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Abstract 

     On two important counts, the Zadehian theory of fuzzy sets urgently needs to be 
restructured. First, it can be established that for a normal fuzzy number N = [α, β, γ] with 

membership function Ψ1(x), if α ≤ x ≤ β, Ψ2(x), if β ≤ x ≤ γ, and 0, otherwise, Ψ1(x) is in fact 

the distribution function of a random variable defined in the interval [α, β], while Ψ2(x) is the 

complementary distribution function of another random variable defined in the interval [β, γ]. 

In other words, every normal law of fuzziness can be expressed in terms of two laws of 

randomness defined in the measure theoretic sense. This is how a normal fuzzy number 

should be constructed, and this is how partial presence of an element in a fuzzy set has to be 

defined. Hence the measure theoretic matters with reference to fuzziness have to be studied 

accordingly. Secondly, the field theoretic matters related to fuzzy sets are required to be 

revised all over again because in the current definition of the complement of a fuzzy set, fuzzy 

membership function and fuzzy membership value had been taken to be the same, which led to 

the conclusion that the fuzzy sets do not follow the set theoretic axioms of exclusion and 

contradiction. For the complement of a normal fuzzy set, fuzzy membership function and fuzzy 

membership value are two different things, and the complement of a normal fuzzy set has to 

be defined accordingly. We shall further show how fuzzy randomness should be explained 

with reference to two laws of randomness defined for every fuzzy observation so as to make 

fuzzy statistical conclusions. Finally, we shall explain how randomness can be viewed as a 

special case of fuzziness defined in our perspective with reference to normal fuzzy numbers of 

the type [α, β, β]. Indeed every probability distribution function is a Dubois-Prade left 

reference function, and probability can be viewed in that way too.   
              

Keywords: Randomness-fuzziness consistency principle, field of fuzzy sets, fuzzy 
randomness, theory of probability.  
 

