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Abstract 

A flexible optical design for light trapping in amorphous silicon thin film solar cells (a-Si 

TFSC) is developed to increase the optical path length in the absorber layer, to enhance the 

absorption. The design of the a-Si TFSCs includes periodic grating structures, using an anti-

reflection structure and metallic reflection grating. Light trapping in the solar cells and the 

impact of the structure parameters are studied numerically by using the Rigorous Coupled 

Wave Analysis enhanced by the Modal Transmission Line theory. The results have revealed 

that the reflectivity reaches minimum values for the cell with a period of 0.5 μm, a fill factor 

of 0.1 and a groove depth of 0.4 μm. The performance of the cell has also been compared 

with that of a cell with a flat reflecting surface. It is found that the grating structure increases 

the absorption by up to 10%. 
 

Keywords: Rigorous Coupled Wave Analysis; Absorption; Thin Film Solar Cells; Grating; 

Reflection 
 

1. Introduction 

Amorphous silicon (a-Si) thin film solar cells (TFSCs) have the advantages of low cost, 

promising high-performance, easy fabrication by chemical deposition techniques and fairly 

high absorption coefficient [1-4]. In order to improve TFSCs efficiencies, it is essential to 

reduce the reflection so that to enhance the light absorption. Introducing textured interfaces 

can lead to reduced reflection losses. 

The schematic cross-section of a flat TF-Si solar cell is shown in Figure 1(a). The 

schematic cross-section of the suggested design is shown in Figure 1(b). The cell consists of a 

dielectric gratings on the foil substrate, a silver back contact Ag (100 nm), ZnO (50 nm), n-a-

Si:H (20 nm), i-a-Si:H absorber (200 nm), p-a-Si:H (15 nm) and ITO front transparent 

conductive oxide contact (60 nm). The gratings can be imprinted directly by hot embossing in 

a plastic substrate, or in a barrier layer in case of the steel foil [5]. In this structure there is 

antireflection effect at the front interface and efficient light scattering at the metallic 

reflection grating and other textured interfaces. The dielectric layer can be seen as an anti-

reflection grating, the silver film can be seen as metallic diffraction grating in the role of back 

reflector and diffuser at the same time [6].  

For reducing the metallic loss we inserted a Zn O layer between the a-Si layer and the 

metallic diffraction gratings [7]. Because ZnO is a semiconductor with a wide direct band gap 

and has stronger resistance to hydrogen plasma, it has superior transparency and a lower 

extinction coefficient (less than 0.5) in longer wavelength region. ZnO layer can reduce the 
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metallic loss and enhance the back reflection. When the angle of incidence of the ray at the a-

Si/ZnO interface is less than the critical angle between a-Si and the ZnO layers, light will be 

totally internally reflected, and the effective path length will be increased due to multiple 

reflections [8]. The incident light on solar cell is affected by the following three processes. 

First, the incident light with shorter wavelengths would be absorbed by the top homogeneous 

layer of a-Si. When the incident wavelengths is larger than the period of the periodic grating 

structures, the light would not be totally absorbed by silicon and reflected by the lower 

electrode then forming a resonant pattern. Second, the incident light undergoes typical 

diffraction on the grating structures. Third, the incident wavelengths that can be diffracted at 

angles nearly parallel to the interface, generating waveguides modes, will be strongly 

absorbed in the solar cell. Combining all of the effects, the designed grating structures on the 

back surface will increase the absorption efficiency of the TFSCs [1]. 

In this work, simulations are utilized to investigate the reflectivity of the entire TF-Si solar 

cell structure to find out the optimum structure parameters of the grating which are: the period 

(a), the fill factor (f), and the height of the grating (h), Figure 1(b). The calculations were 

performed for different angles of incidence. 
 

2. Principle and Numerical Modeling  

The coupled method used in the analysis of TFSC requires information about the optical 

near field as well as the far field. Near field information is needed to calculate the local 

absorption in the solar cell, and far field information is needed to calculate reflection, 

transmission and absorption spectra. Rigorous coupled wave analysis (RCWA) is usually 

used for a rigorous wave optical simulation of the electromagnetic field inside a certain 

structure [9]. In our approach, the core algorithm, which is based on the (RCWA) [10] 

enhanced by the Modal Transmission Line (MTL) theory, is used to find the solution of 

Maxwell's equations for the light propagation in the structure. The calculation of reflectance 

and absorption includes three steps: (1) obtaining the expressions of electromagnetic field in 

incident region and transmitted region, (2) Fourier expansion of electromagnetic field and 

dielectric constant in the TF-Si solar cell, (3) using boundary condition for electromagnetic 

field at different interface, obtaining the amplitude and the diffraction efficiency of different 

levels by some mathematical methods [6].  

