cumulant as the features. These 

features are: },,,,,,,,,,{ 8041408480636261424140 MMMCCCCCCCC  

Therefore the total number of the statistical features is eleven. We have computed all 

of these features for the considered digital signals. Table1 shows the higher order 

moments and higher order cumulants for a number of the considered radio signal types. 

These values are computed under the constraint of unit variance in noise free. 

 

Table 1. Some of the Chosen Higher Orders Features for a Number of the 
Considered Radio Signal Types  

 PSK2 PSK4 QAM32 QAM64 ASK4 

M40 1 -1 -0.19 -0.61 1.64 

C61 16 4 0 1.79 8.32 

C80 -244 -34 -1.99 -11.50 -30.08 

C84 -244 -18 16.61 24.11 -30.08 
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3. Neural Networks 
 

3.1. Radial Basis Function Neural Network (RBFN) 

Radial basis function neural networks (RBFNs) are efficient tools for multivariate 

approximation, time series forecasting, image processing, speech recognition, etc., 

because of their properties of localization, robustness and stability. The basic structure 

of an RBFN is a two-layer, feed-forward network in which the activation functions of 

the neurons of the hidden layer are radial basis functions (RBFs). Each hidden neuron 

computes the distance from its input to the neuron’s central point, c, and applies the 

RBF to that distance. The neurons of the output layer perform a weighted sum between 

the outputs of the hidden layer and the weights of the links that connect both the output 

and the hidden layer; in other words, a linear function exists between the hidden layer 

and the output layer: 

)()( 22

iii rcxxh       
(23) 

  0)()( wxhwxf iijj
       (24) 

 

Where x is the input,   is the RBF,    is the center of the ith hidden neuron,    is its 

radius,     is the weight links that connect hidden neuron number I and output neuron 

number j, and    is a bias for the output neuron. 
 

 h1( x ) 

XN0 

f( x )  

X2 

X1 
 

 

 

h2( x ) 
 

hN1( x ) 

 

 

Figure 1. Radial Basis Function Neural Network Structure 
 

In a general feed-forward network, the goal is to determine the suitable values for 

the weights     in the network by minimization of an appropriate error function. In our 

study, the error function considered is the sum squared-error: 

  2))(( xfySSE jj

      (25) 

Where    is the target in the training set. The vector of weights, which minimizes the 

error function, is calculated using the normal equation, in matrix notation:  

YHHHW TT 1)(          (26) 

Where            is the design matrix and contains the response of the centers to 

the inputs of the training set. The problem of automatic RBFN design is an important 
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subject. In this study, number of basis functions is equal to the number of training 

samples [15]. The basis functions are centered on the training samples and the only 

unknown parameters are the linear weights, which can be determined efficiently by 

solving the system of linear equations. For the RBF neural network, a Gaussian 

activation function and a single hidden layer with 150 neurons, mean squared error 

goal=0, spread of radial basis function=100, maximum number of neurons=150, number 

of neurons to add between displays=50. These values are gained based on the trial and 

error.  

 

3.2. Multilayer Perceptron (MLP) Neural Network 

We used MLP neural networks as a classifier. An MLP neural network consists of an 

input layer (of source nodes), one or more hidden layers (of computation nodes) and an 

output layer [16]. The number of nodes in the input and the output layers depend on the 

number of input and output variables, respectively. The recognition basically consists 

of two phases training and testing. In training stage, weights are calculated according to 

the chosen learning algorithm. The issue of learning algorithm and its speed is very 

important for MLP. 

Among the learning algorithms of MLPs, back propagation (BP) algorithm is stil l 

one of the most popular algorithms. In BP a simple gradient descent algorithm updates 

the weight values: 

)()()1( t
w

E
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ijij



            (27) 

Where     represents the weight value from neuron j to neuron i, ε is the learning 

rate parameter, E represent the error function. Resilient back propagation (RPROP) 

algorithm considers the sign of derivatives as the indication for the direction of the 

weight update. In doing so, the size of the partial derivative does not influence the 

weight step. The following equation shows the adaptation of the update values of 
ij

(weight changes) for the RPROP algorithm. For initialization, all 
ij are set to small 

positive values: 
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Where ,10   ,0,,10   are known as the update factors, 
ijw represents 

the weight value from neuron j to neuron I and E represents the error function. 

Whenever the derivative of the corresponding weight changes its sign, it implies that 

the previous update value is too large and it has skipped a minimum. Therefore, the 

update value is then reduced )(  as shown above. However, if the derivative retains its 

sign, the update value is )(  increased. This will help to accelerate convergence in 

shallow areas. To avoid over acceleration, in the epoch following the application of )(  , 

the new update value is neither increased nor decreased )( 0  from the previous one. 

Note that values of
ij remain non-negative in every epoch. This update value 
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adaptation process is then followed by the actual weight update process, which is 

governed by the following equations: 
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)()()1( twtwtw ijijij                          (30) 

In this study we utilize a single layer feed-forward back propagation network that its 

parameters selected for the algorithm empirically. They were as follows: transfer 

function for the hidden layer: Tan-Sigmoid, transfer function for the output layer: 

Linear, back propagation network training function: trainrp (Resilient back propagation). 