1. Introduction 

Establishing a new theory is tough; making changes in an existing theory is tougher, 
particularly when the changes are suggested in a field that had originated nearly half a century 
ago, and hundreds of books and thousands of articles have meanwhile been published in that 
field the world over. In this article, we are going to point out two changes that need to be 
incorporated in the Zadehian theory of fuzzy sets [1]. First, it had been accepted that the fuzzy 
sets do not in any way conform to the classical measure theoretic formalisms. Secondly, it 
had been agreed upon that given a fuzzy set neither its intersection with its complement is the 
null set, nor its union with the complement is the universal set. These two definitions have 
given rise to a lot of results that defy common sense. In fact, in the Zadehian theory of fuzzy 
sets, not always logic was followed by mathematics, it had mostly been the other way around.  
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    In course of time, the following two things continued to happen. First, certain fuzzy 
measures have been defined which are in no way generalizations of any classical measure. 
Further, certain measures, such as the Hartley like measures for example, have been defined 
by integrating functions of the membership function of a fuzzy number. Secondly, with a 
wrong definition of the complement of a fuzzy set, a lot of applications have been done, and 
studies in fuzzy logic proceeded in a very strange manner. Indeed the theory of fuzzy sets 
should naturally have been a generalization of the classical theory of sets. Due to the reason 
of defining the set operation of complementation in the way that has been followed till this 
day, the theory of fuzzy sets has ended up being something rather unearthly, very different 
from what mathematics should actually look like. This sort of things has actually divided the 
world of mathematics into two parts: one part consisting of those who work in this field, and a 
second part consisting of those who do not really believe a word of it! Perhaps, the present 
author alone forms an insignificant third part. We have been continuing to apply simple fuzzy 
arithmetic operations, just plus-minus-product-division and nothing beyond that, in analyzing 
effect of partial presence in certain data analytical matters that are rather unimportant in our 
own eyes, without actually believing most of the existing theory of fuzziness. Fuzzy 
arithmetic using the method of α-cuts is one thing that is perfectly correct. Beyond that, most 
of the things need to be restructured. In particular, both in theory and in applications, in all 
matters where the definition of complement of a fuzzy set has been used are in our eyes 
totally unacceptable.      
     In this expository article, we are going to reintroduce the Zadehian theory of fuzzy sets 
rejecting certain assumptions, making it logically sound thereby. We are not interested in 
modifying anything. We are interested in correcting a few blunders. We know that it would 
be very difficult to convince those who have already published a lot in this field without ever 
bothering to think that in their kind of mathematics there is very little logic. In fact, a huge 
amount of unnecessary publications have been made in this branch of mathematics. Based on 
wrong axioms, one can definitely build up formalisms that might actually look very much like 
mathematics. We would like to refute hereby all such illogical results published in the name 
of the mathematics of fuzziness so far. We understand that correcting a simple error that 
might have been made recently is one thing, and challenging a multitude of blunders that have 
been made to continue for nearly half a century is quite another. We do not at all expect that 
those who have been working in this field would immediately agree with us. In fact, most of 
them might never agree, because what we are now going to put forward are diametrically 
opposite of what they have been believing as true so far, and therefore as soon as they decide 
to agree with us, they would have to reject their own lifetime findings, which is something 
hardly any human being can possibly be expected to do. After all, if an examiner faces a 
situation that he would lose his diploma as soon as he allows a particular examinee to get 
through, it is obvious that the unfortunate examinee might never get through at all! We hope, 
the new generation of workers would see reason, and would come forward to reconstruct the 
mathematics of fuzziness anew. Regarding fuzziness, what we are going to express in this 
article are mathematical realities based on pure logic. Our findings mentioned herein are not 
based on some popular beliefs. We are not going to say anything differently; we are going to 
say something different that would ultimately converge to the existing definition of fuzziness. 
Perhaps such a situation did never arise in the world of mathematics in modern times at least, 
when an entire theory nearly half a century old is being challenged by one single individual 
who consistently refused to follow the leader.  
    We had in the mid-nineties of the last century, independently and without any reference to 
fuzziness, tried to frame the mathematics of partial presence of an element in a set in the 
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following perspective. When we overwrite, the overwritten portion looks darker for multiple 
representations. The operation of union of sets does not explain multiple representations of 
elements. So we defined a set operation called superimposition of sets. Then we observed that 
to explain the presence of different shades of darkness in the umbra and in the penumbra 
regions of the shadow on a screen when an opaque body is placed in front of a source of light, 
we need to define partial presence of elements in a set. So from multiple representations, to 
arrive at partial presence of elements, we quantified the level of maximum darkness in the 
shadow as unity, so that if the level of presence of darkness in the umbra portion is taken as 1, 
then that in the penumbra portion would have to be ½. That way too, the Zadehian definition 
of fuzziness could be arrived at. Thereafter, coming back to the example of overwriting, we 
observed that if we superimpose n equally fuzzy intervals each with membership 1/n, the 
standard formalisms of Order Statistics come into play automatically. We then found that 
what had been already known as a normal law of fuzziness could be explained with the help 
of two laws of randomness that could be defined using a classical theorem on order statistics. 
We could thus naturally arrive at defining fuzziness with the help of two laws of randomness. 
We did not have to ponder over how to express randomness in terms of fuzziness; there was 
no need to do that. In our case, we did not start with an idea that the concept of fuzziness is a 
competitor of the concept of randomness. The standpoint of the mathematical workers in this 
field had always been, and still is, that a given law of fuzziness could possibly be linked with 
one law of randomness, and that is how they have been trying without success to link 
randomness with fuzziness till this day. We found that trying to impose one law of 
randomness over an interval on which a law of fuzziness had been defined was downright 
illogical. Ours was clearly a different standpoint. It is obvious that to arrive at our conclusion, 
one has to look into the matters through the spectacles of the operation of superimposition of 
sets, which was not there in the literature at that time. Further, one must also know that there 
exists a classical result called the Glivenko – Cantelli theorem on Order Statistics. The 
Glivenko – Cantelli theorem deals with establishing a limiting probability law from an 
empirical probability law. This theorem, like all other probabilistic formalisms, is true in the 
broader measure theoretic sense too of defining randomness. Unfortunately, at that juncture, 
the question of examiners losing their diplomas if a particular examinee is allowed to get 
through came into picture, and we decided without much fuss to publish our findings locally 
so as to keep a claim should the need arise later [2]. In every strife between scientific logic 
forwarded by one single individual and baseless belief coupled with collective arrogance of 
all others concerned, logic had always been the instantaneous loser. This happened many a 
time in the history of science. In fact, here the Gödelian theorem of incompleteness arguing 
that no logical system itself can ever prove that it is true came up [3]. While remaining within 
a system, it is impossible to disprove an axiom included in that system. So as to find a flaw in 