For 2D or 3D structures with arbitrary incident directions, the vectorized forms of the 

equations are taken into account. By factoring out an assumed time harmonic factor exp 

(−iωt), Maxwell's equations can be expressed as the following form: 
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Figure 1. (a) a Flat a-Si (TFSC) Solar Cell  

 

 

Figure 1. (b) The Suggested TF-Si Solar Cell Structure 
 

where t is the time, ω is the angular frequency, ε0 is the vacuum permittivity, μ is the 

magnetic permeability of the material, E is the electric field intensity and H is the magnetic 

field intensity. The medium is characterized by a diagonal index tensor with respect to the 
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principal axes with diagonal elements , , ,, ,r x r y r z   . By substituting Eqs. (1c), (1f) into Eqs. 

(1a), (1b), (1d), (1e), we derive the following transverse format of Maxwell's equations: 
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For scattering problems, we want to calculate the reflected and transmitted light waves 

from the incident field. A direct solution in the spatial domain of Eq. (2) with proper 

boundary conditions is computationally expensive. Moreover, in order to calculate accurate 

diffraction efficiencies for all diffraction orders, fine simulation grids are essential. The 

RCWA and MTL methods are based on the Fourier domain; they are efficient solutions for 

the amplitude of each diffraction order. For light collection we want to find out the optimal 

structure parameters. For each layer, the horizontal thickness is a quarter of the vertical 

thickness [6]. According to the absorption spectrum of a-Si [11] and the AM 1.5 G solar 

energy spectrum, the wavelength range of the spectrum in this work research is from 0.3 to 

0.7. The simulations are done for both polarizations, transverse electric (TE) and transverse 

magnetic (TM), and the average values are given. The complex dielectric constant of metal at 

optical frequencies is approximated by the Drude model as follows [12]: 
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    (3) 

where ε0 is the permittivity of free space, ε∞ is the dc dielectric constant, ω is the light 

frequency, ωp is the plasma frequency, γ is the damping frequency. ωp =1.3×10
16

 rad/s,  

 =9.6×10
13

 rad/s. 

The complex refractive index of the materials at different wavelengths, used in the 

proposed TF-Si solar cell is shown in Figure 2. The values are obtained from Ref. [13], where 

n is the refractive index and κ is the extinction coefficient.  
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Figure 2. The Complex Refractive Index of the Materials with Different 
Wavelengths 

 

3. Results and Discussion  

The reliability of RCWA and MTL has been tested by comparing the calculated values of 

the reflectivity of a bare Si wafer with measurements by [14]. The results in Figure 3 show 

very good agreement between the simulated and the measured values. The reflection from an 

a-Si (TFSC) solar cell with a flat back reflecting surface is also shown in Figure 3. When the 

incident wavelength is around 0.55μm, the reflectivity of the solar cell is below 10%, but it 

increases to reach about 35 % at 0.35μm. The reflectivity can be decreased further by 

changing the structure of the reflecting surface.  
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Figure 3. The Measured and Simulated Reflectivity of a Bare Silicon Wafer 
 

The reflectivity of an a-Si TFSC solar cell dependence on the parameters of the grating has 

been studied by using the RCWA method. The reflectivity was calculated as a function of the 

incident wavelength, at normal incidence, with heights of the grating (h) (0.2, 0.3, 0.4, 0.5 and 
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0.6)μm , filling factor (f) (0. 1, 0.2 and 0.3) and grating period (a) (0.5, 0.6, and 0.8) .  

Figure 4 shows the variation of reflectivity with grating height when a = 0.5  and f = 0.1. 