The MLP classifier was tested with 20 neurons for two hidden layers.   

 

3.3. Probabilistic Neural Network (PNN) 

The probabilistic Neural Network (PNN) algorithm represents the likelihood function 

of a given class as the sum of identical isotropic Gaussians [17]. The PNN is a direct 

continuation of the work on classifiers. The probabilistic neural network (PNN) learns 

to approximate the pdf of the training examples.  More precisely, the PNN is interpreted 

as a function which approximates the probability density of the underlying examples’ 

distribution (rather than the examples directly by fitting).The PNN consists of nodes 

allocated in three layers after the inputs: 

- Pattern layer: there is one pattern node for each training example. Each pattern node 

forms a product of the weight vector and the given example for classification, where the 

weights entering a node are from a particular example. After that, the product is passed 

through the activation function: 

                       (31)    

- Summation layer: each summation node receives the outputs from pattern nodes 

associated with a given class: 

∑                    
                                  (32) 

- Output layer: the output nodes are binary neurons that produce the classification 

decision: 

∑                     
   ∑                    

                            (33) 

The only control factor that needs to be selected for probabilistic neural network 

training is the smoothing parameter (i.e., the radial deviation of the Gaussian functions). 

As with RBF [18] networks, this parameter needs to be selected to cause a reasonable 

amount of overlap - too small deviations cause a very spiky approximation which 

cannot generalize, too large deviations smooth out detail. In this study the smoothing 

parameter considered 100 by error and trial method. 

The greatest advantages of PNNs are the fact that the output is probabilistic (which 

makes interpretation of output easy), and the training speed. Training a PNN actually 

consists mostly of copying training cases into the network, and so is as close to 
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instantaneous as can be expected. The greatest disadvantage is network size: a PNN 

network actually contains the entire set of training cases, and is therefore space -

consuming and slow to execute. PNNs are particularly useful for prototyping 

experiments (for example, when deciding which input parameters to use), as the short 

training time allows a great number of tests to be conducted in a short period of time.  

 

4. Simulation Results 

In this study, we examined the three most popular and efficient neural networks and 

performed a comparative study on the digital modulated communication signals. We 

used 100 modulated signals of each modulation type and 9 different modulations. The 

length of each digital signal type has 100 samples that are used for simulations. All of 

the considered digital signal types are simulated in MATLAB (2009a) environment. 

The simulated signals were also band limited and Gaussian noise was added according 

to SNR values -2, -1, 0, 1, 2, 4, 6 dB. In this study, the considered modulated signals 

are included as: ASK4, ASK8, PSK2, PSK4, PSK8, QAM8, QAM16, QAM32 and 

QAM64. For simplifying the indication, these signals are substituted with the eleven 

statistical features below: },,,,,,,,,,{ 8041408480636261424140 MMMCCCCCCCC  

Table 2 shows the recognition performances of the classifiers (Pc) with the three 

neural networks in both testing and training stages at different SNR values for all of the 

proposed modulations. According to the recognition performances in the table, all the 

neural networks have a high performance even in extremely low SNR conditions. In 

comparison with the neural networks together, the multilayer perceptron (MLP) neural 

network shows a very excellent recognition performance that is a few better than RBF 

and PNN neural networks even in extremely low SNR conditions. But, the radial basis 

function (RBF) neural network is able to recognize the considered modulations with 

value of 100% accuracy earlier than MLP and PNN neural networks at SNR=1. And 

also, the probabilistic neural network (PNN) has a very low timing that it is extremely 

better than MLP and RBF neural networks. The low timing is a very important factor 

for some applications. PNN, MLP and RBF neural networks have lower to higher 

timing respectively from left to right.  

Table3 shows the recognition performances of the classifiers (Pc) for all of the 

proposed modulations except ASK8. From the results of the Table, it can be concluded 

that more confusion of the classifier performance is related to the similarity of the 

ASK4 and ASK8 features and by omitting ASK8, the performances of the classifiers are 

generally very high even at extremely low SNRs for 8 modulations with around 100% 

performance accuracy. 

 

Table 2. Performances of the Neural Networks in Different SNRs for 9 
Modulated Signals 

SNR 

(db) 

MLP 

Pc (%) 

PNN 

Pc (%) 

RBF 

Pc (%) 

Train Test Train Test Train Test 

-2 96.3334 95.7778 94.7408 93.1333 99.1482 93.1333 

-1 97.7407 97.9556 96.0371 96.4445 100.000 96.8222 

0 99.6296 99.5111 98.6667 98.8889 100.000 99.5111 

1 99.9630 99.9333 99.85189 99.9778 100.000 100.000 

2 100.000 100.000 100.000 100.000 100.000 100.000 

4 100.000 100.000 100.000 100.000 100.000 100.000 

6 100.000 100.000 100.000 100.000 100.000 100.000 
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Table 3. Performances of the Neural Networks in Different SNRs for the 8 
Modulated Signals 