a logical system, one has to look into the system from a perspective outside it, and to 
appreciate a logical flaw in a system, one therefore has to come out of the system first. We 
started with the idea of superimposition of sets with constant partial presence, and arrived at 
the Zadehian definition of fuzzy sets. Nowhere did we use any Zadehian axiom while 
defining our randomness – fuzziness consistency principle. We deduced our results remaining 
wholly outside the existing system. So while in our eyes the assumption of being able to infer 
a law of randomness from a law of fuzziness was absolutely absurd, in the eyes of those who 
had been working on fuzziness it was obviously difficult to digest that a normal law of 
fuzziness is rooted at two laws of randomness. Indeed the Gödelian definition of 
incompleteness indirectly says that one can not judge anything beyond one’s knowledge, and 
knowledge is always incomplete because newer axioms invariably continue to arrive. Nearly 
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a decade later, when we used our operation of set superimposition towards recognizing 
calendar based periodic patterns, we were very highly bemused to observe that our findings 
got positive nod from the examiners ([see for example [4]). This time, the examiners were 
from a different system. We there used the definition of superimposition of constantly fuzzy 
sets, and they readily agreed that there was nothing wrong in doing so. The readers can verify 
for themselves that this set operation proposed by us way back in 1999 has been in use since 
2008 in pattern recognition without any objection from anyone. That settled the issue that our 
definition of set superimposition was indeed firmly footed. To define partial presence, we 
thereafter used the Glivenko – Cantelli theorem on superimposed constantly fuzzy intervals, 
and this theorem is something very classical in the statistical literature. In other words, we 
understood that our definition of partial presence of an element in a set, better known as 
fuzziness since 1965, must necessarily be correct. Here then is an example of a theory that 
was declared unacceptable by those who had been preaching something that was precisely the 
opposite of what the theory wanted to describe, but an application of a part of that same 
theory was found to be acceptable by another set of people who were not insiders of that 
mathematical cult, more than a decade later. One conclusion was evident. If we were found 
correct in 2008, we must have been correct more than a decade earlier too! This is why we 
now have decided to reappear in the scene with a view to suggesting a complete restructuring 
of the existing mathematics of fuzziness. The readers may perhaps note that for an original 
piece of mathematical research, unlike the researches in any other branch of science and 
technology, one hardly needs anything more than a creative mind, and one’s creativity does 
not depend on the pedestal from which one speaks, it never did.    
       At this point, we would like to remind the readers one important but generally 
misunderstood point regarding the definition of randomness. The notion of probability does 
not enter into the definition of a random variable (See for example [5], page 43). Therefore in 
this article whenever we would refer to a law of randomness, we would mean so in the 
measure theoretic sense. What we mean is, when a variable is probabilistic, it has to be 
random by definition, although when a variable is random, it need not be probabilistic in the 
statistical sense. Accordingly, all results of the classical theory of probability are 
automatically applicable to a random variable defined in the measure theoretic sense.  
      Thereafter, we found that the operation of complementation of a normal fuzzy set as 
defined in the Zadehian theory of fuzziness does not explain the principles of exclusion and 
contradiction followed by the classical sets. We observed that in the Zadehian definition of 
complementation, membership value and membership function had been taken to be of the 
same meaning. When a six feet tall man stands on a three feet tall table, his height does not 
suddenly become nine feet, because in the later case his height has to be measured not from 
the ground but from the table. Similarly, if a glass is half full, it is also half empty but the 
empty portion has to be counted from ½, and not from zero. This simple reasoning helped us 
to see that defining membership with respect to a value of reference could solve the problem, 
that of following the principles of exclusion and contradiction by fuzzy sets. Once again, the 
Gödelian principle of one not being able to judge anything beyond one’s knowledge came 
into picture, and we decided once again, this time without any fuss, to publish our findings 
locally [6].  
     The discovery of fuzzy sets was an epoch making event in the history of mathematics. It 
actually led to a paradigm shift in data analytical matters. But the fuzzy mathematics 
fraternity has to realize that one can arrive at the definition of anything, fuzziness for 
example, starting from a different perspective too. In our case, we observed that partial 
presence of an element in a set can actually be seen, for instance in the case of the umbra-
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penumbra example mentioned earlier. After that we proceeded to explain partial presence 
mathematically. It was another matter that unfortunately for us what we arrived at in the mid-
nineties was a concept already known as fuzziness since the mid-sixties. Our formalisms are 
indeed totally different. However, if that happens to explain the measure theoretic matters and 
certain other associated formalisms related to fuzziness logically, then most of the earlier 
results would have to be thrown out first, because they are mostly based on some rootless 
mathematics that has been in turn made to stand on certain illogical axioms. The sooner we 
realize this, the better. In fact, modifications and generalizations of earlier results regarding 
fuzziness in the name of research have blinded the mathematical workers to such an extent 
that in most of the cases they would actually be unable to explain the physical significance of 
their own results. In something that looks very much like mathematics, devoid of any logic 
whatsoever, it would certainly be impossible to explain the physical significance of the 
concerned symbolic expressions. Physical significance must be given proper credence in 
mathematical researches. Otherwise, tomorrow someone might come up with an insane idea 
of defining a triangular quadrilateral for example, and perhaps there would be no dearth of 
people to generalize even that kind of an absolute nonsense without at all trying to understand 
any head or tail of what they are doing. We earnestly hope, the mathematics fraternity in 
general and the statistics fraternity in particular would eventually come forward and look into 
what really has been going on in the name of development in the world of fuzzy mathematics.   
    Before proceeding further, we would like the readers to note a basic mathematical matter. 
Given any differentiable function of a continuous variable, one can always proceed to 
differentiate it with respect to the variable concerned. Similarly, one can also proceed to 
integrate that function with respect to the variable. Things of that sort are actually done as 
classroom exercises everywhere. But in reality, when one either differentiates or integrates a 
function, there must necessarily be some physical significance of the results thus found. For 
example, integrating a probability distribution function is totally meaningless, because a 
probability distribution function defines an area, and integrating, and therefore finding the 
area under a function already defining an area is a meaningless exercise. In the case of trying 
to infer a law of randomness from an existing law of fuzziness in the name of framing a 
probability – possibility consistency principle, this kind of a logically meaningless exercise 
was done, and such things have been unfortunately going on unabated in the name of the 
mathematics of fuzziness till this day.  
    In what follows, we shall put forward a mathematical explanation of how partial presence 
of an element in a fuzzy set originates. This will lead us to the missing link between 
randomness and fuzziness. We would then give two counterexamples to show that the 
Zadehian definition of complement of a fuzzy set is not correct. Thereafter we shall put 
forward the actual definition of the complement of a fuzzy set. We would then give an 
explanation of what fuzzy randomness should actually mean.  Finally, we shall explain the 
only possible way how randomness can be viewed as a special case of fuzziness.  
 
