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Abstract 

This paper presents a system designed for task allocation, staff management and decision 
support in a large enterprise, in which permanent staff and contractors work alongside under 
the overall management of a manager to handle tasks initiated by end-users. The process of 
allocating a new task to a worker is modeled under different situations, taking into account 
user requirements as well as the different goals of management, permanent staff and 
contractors. Their actions and strategies are formalized as autonomous decision-support sub-
systems inside a multi-agent system, based on Contract Net Protocol, belief theory, multi-
objective optimization theory and Markov Decision Process. 

 
Keywords: Task allocation, Multi-agent system, Belief theory, Multi-objective optimization, 

Markov decision process. 
 
1. Introduction 

A multi-agent system (MAS) is a computational system consisting of multiple 
interacting software agents, each of which models the actions of an individual in the 
real world in the pursuit of his or her goals. The most important feature of a MAS is 
that it could be self-organized and dynamically adapt its behaviors to respond to new 
situations. MAS’s could therefore be used for problem solving in dynamically changing 
environments and play an important role in Artificial Intelligence science [7]. This 
paper describes the design of a MAS that realistically models the processes involved in 
task or project allocation and staff management in a large enterprise, in which 
permanent staff and contractors work alongside to handle tasks and/or projects initiated 
by end-users. The word task will be used to designate a task or project in such a context, 
the word worker, a permanent staff member or a contractor, and the word manager or 
management, the enterprise management of those tasks and workers. In essence, the 
manager's objectives are to meet the task requirements as expressed by end-users on 
one hand and to efficiently manage its permanent staff and contractors on the other. A 
task reward is a measure of recompense credited to the worker who completes the task, 
and is proportional to the degree of difficulty of the task and the extent of effort 
required to complete it. It includes a bonus or a penalty depending on how well the task 
deadline is met. This is an attempt to take into account the idea of de-commitment 
penalties and financial option pricing [16][21][22]. Performance of a worker is then 
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assessed through the sum of all task rewards collected by that worker during the period 
considered (such as a financial year). 

Dynamic MAS’s have been proposed, in which teams of workers could be 
dynamically formed and dissolved in order to maximize their task rewards [2]. That 
approach is more relevant in environments in which all workers are contractors, who 
work independently and are free to self-organize and self-manage. This paper examines 
a different but more common environment in which permanent staff works alongside 
contractors under different management policies. Contract Net Protocol (CNP) is used 
to model the interactions between those various people [15][16]. In the original CNP 
theory, an agent is either a manager or a contractor, and all tasks are available for 
bidding by all contractors [5][19]. This paper adds the modeling of permanent staff and 
management policies concerning those staff. In a nutshell, management prefers 
permanent staff over contractors in task allocation as permanent staff receive fixed 
salary while contractors are paid on hourly rate and only for the tasks they perform. 
Management is also attentive to the need of permanent staff for professional 
improvement in compliance with common human resource policies in most enterprises. 
This reflects best management practice that minimizes the overall cost to the enterprise 
while providing opportunities for skill development to permanent staff in need. The 
latter is similar to the principle of “social justice” [14], which advocates more 
assistance to the under-privileged (or under-skilled in this context). From the workers' 
viewpoint, both contractors and permanent staff are self-interested agents whose main 
goal is to maximize the rewards associated with the tasks assigned [12][18]. Permanent 
staff also aim to meet a performance target for the period considered, usually to be in 
line with the staff’s job specification. These decision support strategies are formalized 
as an application of the belief theory and the multi-objective optimization theory [8]. 
The contractor strategy is also further modeled as a Markov Decision Process (MDP) 
with reinforcement learning [13]. By incorporating different management criteria in 
task allocation, one of the shortcomings of CNP is addressed, that is, its inability to 
detect and resolve conflicts during task allocation [22]. 

The main contribution of the paper is to present a novel conceptual design of a multi-
agent system for staff management with the view of ensuring that the theoretical and 
mathematical foundation of the system is valid before any implementation. One of the 
applications of the theory presented in this paper is to enable consultancy service 
providers to plan for staff allocation in future customer projects, during which the 
service provider management is often faced with the dilemma of whether to accept a 
new job offer from a customer, knowing that better offers may emerge at a later time 
from that and/or other customers. No research similar to that presented in this paper has 
been found in existing scientific literature, especially in the formulation of strategies for 
staff management with belief theory and their resolution using MDP with reinforcement 
learning and Linear Programming (LP)-like techniques.  

This paper is organized as follows: Section 2 recalls the definition of an MDP and its 
main features that are relevant to this paper, Section 3 introduces the basic objects of 
the proposed multi-agent system, including belief-based expected rewards for 
completed tasks, and manager’s and worker’s strategies with regard to task bidding and 
allocation, Section 4 formalizes the worker’s strategy as a multi-objective optimization 
problem as well as an MDP, together with an example showing how the mathematical 
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problem associated with the optimum strategy is resolved, and finally Section 5 
concludes the paper together with some directions for future research. 
 
2. Markov decision process  

A Markov Decision Process [13] is a tuple (S,A,P,R) where: 
(1) S is the state space. 
(2) A is the action space. 
(3) Pa,t(s,s’) = Pr(st+1=s’ | st=s, at=a) is the probability that action a in state s at time t 

will lead to state s' at time t + 1. To qualify as an MDP, these probabilities must be 
independent of prior state history, i.e., at each state, they are solely determined 
based on the current and future states (and associated actions), but not on past states. 