The reflectivity reaches a minimum of less than 5 % in the wavelength range 0.5-0.6  

when h =0.4μm . The maximum is about 25 % at 0.35  wavelength. There is another 

peak of about 7 % at wavelength 0.65 . 
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Figure 4. The Reflectivity of the Solar Cell as a Function of the Incident 
Wavelength with  a = 0.5 μm, f = 0.1, but with Values of Different h, at Normal 

Incidence 

 

Figure 5 shows the reflectivity when a = 0.5  and f = 0.2, at normal incidence. Again 

the minimum reflection is when h = 0.4  , but in this case the reflection at the 0.35  

wavelength is about 23 % and that at 0.65  is nearly 10%. Since solar energy in the 

wavelength range 0.6 - 0.7  is greater in the wavelength range 0.3 - 0.4 μm , the 

combination of h = 0.4μm , f = 0.1 and a = 0.5   seems to be more attractive 
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Figure 5. The Reflectivity of the Solar Cell as a Function of the Incident 
Wavelength with thea = 0.5μm, f = 0.2, but with Different Values of h, at Normal 

Incidence 
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Figure 6 shows the reflection from the cell when a = 0.6μm  and f = 0.2. The h =0.6 μm  

gives the minimum reflection, but the 0.65 μm  peak reaches about 10 %.  
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Figure 6. The Reflectivity of the Solar Cell as a Function of the Incident 

Wavelength with a =0.6 μm,  f =0.2, but with Different Values of h, at Normal 

Incidence 

 

Figures 7, 8 and 9 show that increasing the value of a beyond 0.5  and f beyond 0.1 

and h beyond 0.4μm , does not decrease the reflectivity.  
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Figure 7. The Reflectivity of the Solar Cell as a Function Wavelength with a 
=0.6μm, f =0.3, at Normal Incidence 
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Figure 8. The Reflectivity of the Cell when a =0.8 μm and f =0.2, but with 
Different Values of h, at Normal Incidence 
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Figure 9. The Reflectivity of the Solar Cell with the a =0.8 μm, f =0.3, but with 
Different Values of h,  at Normal Incidence 

 

Figure 10 shows the reflectivity of the solar cell at different angles of incidence with 

a=0.5 , f=0.1 and h=0.4 . The reflection changes very little between 0
0
 and 40

0
 angle 

of incidence, except at the wavelengths 0.5 - 0.7 .  
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Figure 10. The Reflectivity of the Designed TF-Si Solar Cell as a Function of the 

Incident Wavelength with the a =0.5μm, f =0.1 but h =0.4μm  with 
Different Incident Angles 

 

When the period of the grating is comparable to the incident wavelength the diffraction 

angles are large enough to propagate into their neighboring unit cell. Diffracted waves can 

thus interface constructively within the thin absorber layer [15]. Based on the above results, 

we introduce the grating with a = 0.5 , f = 0.1, h = 0.4  on the substrate of the TF-

Si solar cell. 

When the designed TF-Si solar cell has the lowest reflection, the electric field strength in 

the a-Si layer is the strongest [6]. The effect of the grating at the air/ITO interface cannot be 

neglected. This interface will act as a phase grating. It is known that phase gratings can be 

very effective in the suppression of the 0th diffraction order [16].  

Figure 11 shows the absorption of the a-Si solar cell with the periodic grating (a=0.5 , 

f=0.1, h=0.4 ) on the substrate, the absorption of the a-Si solar cell has been enhanced. 

The absorption enhancement is only about 0.4%~10.8% in the wavelength range of 

0.3~0.7 . 
 

0.3 0.4 0.5 0.6 0.7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

A
bs

or
pt

iv
ity

Wavelength(m)

a = 0.5,  f = 0.1, h = 0.4

Flat TF-Si Solar Cell

 

Figure 11. The Absorptivity of the a-Si Solar Cell 
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4. Conclusion 

We have presented our design of periodic grating structures in amorphous TF-Si solar cells 

on plastic foil. We identified the periodic structures on plastic substrate for both top anti-

reflection and back reflector. The reflectance of a-Si:H solar cells with periodic gratings was 

investigated by rigorous coupled wave analysis (RCWA). The reflectivity of the TF-Si solar 

cell with a period of 0.5 , a filling factor of 0.1 and grating height of 0.4 μm reached a 

minimum of less than 5 % in the wavelength range 0.5~0.6μm . The maxima were about 

25 % and 7 % at 0.35  and 0.65μm , respectively. The reflection changes very little 

between 0
0
 and 40

0
 angle of incidence, except at the wavelengths 0.5~0.7 . The 

absorption of the a-Si solar cell with the gratings is enhanced by more than 20% in the 

wavelength range of 0.3~0.7 . 
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