2. The mathematical explanation of partial presence 

    A fuzzy real number [α, β, γ] is an interval around the real number β with the elements in 
the interval being partially present. However this definition does not automatically say 
anything about the mathematical explanation of partial presence of an element in a set. Partial 
presence of an element in a fuzzy set has been defined by the name membership function. A 
normal fuzzy number N = [α, β, γ] is thus associated with a membership function µN (x), 
where µN(x) is Ψ1(x), if α ≤ x ≤ β, is Ψ2(x), if β ≤ x ≤ γ, and is 0, otherwise. Here Ψ1(x) is 
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continuous and nondecreasing in the interval [α, β], and Ψ2(x) is continuous and 
nonincreasing in the interval [β, γ], with Ψ1 (α) = Ψ2 (γ) = 0, Ψ1 (β) = Ψ2 (β) = 1. In the now 
classical Dubois – Prade nomenclature, Ψ1(x) is called the Left Reference Function, and Ψ2(x) 
is called the Right Reference Function of the normal fuzzy number. Even after correct 
identification of the properties of the reference functions, the question as to wherefrom such 
functions originate remained unanswered. In other words, how exactly to construct a fuzzy 
number still remained a question. In the books concerned, various types of fuzzy membership 
functions following the Dubois – Prade definition are discussed. However, nothing has yet 
been said as to why some particular membership function should be used in any situation in 
preference to other such functions. For example, in the applications the triangular fuzzy 
number is said to be used for its simplicity. That kind of an explanation is logically 
incomplete. Wherefrom does this so called simplicity of the triangular fuzzy numbers 
originate? We need to answer that too. 
    We would like to start the proceedings with the following question: is it possible to get a 
law of randomness from a given law of fuzziness? The answer is, no, it is not possible. All 
attempts by workers to do so have simply failed. We now ask another question: given two 
laws of randomness, one on [α, β] and the other on [β, γ], would it be possible to define a law 
of fuzziness on [α, β, γ]? The answer we found was: yes, this is actually possible. Defining the 
operation called Superimposition of Sets [2] and using the Glivenko – Cantelli Theorem ([7], 
page 20) on Order Statistics, the present author ([8], [9], and [10]) has established the 
following result which we shall now state as a theorem that uncovers the missing link 
between fuzziness and randomness, which was being searched for by the workers in fuzziness 
since 1965.   
         
       Theorem -1: For a normal fuzzy number N = [α, β, γ] with membership function µN(x) = 
Ψ1(x), if α ≤ x ≤ β, = Ψ2(x), if β ≤ x ≤ γ, and = 0, otherwise, such that  Ψ1 (α) = Ψ2 (γ) = 0, Ψ1 

(β) = Ψ2 (β) = 1, Ψ1(x) is the distribution function of a random variable defined in the interval 
[α, β], and Ψ2(x) is the complementary distribution function of another random variable 
defined in the interval [β, γ].  
         
        For easy readability of this article, we now proceed to describe our standpoint very 
concisely.  We defined ([2], [8], [9], [10]) the operation of superimposition of two real 
intervals [a1, b1] and [a2, b2] as [a1, b1] (S) [a2, b2] = [a (1), a (2)] U [a (2), b (1)] (2) U [b (1), b (2)] 
where a (1) = min (a1, a2), a (2) = max (a1, a2), b (1) = min (b1, b2), and b (2) = max (b1, b2). Here 
we have assumed without loss of any generality that [a1, b1] ∩ [a2, b2] is not void, or in other 
words that max (ai) ≤ min (bi), i = 1, 2.  