(4) R(s) is the immediate reward received in reaching state s. This value may depend on 
the environment surrounding s, the action that has just been performed in order to 
reach s, as well as other factors (such as the consequences of the action). 

(5) The goal of an MDP is to maximize the total cumulative reward CR, defined as the 
sum of all rewards received during the period considered, discounted by a rate γ 
(with 0≤γ≤1) for each move from one state to another. The rate γ could be 
interpreted as a rate of deflation or depreciation of the rewards, or the cost of 
investment to gain those rewards. 

 ∞   
CR = S ( γt *     R(st) )  

 t=0   
 An optimum policy for the MDP is a function π: S ® A that specifies the best action 
to take at each state in order to achieve the MDP goal.  

(6) At a state if the probabilities to move to other states and/or if the rewards in the 
other states are not known in advance, then the system must determine the best 
actions by learning from the environment. In this case the model is said to be an 
MDP with reinforcement learning [20][24]. In some cases an immediate reward 
may be low at a particular state but from that state the agent may expect to reach 
other states with higher rewards. Therefore an optimum policy for an MDP with 
reinforcement learning is the one that maximizes the long-term value V(s) at each 
state s (rather than its immediate reward R(s) alone). V(s) can be recursively 
determined by the Bellman equation [3]: 

V(s) =  R(s)  +  γ   *  (      ∑ ( Pπ(s)(s,s') * V(s') )    )                
  {s’| s’≠ s}  

 where Pπ(s)(s,s') is the probability to move from s to s’ as determined by policy π. The 
term on the right-hand side of the equation (after R(s)) is called the discounted average 
future reward from state s.  

Thus the optimum policy derives from the determination of the values of V(s) for all 
states s. Vice-versa, if the optimum policy is known (i.e., Pπ(s)(s,s') are known for all s 
and s’) and if there is a number of finite states n, then there would be n Bellman 
equations with n variables V(s) (assuming that the other variables R(s) and γ are also 
known). Therefore a solution could be mathematically determined through a method 
similar to, but more complex than, LP [23]. A similar non-LP formulation and 
resolution has not been found in existing literature. 
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3. Belief-based rewards 
 
3.1. Task and agents 
 
3.1.1. Task: A task is a tuple T = (S, Z, P, D, F) in which: 

(1) S is the set of technical requirements of the task, also representing the technical 
areas where the skills of the task handler are required, 

(2) Z is the task completion deadline as required by the end-user,  
(3) P is the task priority in line with the impacts of the completion or non-completion 

of the task to the enterprise, 
(4) D is the degree of difficulty of the task, indicating the level of skills required from 

the task handler, and 
(5) F is the total effort necessary to complete the task, representing the size of the task 

and expressed as the total amount of actual time (not elapsed time) required to 
complete the task.  

S and Z are usually specified by the end-user while P, D and F are assessed by the 
manager. The notation Z0 denotes the task start date when it is assigned to a worker. A 
difference between two dates, e.g., (Z - Z0), represents the number of business (working) 
days between those dates.  

 
3.1.2. Worker: A worker is a permanent staff member or a contractor. To simplify 

writing, workers and manager will be referred to as male persons. Each worker is 
represented by a software agent, defined at an instant t as a tuple At = (Sk, Go, Schedt) 
in which: 
(1) Sk represents the worker’s skill set, 
(2) Go is the worker’s goals, which are to maximize the rewards for tasks handled, and 

for permanent staff, to also meet a performance target, and 
(3) Schedt is the worker’s schedule, including expected dates of completion of current 

tasks and any planned unavailability of the worker (e.g., recreational leave, training, 
etc.).   

 
3.1.3. Manager: The manager’s main objective is to apply best management 

practices to task allocation and worker management, i.e., he must be: 
(1) Efficient, by ensuring that all tasks are completed according to their priorities and 

deadlines. In addition, the manager should reward (resp. penalize) workers for 
increased (resp. decreased) productivity. This will be reflected in the definition of 
reward bonus and penalty that is based on the elapsed time taken to complete a task 
compared to its deadline (see Sect. 3.2.1).  

(2) Cost-effective, by preferring permanent staff over contractors when both are 
suitable for a particular task, as permanent staff’s remunerations are fixed while 
contractors are paid on a task-by-task basis.  

(3) Duly diligent, that is, to assess and manage contractors according to the due 
diligence process, by allowing contractors to bid for a new task when suitable 
permanent staff are not available and by selecting the best contractor for the new 
task, i.e., the one with the highest cumulative reward in the technical category to 
which the task belongs.  

(4) Equal opportunist, that is, to comply with the enterprise’s equal opportunity policy, 
by enabling permanent staff to have equal opportunities to earn similar total reward 
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for the period, i.e., by attempting to allocate an equal workload to all permanent 
staff. This means that if there were more than one permanent staff suitable for a 
new task, then the person with the least cumulative reward over the period being 
considered (rather than the most skilled person) would be selected. This is similar 
to the principle of social justice, which aims to provide more opportunities for the 
disadvantaged in a society [14]. This also has the effect that a permanent staff 
member who has worked hard from the start of the period would have a more 
relaxed workload by the end of the period (or alternatively, would receive other 
financial compensation or professional development opportunities).  

(5) Promoting staff efficiency, by allocating bonuses and penalties based on how well 
the task deadlines are met. 