(omitted ASK8 modulation) 

SNR 

(db) 

MLP 

Pc (%) 

PNN 

Pc (%) 

RBF 

Pc (%) 

Train Test Train Test Train Test 

-2 99.8438 99.8750 99.6250 99.7150 100.000 99.1500 

-1 100.000 100.000 100.000 100.000 100.000 99.9750 

0 100.000 100.000 100.000 100.000 100.000 100.000 

1 100.000 100.000 100.000 100.000 100.000 100.000 

2 100.000 100.000 100.000 100.000 100.000 100.000 

4 100.000 100.000 100.000 100.000 100.000 100.000 

6 100.000 100.000 100.000 100.000 100.000 100.000 

 

4.1. Discussion and Comparison 

Direct comparison with other works is difficult in radio signal recognition. As for 

neural network-based signal recognizers, Nandi and Wong [4] proposed a technique to 

discriminate among digital signals using wavelet transform and neural network  and 

99.39% accuracy is achieved at SNR=4 for ten modulations. In [19], a fuzzy classifier 

was used in this technique. For SNR>5 dB, the classifier worked properly. When SNR 

was less than 5 dB, the performance was worse. In [20], the performance of 

classification of the considered modulations is 92% that this amount of accuracy cannot 

be acceptable at SNR=20. In [21], the authors proposed an efficient classifier based on 

multi-layer perceptron (MLP) neural network and radial basis neural networks for 

recognition of the seven considered modulations (ASK2, ASK4, PSK2, PSK4, FSK2, 

FSK4, QAM16). 

The proposed algorithm in this paper is able to recognize different kinds of the 

digital radio signal even at very low SNRs; For instance it has a success rate of98.33% 

at SNR= -2dB and 100% accuracy is achieved at SNRs>0 for the nine considered 

modulations. Also, for classification of the eight modulations, the performances of the 

recognizer achieved100% at SNR>-2dB. Results show that the proposed hybrid 

intelligent technique has very high classification accuracy even at very low levels of 

SNR with a little number of the features. 

Figure 2 shows a comparison of the performance classifiers with different SNRs 

using the column chart. The figure shows the average accuracies of recognition versus 

SNR ratio for different modulation types of ASK, PSK and QAM families. This figure 

illustrates the effects of the different SNR conditions on the performances of the 

classifiers in testing stages. According to this comparison, As SNR condition increases, 

the correct recognition of modulation can be better and in low SNRs, the performance 

of modulations recognition decreases. It can be found MLP neural network as a 

classifier has high recognition accuracy better than others at low SNR conditions. And 

also at SNR=1, the performance accuracy of the PNN classifier is very close to value of 

100%. The RBF neural network achieved 100% accuracy at SNR=1 earlier than MLP 

and PNN neural networks. As seen from the figure, the accuracy of the PNN classifier 

for SNR<1 is worse than the two other neural networks. For SNR conditions higher 

than one (SNR>1), all the three proposed neural networks are able to recognize 

correctly all the 9 modulations with 100% accuracy. 
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Figure 2. A Comparison of the performances of the classifiers at different 
SNRs 

 

5. Conclusion 

Automatic recognition of digital signal formats is an important subject for novel 

communication systems. In this study, digital signals recognition based on the efficient 

features using the neural networks is presented. A comparative study is given which 

uses three important neural networks. A basic introduction of modulation recognition 

was given followed by a brief description of the most representative techniques used in 

this paper. By using the considered features and classifiers, we have presented 

extremely efficient recognizers which are able to recognize digital signals with an 

acceptable performance even at low SNRs. This recognizer identifies a lot of digital 

signal types with high accuracy even at very low SNRs. 

The performance of the neural networks as a recognizer is extremely high even at 

very low SNRs. The MLP classifier for recognition of the nine proposed modulations 

has a very success rate of around 99.51% at SNR=0 dB, 99.93% at SNR=1 dB and the 

performances of the recognizer is 100% for SNR>1dB. The RBF identifier has a very 

high accuracy of around 99.51% at SNR=0 dB and 100% for SNR>1dB. And also the 

PNN identifier has a very high accuracy of around 98.89% at SNR=0 dB, 99.98 at  

SNR=1and 100% for SNR>1dB. For the classification of the eight proposed 

modulations (except ASK8 modulation), almost all the neural networks have an 

extremely acceptable rate of around more than 99% at SNR=-2 dB and the value of 100% 

accuracy for SNR>-2. Among the neural networks, the performances of MLP and RBF 

classifiers using the proposed features are higher than PNN even at very low SNR 

conditions.  

The advantage of the neural networks technique as recognizers is that these methods 

do not require to be specified the number of the clusters in data sets before the process. 

The presented classification is not limited to any special class of modulations. On the 

other hand, this approach could be extended and modified to recognize other types of 

modulated communication signals. The validity analysis is performed and simulation 

results are given. 
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