 
Figure. 1.  Superimposition of [x1, y1] (1/3), [x2, y2] (1/3) and [x3, y3] (1/3) 
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Figure. 2. Cumulative and complementary cumulative distribution functions  

 
Figure. 3.  Discrete Dubois-Prade left and right reference functions  

 
      We would like to explain the matters with the help of diagrams. For the three intervals [x1, 
y1] (1/3), [x2, y2] (1/3) and [x3, y3] (1/3) all with elements with a constant level of partial presence 
equal to 1/3 everywhere, we shall have [x1, y1] (1/3) (S) [x2, y2] (1/3) (S) [x3, y3] (1/3)  = [x (1), x (2)] 
(1/3) U [x (2), x (3)] (2/3) U [x (3), y (1)] (1)  U [y (1), y (2)] (2 /3) [y (2), y 3)] (1/3), where, for example, [y (1), y 
(2)](2 /3) represents the interval [y (1), y (2)] with level of partial presence 2/3 for all elements in 
the entire interval, x (1), x (2), x (3) being values of x1, x2, x3  arranged in increasing order of 
magnitude, and  similarly y (1), y (2), y(3) being values of y1, y2, y3 arranged in increasing order 
of magnitude again. We here presumed that [x1, y1] ∩ [x2, y2] ∩ [x3, y3] is not void.           
     Consider now the Figs.1, 2 and 3 shown above. In Fig. 1 superimposition of the intervals 
[x1, y1] (1/3), [x2, y2] (1/3) and [x3, y3] (1/3) all with elements with a constant level of partial 
presence equal to 1/3 everywhere has been depicted. That leads us to Fig. 2 in which we have 
depicted the observed cumulative distribution function defined on [x (1), x (2)] , [x (2), x (3)] and [x 
(3), y (1)], and the observed complementary cumulative distribution function on [x (3), y (1)], [y (1), 
y (2)] and [y (2), y 3)] , that can be seen to have originated due to superimposition of the intervals 
[x1, y1] (1/3), [x2, y2] (1/3) and [x3, y3] (1/3). In Fig. 3, we are depicting the Dubois–Prade left and 
right reference functions arising due to superimposition of the three equally fuzzy intervals 
each with level of partial presence of elements equal to 1/3 in [x1, y1] (1/3), [x2, y2] (1/3) and [x3, 
y3] (1/3).          
      One can clearly see from Figs. 2 and 3 that the left reference function is actually the 
cumulative distribution function of a random variable, and that the right reference function is 
the complementary cumulative distribution function of another random variable.   
      From the diagrams, one point gets very clearly reflected. If we increase the number of 
intervals, with partial presence of every element for every interval being the inverse of the 
number of intervals, two laws of randomness should lead to one law of fuzziness. We can see 
that formalisms of order statistics would now come into play automatically, and to deal with 
empirical probability distribution functions we already have the Glivenko-Cantelli theorem, 
application of which should now lead to the conclusion that superimposition of an infinite 
number of intervals, with level of partial presence of the elements in every interval tending to 
zero, would define a fuzzy number.  
      Consider now two probability spaces (Ω1, A1, Π 1) and (Ω2, A2, Π 2) where Ω1 and Ω2 are 
real intervals [α, β] and [β, γ] respectively. Let x1, x2, …, xn, and y1, y2, …, yn, be realizations 
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in [α, β] and [β, γ] respectively. So for n intervals [x1, y1] (1/n), [x2, y2] (1/n), …, [xn, yn] (1/n) all 

with elements with a constant level of partial presence equal to 1/n everywhere, we shall have 
[x1, y1] (1/n) (S) [x2, y2] (1/n) (S) ……… (S) [xn, yn] (1/n) 

= [x (1), x (2)] (1/n) U [x (2), x (3)] (2/n) U ……… U [x (n-1), x (n)] ((n-1) /n) U [x (n), y (1)] (1)  

U [y (1), y (2)] ((n-1) /n) U ……… U [y (n-2), y (n-1)] (2/n) U [y (n-1), y (n)] (1/n), 
where, for example, [y (1), y (2)]((n-1) /n) represents the interval [y (1), y (2)] with level of partial 
presence ((n-1) /n) for all elements in the entire interval, x (1), x (2), ………, x (n) being values 
of x1, x2, ………, xn arranged in increasing order of magnitude, and  y (1), y (2), ………, y (n) 
being values of y1, y2, ………, yn arranged in increasing order of magnitude again. Define 
now 

Фn(x) = 0, if x < x (1), 
                                                                       = (r-1)/n, if x (r-1) ≤ x ≤ x (r), r = 2, 3, …, n, 
                                                                       = 1, if x ≥ x (n) ; 
Фn(x) here can be seen to be an empirical distribution function for which the underlying 
theoretical distribution function is Ф(x). Now the Glivenko-Cantelli theorem states that Фn(x) 
converges to Ф(x) uniformly in x. This means,  