 
3.2. Rewards and belief 
 
3.2.1. Task reward: The task reward W associated with a task T = (S, Z, P, D, F) is 

defined as: W = BW * (1 + b) = (D*F) * (1 + b)   (Eq.1) 
in which: 

(1) BW = (D*F) representing the baseline reward when the task is completed on 
schedule. D could be thought as the daily rate and F the number of person-days 
necessary to complete the task. 

(2) b is the bonus or penalty when the task is completed ahead of, or behind, schedule. 
b is expressed as a (positive or negative) percentage of elapsed time gained or loss 
compared to the task deadline. For example, if the task deadline is 5 days from the 
start date and if it is completed in 4 days, then b=20%. 

 
3.2.2. Basic belief assignment: For a worker, a task T and an instant t, the belief 

mass of the worker is the set {wi} with i being a real number. Each wi represents the 
probability to complete the task ahead of schedule by i% (when i is positive), or behind 
schedule by |i|% (when i is negative) (with |x| representing the absolute value of x). For 
example, if the worker believes that there is a 50% chance to complete the task behind 
schedule by 10%, 30% chance to complete the task on schedule, and 20% chance to 
complete the task ahead of schedule by 10%, then w-10 = 0.5, w0 = 0.3 and w10 = 0.2. The 
sum of all belief masses wi must always be 100%. In addition, the belief function, or 
basic belief assignment in Dempster-Shafer theory, denoted as Bel, is a partial function 
that assigns a task and an instant to the corresponding set of belief masses of the worker. 
Formally, let {T} be the set of all tasks being handled by the worker, R the set of real 
numbers representing the time chronology, and n the number of realistic levels of 
performance improvement and degradation that the worker might achieve. Bel is 
defined as: Bel: {T} x R ® [0,1]n with  Bel(T, t) =  {wi  | wi ÎR , wi Î[0,1] and S i wi=1}. 
To simplify, Bel(T, t) is also written as BelT.  

 
To facilitate understanding and without loss of generality, it is assumed that: 

(1) n = 21  
(2) BelT = (w-100, … w-20, w-10, w0 , w10, w20, .., w100), that is, a worker may achieve from 

100% degradation to 100% improvement on schedule, with 10% increments.  
The set I={i}={ -100, -90, …, 0, 10,…, 100} is called the frame of discernment in 

belief theory, where the cardinality of I is equal to n, the number of realistic levels of 
performance improvement and degradation for any worker. 
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3.2.3. Expected task reward: The expected task reward EW, of a task T, calculated 
at an instant t, is the reward that the worker expects to receive when the task is 
completed, based on his belief on the degree of timeliness that he could achieve. EW is 
the utility of the task in Dempster-Shafer terminology, i.e.,  

EW   = S i  (wi * (D * F) * (1 + i/100)) 
 = (D * F) * Si wi * (1 + i/100)       (Eq.2a)  

in which (D*F) represents the baseline reward (when the task is completed on time) 
and i/100 represents the variation in reward when the belief in meeting the task 
completion date is varied by i%.  

Let: 
(1) BelT = (w-100, … w-20, w-10, w0 , w10, w20, .., w100) be a 1-column 21-row (vertical) 

vector with values ranging from w-100 to w100 . 
(2) Dis = (0, 0.1, 0.2, …,1.9, 2) be a 1-row 21-column (horizontal) vector representing 

the series of values (1 + (i/100)). Dis is so-called because it is similar to the frame 
of discernment in belief theory.  

The expected reward can then be written as: 
EW = D * F * BelT * Dis      (Eq.2b) 
The expected task reward EW could be interpreted as the reward seen from the 

worker’s perspective, taking into account the state that he is in at that particular time 
while the (absolute) task reward W is the reward allocated by the manager who does not 
know, nor consider, the states that his workers are in.    

 
3.2.4. Expected task completion date: Similarly, the expected task completion date 

EZ is defined as: 
EZ   = Z0  + (S i wi * (Z   - Z0) * (1 - i/100)) 

      = Z0  + ((Z  - Z0) * Si wi * (1 - i/100))    (Eq.3a) 
    = Z0  +  ((Z  - Z0) * BelT * Dis2)         (Eq.3b) 

with Dis2 = (2, 1.9, 1.8, …, 0) representing the series of values: (1 – (i/100)). Dis2 is 
the same vector as Dis but arranged in the descending order of its elements.  

Note that the expected completion date is inversely proportional to the expected 
reward, and this is reflected in the factor (1-i/100) in Eq.3a, as opposed to (1+i/100) in 
Eq.2a.   

 
3.2.5. Expected cumulative reward: The expected cumulative reward CW for a 

worker during a particular period (denoted as the time interval [t0, t1]) and calculated at 
a particular instant t is the sum of cumulative past and future rewards (denoted as PW 
and FW), that have been apportioned to the period considered, i.e.,  

CW = PW + FW 
PW  = ST PWT  

FW  = ST’ FWT’ 

PWT  = W  * (Z - Max (Z0 , t0)) / (Z  - Z0) 
      = D * F * (1 + b) * (Z - Max (Z0 , t0)) / (Z -Z0)    (Eq.4a) 

FWT’ = EW * (Min (EZ, t1) - Max(Z0 , t0)) / (EZ -Z0) 
 = D* F * BelT’ * Dis * (Min(EZ, t1) - Max(Z0 , t0)) / (EZ-Z0) (Eq.4b) 

The past cumulative reward PWT (Eq.4a) is a generalization of Eq.1, in which: 
(1) (Z - Max(Z0 , t0)) represents the period from the task or period start date (Z0 or t0, 

whichever the later, determined by Max), to the task completion date (Z) and (Z - Z0) 
represents the full period from start to finish of the task.  
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(2) (Z - Max (Z0 , t0)) / (Z -Z0) represents the pro-rata percentage of the (completed) task 
reward for the period considered.  

Similarly, the future cumulative reward FWT’ (Eq.4b) is a generalization of Eq.2b, in 
which: 
(1) (Min (EZ, t1) - Max (Z0 , t0)) represents the period from the task or period start date 

(Z0 or t0, whichever the later) to the expected task completion date (EZ) or the 
period end date (t1), whichever the earlier (determined by Min). Note that for future 
tasks, Max (Z0 , t0) = Z0 is always true. 

(2) (Min(EZ, t1) - Max(Z0 , t0)) / (EZ-Z0) represents the pro-rata percentage of the 
expected task reward for the period considered.  
 

3.2.6. Expected working pace: For a worker, the required working pace RP on a 
task is defined as the quotient of the total effort required to complete the task by the 
total elapsed time required to complete the task on time, i.e., RP = F/(Z – Z0). 

For example, if a task requires 1 person-month to complete and its deadline is 3 
months away, then the required working pace is 33%. Similarly, the expected working 
pace (also called working pace for short) of a worker on a task is defined as: 

WP  = F  / (EZ – Z0)        (Eq.5a) 
    = F / ((Z - Z0) * BelT * Dis2)      (Eq.5b) 

       = RP / (BelT * Dis2)       (Eq.5c) 
 
3.2.7. Expected workload: At any instant t, the expected workload WL (also called 

workload for short) of a worker is defined as the sum of all working paces of all 
outstanding tasks that the worker handles at that instant, i.e., 

 
WL  = ST WLT    
WLT  = WP * Max(0, (EZ – t)/|EZ – t|)   

         = (F/(EZ – Z0)) * Max(0, (EZ – t)/|EZ – t|)   (Eq.6) 
The factor Max(0, (EZ – t)/|EZ – t|) in Eq.6 expresses that the working pace on a task 

is nil when the expected task completion date occurs before t (i.e., when (EZ – t) < 0), 
or equal to 1 otherwise (i.e., (EZ – t) = |EZ – t|). 

 
3.2.8. Worker schedule: The expected workload of a worker can be used to 

determine whether the worker can handle a new task. This could be implemented 
through a function called verifySchedule, which accepts as inputs: 
(1) the worker’s schedule Sched t , 
(2) the total effort FT necessary to complete the new task T, and 
(3) MaxPace, representing the maximum working pace of the worker (with MaxPace = 

100% by default), 
and returns as output: 

(1) the expected date of completion of the new task EZT if it is undertaken by the 
worker, i.e., verifySchedule(Sched t , FT , MaxPace) = EZT  

This result is then compared against the deadline of the new task (ZT) to determine 
whether the task could be assigned to the worker. 
 

4. Agent strategies 
 

The overall process of management and handling of a task is as follows: 
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(1) For each new task, the system determines the list j(T) of all suitable workers based 
on the technical requirements S of the task and the known skills of the workers. 

(2) If j(T) is empty, then the manager should hire additional permanent staff or 
contractors with skill sets matching the new task’s technical requirements. 

(3) If j(T) contains permanent staff, then for each of them, the system verifies whether 
the new task could fit into the worker’s workload (with the function verifySchedule). 
Optionally, these permanent staff could be asked whether they are prepared to work 
overtime so that their MaxPace values could be increased in the calculation by 
verifySchedule. At first view, it seems that the task should be assigned to the 
worker with the lightest workload. However, the enterprise’s Equal Opportunity 
policy (Sect. 2.1.3) may dictate that it should be assigned to the worker with the 
lowest expected cumulative reward instead, similarly to the principle of “social 
justice” discussed previously. 

(4) If j(T) contains only contractors, then each of them should define his belief masses 
wi concerning the new task, then make a decision based on a strategy detailed in 
Sect. 3.2. 

(5) In the above case, each concerned contractor should first check the task’s details, 
then express his belief on how well he can complete the task, by specifying the 
values of wi for the task, and finally make the decision whether to bid for the new 
task. The contractor’s decision may be one of the following options: 
o The contractor may decide not to bid for the new task, even when he can meet its 

deadline, in order to focus on the tasks at hand and to attempt to gain maximum 
bonuses from their early completion, and/or in order to prepare for some future tasks 
with higher rewards.  

o The contractor may realize that he may not be able to meet the deadline of the new 
task unless the working pace on his other existing tasks could be reduced. This may 
then result in delays, and hence penalties, for these existing tasks, although the total 
cumulative reward (including the new task) still improves for the contractor. 
However, professional ethics dictate that the contractor should avoid excessive 
penalty on any task by ensuring that each task is completed within an acceptable 
timeframe (i.e., a threshold not far beyond the task’s desired completion date).   

(6) The manager then selects a winner among those bidding contractors. A number of 
alternate strategies are possible: random selection, selection of the contractor with 
the lowest cumulative reward (as per the principle of “social justice”, as used for 
permanent staff), or selection of the contractor with the highest cumulative reward, 
i.e., the “best person for the job”. In general, the last strategy is preferred by the 
manager, although it may contribute to the strengthening of an elitist class of 
contractors [6], which may or may not be desirable in an enterprise.  