Sup │ Фn(x) - Ф(x) │ → 0. 
Application of this theorem on the intervals [α, β] and [β, γ] separately proves Theorem-1 
stated above.          
    Our standpoint of defining a normal fuzzy number does not defy the Dubois – Prade 
nomenclature. It is known that a distribution function of a random variable is non-decreasing, 
and that a complementary distribution function of a random variable is non-increasing. The 
functions are continuous and differentiable. Observe that integration of a distribution function 
does not make any logical sense, hence trying to infer anything out of integration of such a 
function is meaningless. In other words, finding the area under the curve µN(x) is of no logical 
meaning. On the other hand, differentiation of Ψ1(x) and (1 – Ψ2(x)) would give us two 
density functions. This means, we need two laws of randomness, one in the interval [α, β] and 
the other in [β, γ], to construct a normal fuzzy number [α, β, γ]. For a triangular fuzzy number, 
differentiation of Ψ1(x) and (1 – Ψ2(x)) would give us two uniform density functions. It is well 
known that the uniform law of randomness is the simplest of all probability laws. Thus two 
uniform laws of randomness lead to the simplest fuzzy number. Computational simplicity 
notwithstanding, simplicity of the triangular fuzzy number is thus rooted at the simplicity of 
two uniform laws of randomness.  
     While dealing with uncertainty, we have to observe one pertinent point. We first have to 
see whether it is plain randomness, in which case the statistical tools would be sufficient to 
deal with the situation. For example, if we know that some random error following an 
appropriate probability law can explain a situation concerned, there already is statistical 
mathematics to govern that. On the other hand, if we have a situation in which there are two 
laws of randomness in action at least theoretically, then we indeed have a fuzzy situation. For 
example, minimum and maximum temperatures in any place could be two random variables. 
Temperature in any place can therefore be taken as a fuzzy variable. From observations on 
minimum and maximum temperatures for an appropriate number of days, we can infer about 
the theoretical probability laws defined with reference to minimum and maximum 
temperatures, and we can accordingly construct a fuzzy number. Similarly, the price of 
perishable goods may have maximum and minimum values everyday. In this situation too, we 
would end up in getting fuzziness that can be defined with the help of two laws of 
randomness.  
         Theorem -1 leads us to the following principle: 
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         The Randomness - Fuzziness Consistency Principle: For a normal fuzzy number of 
the type N = [α, β, γ] with membership function µN(x) = Ψ1(x), if α ≤ x ≤ β, = Ψ2(x), if β ≤ x ≤ 
γ, and = 0, otherwise, with Ψ1 (α) = Ψ2 (γ) = 0, Ψ1 (β) = Ψ2 (β) = 1, the partial presence of a 
value x of the variable X in the interval [α, γ] is expressible as  

µN(x) = θ Prob [α ≤ X ≤ x] + (1 – θ) {1 – Prob [β ≤ X ≤ x]}, 
where Prob [α ≤ X ≤ x] = Ψ1(x), if α ≤ x ≤ β, Prob [β ≤ X ≤ x] = 1 - Ψ2(x), if β ≤ x ≤ γ, with θ = 
1, if α ≤ x ≤ β, and = 0, if β ≤ x ≤ γ. 

 
    In other words, the membership function explaining a fuzzy variable taking a particular 
value is either the distribution function of a random event or the complementary distribution 
function of another random event. Hence, partial presence of an element in a fuzzy set can 
actually be expressed either as a distribution function or as a complementary distribution 
function. As an application of this principle, consider a fuzzy number X = [a, b, c]. Let a 
function of X, f(X) = [f (a), f (b), f(c)] be another fuzzy number.  Let the density functions 
with respect to the distribution functions Ψ1(x) and (1 – Ψ2(x)) be φ1 (x) and φ2 (x). If y = f(x) 
can be written as x = g(y), let dx/dy = ξ (y). Now replacing x by g(y) in φ1 (x) and φ2 (x) we 
obtain φ1 (x) = ψ1 (y) and φ2 (x) = ψ2 (y), say. Then the membership function of f(X) would be 
given by  