 
4.1. Manager strategy 

 
The manager’s strategy in task allocation is as follows: 

(1) If during the period considered, a worker handles a small number of tasks but 
receives a high level of rewards, then he is likely to be skilled in handling difficult 
and/or long-duration tasks (both imply high rewards). He is likely to be an expert 
on some technical area and the manager should prefer him for future tasks of that 
nature. 
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(2) If during the period considered, a worker handles a large number of tasks and 
receives a high level of rewards, then he is likely to be efficient in solving common 
(easy) problems, and should be preferred for common tasks on tight schedule. 

(3) If during the period considered, a worker handles a small number of tasks and 
receives a low level of rewards, then he is likely not to be very productive. If he is a 
contractor, then he should only be considered when others are not available. 

(4) If during the period considered, a worker handles a large number of tasks and 
receives a low level of rewards (possibly due to reward penalties), then he is likely 
to be unproductive and untimely. If he is permanent staff, he may need further 
training. If he is a contractor, then he should only be considered when others are not 
available.  

(5) Finally, the analysis of bonuses and penalties received by each worker during the period 
considered could assist the manager in staff profiling. Further data mining exercises can 
produce lists of top contractors per technical area that the manager can use for his 
selection strategy during task allocation (point (1) above). 

 
4.2. Contractor strategy  

 
At any instant, the aim of a contractor is to optimize the belief masses wi for all 

current and future tasks so that his total expected reward is maximized.  
 
4.2.1. Multi-objective optimization formalization: The contractor strategy could be 

formalized as a multi-objective optimization problem within the belief theory. Let m be 
an arbitrary large number representing the largest number of tasks that could possibly 
exist within the period considered.  

At any instant t, the contractor strategy is represented by a multi-objective partial 
function: 

ft: X → Y  
ft ({BelT}m) = {EWT}m  

where: 
(1) X is the decision space of the contractor in which each element is a m-dimensional 

vector of basic belief assignments corresponding to the tasks that the contractor is 
handling or expects to be awarded within the period considered (i.e., X = Bm). 

(2) Y is the objective space of the contractor in which each element is a vector of real 
numbers representing the rewards for the tasks whose basic belief assignments are 
in the decision vector (i.e., Y = Rm). 
 

The contractor strategy is thus formalized as an m-objective optimization problem. 
Furthermore, a total order u on the objective space Y could be defined by aggregation 
of the objectives (as opposed to other methods such as Pareto optimization [8]) by 
summing up all the task rewards of the objective vector, i.e.,  

u  : Y  → R 
u({EWT}m)  =  ST EWT    
Concatenating the two functions u and ft yields a function g t that transforms the 

problem into a single-objective optimization problem: 
g t = u . f t 

g t ( {BelT}m ) = ST EWT   =  FW     (Eq.7) 
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The objective then becomes to determine all basic belief assignments BelT for all 
current and expected future tasks T such that gt ({BelT}m) is maximized. This is also the 
value of FW (Eq.4b).  

 
4.2.2. Markov decision process formalization: MDP has been used to model 

decision support systems in which a series of actions are to be determined, and at each 
action decision step, past actions are not taken into account [10][11]. In Eq.7, tasks that 
have been completed can be ignored since their rewards have been determined and 
cannot affect actions and rewards for current and future tasks. Thus, the optimization 
process for a particular contractor could be modeled as an MDP. Moreover, it is an 
MDP with reinforcement learning [20][24] since the arrival of new tasks and whether 
the contractor will bid for them are not known in advance. In this MDP, which concerns 
only one contractor: 
(1) Each state s is a set of tasks being handled by the contractor, represented as an m-

dimensional vector of binary values 0 and 1, i.e., sÎ{0,1}m. The first element of the 
vector represents the first task being available in the period considered, and so on. 
A value of 1 indicates that the contractor is working or has worked on the 
corresponding task and a value of 0 indicates otherwise. There are therefore 2m 
possible states for a contractor. 

(2) At each state, when a new task is available, the contractor must decide whether to bid for 
the new task and if successful, will accept the task. If the contractor decides not to bid for 
the new task or if his bid is unsuccessful, then he is situation in the new state is the same 
as in the current state, with regard to the tasks handled and the expected rewards. This 
strategy qualifies the model as an MDP since the decision to bid and accept a new task 
depends solely on the current state, i.e., is solely based on current and future tasks (and 
not on any previous states and/or previous rewards).  

(3) The expected reward V(st) in reaching state s (at time t) is the net expected total 
reward, defined as the difference between the future cumulative reward associated 
with state s (i.e., FW(s)) and the same reward at its previous state (at time t-1), i.e., 
 V(st) = FW(st) - FW(st-1)         (Eq.8) 
Thus, the value of V(s) is mainly based on the set of beliefs BelT associated with current 
and future tasks (Eq.4b and Eq.7) at times t and t-1. Eq.8 is another way of expressing 
V(s) similar in meaning to the Bellman equation of MDP [3], with the beliefs BelT in Eq.8 
being similar to the probabilities to move to another state Pπ(s)(s,s') of the Bellman 
equation.   