µ f(X) (x) = ∫ f (a) x {ψ1 (y) ξ (y)} dy, f (a) ≤ y ≤ f (b), 
                                                    = ∫ f (b) x {ψ2 (y) ξ (y)} dy, f (b) ≤ y ≤ f(c), 
                                                    = 0, otherwise. 
    We have verified that this method returns the same membership functions which can be 
found by using the standard method of α – cuts available in the literature on fuzziness [11]. 
We have further verified that all sorts of fuzzy arithmetic can easily be done using our 
method of looking at the membership function either as a distribution function or as a 
complementary distribution function whichever is the case [12]. Now that we know that a law 
of normal fuzziness can be defined with reference to two laws of randomness, we are in a 
position to use probabilistic mathematics to draw inferences regarding normal fuzziness. For 
example, Shannon’s entropy, better known as Shannon’s Diversity Index in the life sciences, 
can be applied to analyze a fuzzy situation. As we all know, the Shannon Index is maximum 
when the underlying probability law is uniform, and is minimum when there is no diversity at 
all in the sense that there is only one outcome with probability 1. This index in the discrete 
form is however interval sensitive. From the membership function of a normal fuzzy number 
we would be able to find two Shannon indices, one from the left reference function and one 
from the right reference function. Such a pair of Shannon indices can then be used for 
inferring about fuzziness in terms of entropy. 
    Our randomness – fuzziness consistency principle has one more connotation. For a 
classical set, an element is always fully present, in the sense that membership of an element is 
either zero if the element is not in the set, and is unity if the element is in the set. In our sense, 
if a real number is to be considered as a special case of a fuzzy real number defined around 
that real number, it is obvious that the probability of occurrence of that number would be 
equal to 1. In other words, our definition of a fuzzy real number can be seen to be a 
generalization of the definition of a real number in the probabilistic sense too.  
    We indeed live in a world of fuzziness, and we have shown that every law of normal 
fuzziness in turn can be explained with the help of two laws of randomness. Though not in all 
cases, the statistical definition of randomness would suffice in some cases while defining 
fuzziness, in the sense that in the other cases the broad measure theoretic definition would 
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come into play. Randomness thus comes into picture wherever fuzziness exists. Einstein 
might not have liked to agree, but Hawking rightly assessed the importance of statistical 
randomness in cosmological matters ([13], page 26). We would like to add that not only in 
cosmological matters, but also in everything that is fuzzy in Nature, the ultimate underlying 
decider is nothing but randomness, statistical or otherwise. God does play dice after all!  
    If our consistency principle is accepted to be true, then the earlier consistency principles 
must be rejected. Not both of two opposing concepts can simultaneously be true. We have 
started with two laws of randomness, and logically arrived at the Zadehian concept of 
fuzziness. The logical truth in this case is that membership of a particular value of a fuzzy 
variable is expressible either as the value of a distribution function or as the value of a 
complementary distribution function. Accordingly, trying to find a measure, and therefore 
defining an index as a function of that, based on the entire membership function, is not 
logical. In fact, in the earlier consistency principles a law of randomness was assumed over 
the same space on which a law of fuzziness was defined. We actually need two laws, and not 
just one law, of randomness to define a law of fuzziness. Unfortunately, the mathematics of 
fuzziness continued to proceed as discussed below. 
    By using his definition of fuzzy sets, Zadeh [14] noted that the notions of an event and its 
probability can be extended in a natural fashion to fuzzy events, and he expected that such an 
extension might eventually enlarge the domain of applicability of probability theory, 
especially in those fields in which fuzziness is a pervasive phenomenon. Matters related to 
Borel measurability of the membership function were used to define mean of a fuzzy event 
and other associated matters such as variance and entropy. Later on too, in his discussions on 
fuzzy sets with reference to the theory of possibility, Zadeh [15] has clearly mentioned that a 
fuzzy variable is associated with a possibility distribution in much the same way that a 
random variable is associated with a probability distribution. 
    In other words, the unfortunate confusions had started right in the beginning. As soon as 
one starts with a belief that the notion of randomness could be extended to that of fuzziness, 
one presumes that over the same interval on which a law of fuzziness can be defined, a law of 
randomness too can be defined. This means, if there is a probability density function defined 
on an interval, then that density would be in some way related to a membership function 
defined on that interval. However, as we have mentioned earlier, while a probability density 
function can be integrated to find the probability distribution function concerned, integrating 
the membership function does not make any sense. According to our findings, the left 
reference function is already a distribution function, and integrating a distribution function is 
a meaningless exercise. The same kind of an explanation would be applicable in the case of 
the right reference function too. In fact, it is also to be noted that the use of the word 
distribution in defining possibility distribution was not really in the sense in which it is used 
in classical measure theory.  
    Basic measure theoretic matters ensure that integration of a probability density function 
does have a measure theoretic meaning, while integration of a probability distribution 
function can not have any measure theoretic meaning. One simple reason cited for that would 
be enough. A measure has to follow one pertinent point: the measure of a point is zero.  
Possibility of occurrence of a point is defined by the membership function, and therefore 
possibility of occurrence of a point is not necessarily zero. Hence, enforcing measure 
theoretic formalisms with reference to the membership function is absolutely illogical.   
    That was how the confusions had started, and went on unabated. Klir’s [16] views in this 
regard were to extract a law of randomness by scaling the law of fuzziness defined already on 
an interval. However, the notion of probability should not be forced upon in that way just 
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because here in this case we have some positive fractions summing up to unity. A probability 
law has to exist logically, and then we may proceed to infer about it mathematically. 
    Dubois and Prade (see for example [17]) rightly found Klir’s assumptions on 
transformation of possibility to probability by scaling membership values suitably as 
debatable. However, they defined a concept of upper probability and named it possibility 
measure [18]. Very recently, Dubois and Hullermeier [19] have even gone for comparing 
probability measures extracted from the knowledge of possibility. Here too then as we can 
see, there is this notion of finding one law of randomness from one normal law of fuzziness 
defined by left and right reference functions.  
    As we have seen, the wrong notion of extracting one law of randomness from the 
knowledge of one law of fuzziness is at the root of the concerned misunderstandings. As long 
as one would continue to believe that a law of randomness can be established from a law of 
normal fuzziness, one would continue to keep the mathematics of fuzziness in the middle of 
nowhere. On one hand, you ridicule randomness as an inappropriate tool to define uncertainty 
in certain situations, while on the other hand you try to bring in randomness into picture in the 
name of defining upper probability and such other things; at least mathematics should be 
spared from such double talk. Yes, not all uncertainties can be explained using randomness, 
and fuzziness is indeed more prevalent than randomness. But trying to force one law of 
randomness on a space on which one law of fuzziness has already been found to be at work is 
downright ridiculous.  Mathematics must be based on pure logic, and not on some baseless 
beliefs. 
    