(4) If during the period considered, tasks occur randomly without following any 
probability distribution, then when faced with a new task the contractor would be 
unable to predict and reserve his effort for future tasks other than the new task 
being offered. The only logical strategy would then be to completely ignore other 
possible future tasks and take into account only existing tasks and the new task. The 
calculation of V(s) helps the contractor determine whether to bid for the new task. If 
V(s) is not positive, then the contractor should not bid for the new task. Otherwise, 
he should bid and if successful, should accept the new task. This is the best 
conservative strategy, which guarantees that the total expected reward would never 
decrease at any time (any state). 

(5) However, if the occurrence of tasks and their reward levels follow some known 
probability distributions, then the contractor may prefer not to bid for a new task, so 
that he can devote more effort to later tasks with higher rewards. In an automated 
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system, statistical data on task distribution could be used to train the MDP in order 
to produce an optimum policy, e.g., by using a Q-Learning algorithm [20]. 

 
4.2.3. Problem formulation: The above single-objective optimization problem could 

be formalized as a problem to determine an optimum set of belief assignments that 
maximizes the value of g t (Eq.7) or FW (Eq.4b), i.e.,  

 
Maximize  FW = ST FWT 

with: 
FWT = D* F * BelT * Dis * (Min(EZ , t1)-Max(Z0 , t0)) / (E -Z0) 
under the following constraints: 

(1) "T  wiT  Î R , wiT  Î [0,1] and S i wiT  = 1 
(2) ST WPT  ≤ MaxPace  

with: WPT  = F / ((Z  - Z0) * BelT * Dis2) 
(3) "T  ((EZ - Z) / (Z – Z0)) ≤ MaxDelay   

 
In the above, the first constraint simply expresses the definition of belief masses. The 

second constraint expresses that at any time the sum of all working paces corresponding 
to all current and future tasks cannot exceed a threshold MaxPace determined by the 
contractor. For example, a MaxPace value of 1.2 means that the contractor is prepared 
to work overtime, up to a level of 20% above normal working hours. The last constraint 
expresses the contractor’s ethics, which imposes a delay limit MaxDelay on any task. 
For example, a MaxDelay value of 0.1 means that on any task the contractor should not 
be more than 10% behind schedule (or should not accept a reward penalty of more than 
10%). 
 

4.2.4. Problem resolution: Since the number of variables wi in the above problem is 
usually large, the problem resolution is generally NP-hard (as per the mathematical 
theory of complexity). This conclusion is acknowledged in other similar work [4]. In 
simple terms, this means that there is no computational algorithm that would provide a 
theoretical (and thus quick) solution, and the only way to solve the problem is a 
computationally intensive and exhaustive analysis of all possible outcomes, which may 
or may not meet the time constraint of the situation being envisaged or the resource 
constraint of the computer(s) on which the analysis is performed. In real life, this means 
that the contractor would specify a finite number of alternate sets of reasonable belief 
masses, and the system would calculate the value of gt for each set and then compare 
them to determine the one that maximizes the value of gt. However, in simple situations, 
the problem could be solved by computational algorithm, as demonstrated by the 
example below. 

 
4.2.5. Scenario: Following is the example of a simple situation of a contractor: 

(1) Based on his ethics, the contractor aims to complete any task on time or with a 
delay of 10% maximum beyond schedule. This means that MaxDelay=0.1 and for 
each task there are only two non-null belief masses w-10  and w0  (with w-10 + w0 = 1). 

(2) The contractor is prepared to work up to 20% overtime to meet the above objective, 
i.e., MaxPace=120%.  

(3) The contractor has a task T at hand and a new task T’ is offered to him for bidding. 
Both tasks start, and are expected to finish, within the period considered. 
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(4) For the current task, the baseline reward BWT is $100 and the working pace RPT 
required to complete it on time is 50%. For the new task, the baseline reward BWT’ 
is $200 and the required working pace RPT’ is 80%.  

 
The formalized problem becomes to determine the sets of belief masses {wi} and {w’i} 

such that the total expected future reward FW is maximized.  
Let: x=w0 , y=w’0  , z=BWT  and p=MaxPace 
The function to be maximized becomes: 
FW  = EWT  + EWT’    

 = z (0.9 w-10 + w0) + 200 (0.9 w’-10 + w’0)   (by applying Eq.2a) 
= z (0.9 (1-x) + x) + 200 (0.9 (1-y) + y)  
 (by applying constraint (1) with w-10=(1-w0) and w’-10=(1-w’0)) 
= z (0.9 + 0.1x) + 200 (0.9 + 0.1y) 
= 180 + 0.9z + 0.1zx + 20y 

Since (180 + 0.9z) is a fixed amount, it can be ignored in the function to be 
maximized. So the problem becomes to maximize (0.1zx + 20y) or to maximize: 

f = 0.01zx + 2y       (Eq.9) 
And constraint (2) is calculated as follows: 
WPT  + WPT’       ≤ p  
(RPT / (BelT * Dis2)) + (RPT’ / (BelT’ * Dis2))   ≤ p (as per Eq.5c) 
(0.5 / (1.1 w-10 + w0)) + (0.8 / (1.1 w’-10 + w’0))   ≤ p    
(0.5 / (1.1 (1-w0) + w0)) + (0.8 / (1.1(1-w’0) + w’0))  ≤ p (as per constraint 1) 
(0.5 / (1.1 – 0.1x)) + (0.8 / (1.1 – 0.1y)))  ≤ p  
0.5 (1.1–0.1y) + 0.8 (1.1–0.1x)  ≤ p (1.1–0.1x)(1.1– 0.1y) 
(0.11p–0.08)x + (0.11p– 0.05)y–0.01pxy ≤ 1.21p – 1.43   (Eq.10) 
The remaining constraint (3) on MaxDelay is automatically satisfied by considering 

only two non-null belief masses w-10 and w0. 
For z=100, the function to be maximized (Eq.9) becomes: 
f = x + 2y        (Eq.9a) 
For z=100 and p=120%, constraint (2) (Eq.10) becomes: 
0.052x + 0.082y – 0.012xy  ≤ 0.022   
52x + 82y – 12xy   ≤ 22     (Eq.10a) 
 
In summary, the problem becomes to maximize: 
f = x + 2y  
under the constraints: 
(1) x,y Î [0,1]  
(2) 52x + 82y – 12xy  ≤  22 
 
One way to resolve the problem is to use a method similar to (but more complex than) 

the simplex method of LP [23] by representing the function to be maximized and the 3 
constraints on a graph with 2 orthogonal axes x and y. The graph would look like Fig. 1. 
An arbitrary value of the function f to be maximized is represented by a line with an 
arrow indicating the direction in which it should move (in parallel, i.e., while keeping 
the angle to the axis x or y constant) in order to increase its value.  

The optimal solution is where that line representing f meets the boundary of the 
constraint area, which is delimited by the two axes x and y, and the (slightly convex) 
curve that represents the boundary of constraint (2). In that constraint, if the term –12xy 
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in the left side of the equation is ignored (since it is small compared with other terms, 
especially with x, yÎ[0,1]), then the curve becomes a straight line (representing the 
equation: 52x + 82y = 22) and the optimal solution would be: (x=0 and y=0.2683) or 
(w0=0, w-10=1, w’0=0.2683 and w’-10=0.7317). This means that that the contractor should 
bid for the new task, and if successful, should focus his effort more on the new task. By 
doing so, he would also certainly miss the deadline of the existing task by 10% and 
would have a 73% chance to miss the deadline of the new task by 10% too.  
 
 

 

 

 
 
 

 
Figure 1. Graphical representation of objective function and constraints 

 
4.2.6. Strategy variation: The contractor’s strategy in the above example varies 

according to the values of the base reward BWT and the maximum working pace 
MaxPace. Following are a few scenarios: 
 
· 50% Increase in baseline reward  

In the above scenario, if the baseline reward for the existing task were $150 (instead 
of $100), i.e., BWT = z =150 (instead of 100), and MaxPace = p = 120%, then the same 
calculation as above would yield:  

FW = 315 + 15w0 + 20w’0  
and the function to be optimized would become: 
f = 1.5x + 2y with the same constraints as above (Eq.10a). 
The optimal solution would then be:  
(x=0.4231 and y=0), or (w0=0.4231, w-10=0.5769, w’0=0 and w’-10=1) 
This means that the contractor should still bid for the new task and accept it if 

successful. However, he should now better focus on the existing task rather than on the 
new task to the point of accepting a 10% reward penalty on the new task for delay on its 
deadline.  

In addition, if constraint (2) is linear (i.e., 52x + 82y ≤ 22), then the simplex method 
would show that the recommendation to focus on the existing task would be true 
whenever the baseline reward z of the existing task is over $126.83. However, if the 
original equation of constraint (2) is used (i.e., 52x + 82y – 12xy ≤ 22), then the optimal 
solution will correspond to a point on the curve representing constraint (2) in Fig.1. 
That point could be more accurately determined through a computationally intensive 
process, e.g., by examining all values of f corresponding to various values of z between 
125 and 129. However, since the curve is only slightly convex (i.e., the term –12xy is 
small compared to other terms in Eq.10a), it could be assumed that the optimal solution 
corresponds to a baseline reward for the existing task of about $127. This example 
shows that the resolution of the problem is more complex than LP. 

 
 
 

0 x 

52x + 82y – 12xy = 22  

0.4231 

0.2683 

f = x + 2y  

y 
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· 10% Overtime scenario  
Another scenario is that if the contractor is only prepared to put in 10% extra effort 

(instead of 20%), i.e., p=1.10 (and still with z=100), then the function to be optimized is 
still f = x + 2y (Eq.9a) but constraint (2) (Eq.10) becomes: 

41x + 71y – 11xy ≤ - 99        (Eq.10b) 
It is not possible to satisfy this constraint as it can be easily proven that the left side 

of the equation is always positive (i.e., 41x + 71y ≥ 11xy when x,yÎ[0,1]). This means 
that the contractor should not bid for the new task.  

 
· Break-even point for working pace 

Furthermore, as with the previous calculation and with all other assumptions the 
same as initially, it could be also demonstrated that the decision to bid would be 
recommended whenever the contractor’s working pace p is greater than a certain 
threshold such that with that threshold, there exists a solution (x,y) (with x,yÎ[0,1]) that 
satisfies Eq.10. Again, that solution could be more accurately determined through a 
computationally intensive process, e.g., by examining the satisfaction of constraint (2) 
(Eq.10) with various values of p between 110% and 120%. In this case, it can be 
demonstrated that the recommendation to focus on the existing task is true whenever 
the baseline reward of the existing task is more than about $127.  
 
· Summary 

 
Table 1 summarizes the different decision options for the contractor. 
 

Table 1. Contractor decision recommendation 
 

Main 
Assumptions 

Objective 
Function to be 
maximized 

Constraints Solution Recommended 
Decision 

BWT = $100 
MaxPace 
=120% 

f = x + 2y 
(x=w0 , y=w’0) 

0 ≤ x ≤ 1  
0 ≤ y ≤ 1  
52x+82y-12xy ≤ 22 

w0 = 0 
w-10 = 1  
w’0 = 0.27 
w’-10 = 0.73 

Should bid and if 
successful should 
focus more on 
new task 

BWT = $150 
MaxPace 
=120% 
 

f = 1.5x + 2y  
(x=w0 , y=w’0)  

0 ≤ x ≤ 1  
0 ≤ y ≤ 1  
52x+82y-12xy ≤ 22 

w0 = 0.42 
w-10 = 0.58  
w’0 = 0 
w’-10 = 1 

Should bid and if 
successful should 
focus more on 
existing task 

BWT  < $127 
MaxPace 
=120% 

f = 0.01 z x + 
2y  
(x=w0 , y=w’0 , 
z=BWT) 

0 ≤ x ≤ 1  
0 ≤ y ≤ 1  
52x+82y-12xy ≤ 22 
z  < 127  

w0 = 0 
w-10 = 1  
w’0 = 0.27 
w’-10 = 0.73 

Should bid and if 
successful should 
focus more on 
new task 

BWT  ≥ $127 
MaxPace 
=120% 

f = 0.01 z x + 
2y  
(x=w0 , y=w’0 , 
z=BWT) 

0 ≤ x ≤ 1  
0 ≤ y ≤ 1  
52x+82y-12xy ≤ 22 
z  ≥ 127  

w0 = 0.42 
w-10 = 0.58  
w’0 = 0 
w’-10 = 1 

Should bid and if 
successful should 
focus more on 
existing task 

BWT = $100 
MaxPace 
=110% 

f = x + 2y  
(x=w0 , y=w’0) 

0 ≤ x ≤ 1  
0 ≤ y ≤ 1  
41x+71y-11xy ≤ -99  

No solution Should not bid on 
new task 
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4.3. Permanent staff strategy 
 

The goals of a permanent staff member are similar to those of a contractor. But, in 
addition, a permanent staff member is also required to achieve a minimum performance 
target during any period considered (as is often the case in most enterprises). This is 
expressed as a new constraint (4) that complements the 3 constraints listed in Sect. 
4.2.3 (with PW and FW calculated as per Eq.4a/b):  

(4) CW = PW + FW  ≥ Quota 
This constraint also means that if a permanent staff member has already achieved the 

desired quota for the period then there is no need for him to bid for any new task during 
that period (unless increased remuneration or job prospect is considered). The manager 
should recompense him through other means (e.g., further training). 

In this case, while the permanent staff strategy could still be modeled as a multi-
objective optimization problem (with 4 constraints) and resolved in a way similar to 
what is proposed for the contractor, the model is not an MDP since the consideration of 
work quota implies that past actions should be taken into account in determining any 
new action, and this does not meet the definition of an MDP. 
 

5. Conclusion 
 

This paper proposed a multi-agent system for use in a large organization or business 
section, such as a customer support center or a project management department. The 
system is designed to assist management in its daily role of task allocation to permanent 
staff and contractors, as well as to assist the latter in their decision whether to bid for a 
new task and on which tasks they should focus their effort. As such, the system consists 
of two autonomous decision-support agents, one for the manager and one for the 
contractors and permanent staff. For the manager, his decision-support sub-system takes 
into account different management policies towards permanent staff vs. contractors, 
with the ultimate aim of minimizing the overall cost to the enterprise and of fairly 
treating all staff. The system enables management to spread the team workload evenly 
among permanent staff while also permits contractors with the best demonstrated 
performance to be offered new tasks. On the other hand, all workers are assisted in their 
decisions by their decision-support sub-systems, which help them decide whether to bid 
for a new task and on which tasks they should spend most effort. Their sub-systems are 
formalized as a belief-based multi-objective optimization problem, with different 
constraints representing the different goals between these two categories of worker. The 
main contribution of this paper is to propose a method for staff management combining 
belief theory with LP-like and MDP with reinforcement learning formulations. An 
example of the former case is presented in this paper. When formulated as an MDP, 
existing MDP resolution methods such as the one proposed in [1] or other Q-learning 
techniques [20] could be used to produce an optimum strategy for the contractor.  

The proposed system could be further enhanced by examining other more complex 
scenarios, such as the possibility for workers to negotiate task swapping and/or team 
forming in order to better satisfy user requirements and/or to improve their individual 
gains [17][9][2]. For the same objectives, the proposed system could also be recursively 
applied, by allowing a worker to break a task into multiple sub-tasks and to sub-
contract the latter to other contractors. In addition, the possibility of sub-tasks being 
performed concurrently could help meet the deadline of the overall task. Each worker’s 
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bidding strategy could also be viewed as a multi-agent system in itself, in which each 
current or future task is an autonomous agent sharing a common goal, which is to 
maximize the total reward for the worker, even at the expense of the individual goal of 
each agent. Genetic Algorithms could be applied to individual agents in this case as 
suggested in Sect. 5 of [4]. Finally, performance data collected from the system could 
be further mined for a variety of other purposes, such as to assist in the annual 
performance review of each permanent staff member and contractor. 
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