3. The complement of a fuzzy set 

    According to the Zadehian definition, if a normal fuzzy number N = [α, β, γ] is associated 
with a membership function µN (x), where µN(x) = Ψ1(x), if α ≤ x ≤ β, = Ψ2(x), if β ≤ x ≤ γ, and 
= 0, otherwise, the complement NC will have the membership function µNC (x), where  

µN
C (x) = 1 - Ψ1(x), if α ≤ x ≤ β, 

                                                                 = 1 - Ψ2(x), if β ≤ x ≤ γ, and 
                                                                 = 1, otherwise. 
We first cite two counterexamples that this definition is defective. 
 
          Counterexample - 1: First, we would like to ask the readers a simple question. Can a 
statement and its complement ever be the same? Common sense says that the answer is 
negative.          Consider now the set of real numbers with constant fuzzy membership 
function equal to ½ everywhere. Therefore according to the Zadehian definition, its 
complement too will have the constant fuzzy membership function equal to (1 – ½) = ½ 
everywhere.  
         In other words, here is an example of a statement defining a fuzzy number, which is 
exactly the same as the statement defining its complement! Accordingly, if the Zadehian 
definition of the complement of a fuzzy set is true, we have arrived at a contradiction that a 
statement and its complement can be the same. Some people might still argue that a half truth 
is half wrong too, and therefore they are equivalent! We therefore proceed to cite a second 
counterexample. 
 
          Counterexample - 2: We would like to ask the readers another simple question. Can a 
statement ever include its complement? Once again, common sense says that the answer is 
negative. Consider now the set of real numbers with constant fuzzy membership function 
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equal to ¾ everywhere. Therefore according to the Zadehian definition, its complement will 
have constant fuzzy membership function equal to (1 – ¾) = ¼ everywhere.  
         In other words, here is an example of a statement that actually includes its complement! 
Accordingly, if the Zadehian definition of the complement of a fuzzy set is true, we have 
arrived at a contradiction that a statement can include its complement. 
       
         Our counterexamples are based on the fact that if a glass is partially filled with water, 
then the height of empty portion is to be counted from the height upto which the glass is 
partially full. These two counterexamples should be enough to establish that the very 
definition of complement of a fuzzy set is wrong. In fact, here logic has been forced to follow 
mathematics. Where is the error then? Fuzzy membership function and fuzzy membership 
value are two different things. In the Zadehian definition of complementation, these two 
things have been taken to be the same, and that is where the error lies. 

 
Figure. 4. Complement of a normal fuzzy number  

                  
      Let µ1(x) and µ2(x) be two functions, 0 ≤ µ2(x) ≤ µ1(x) ≤ 1. For a fuzzy number denoted by 
{x, µ1(x), µ2(x); x ε Ω}, we would call µ1(x) the fuzzy membership function, and µ2(x) a 
reference function, such that {µ1(x) – µ2(x)} is the fuzzy membership value for any x. The 
present author [20] has shown that such a definition of a fuzzy set leads to opening the 
bottleneck that did not allow the fuzzy sets to form a field. The explanation is as follows. In 
the definition of complement of a fuzzy set, the fuzzy membership value and the fuzzy 
membership function have to be different, in the sense that for a usual fuzzy set the 
membership value and the membership function are of course equivalent. We do not really 
need our definition to describe the usual fuzzy sets. However, the only way to define 
complement of a fuzzy set is to use our definition; we do not have any alternative.            
           Say,  

A (µ1, µ2) = {x, µ1(x), µ2(x); x ε Ω} 
and   

B (µ3, µ4) = {x, µ3(x), µ4(x); x ε Ω}. 
Then the operations of intersection and union defined naturally as  

A (µ1, µ2) ∩ B (µ3, µ4) = {x, min (µ1(x), µ3(x)), max (µ2(x), µ4(x)); x ε Ω} 
and  
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A (µ1, µ2) U B (µ3, µ4) = {x, max (µ1(x), µ3(x)), min (µ2(x), µ4(x)); x ε Ω} 
leads to the conclusion that for usual fuzzy sets too with µ2(x) = µ4(x) = 0, we get the same 
results.     
       For two fuzzy sets A (µ, 0) = {x, µ(x), 0; x ε Ω} and B (1, µ) = {x, 1, µ(x); x ε Ω} defined 
over the same universe Ω, we would have  

 A (µ, 0) ∩ B (1, µ) = {x, min (µ(x), 1), max (0, µ(x)); x ε Ω} 
                                                             = {x, µ(x), µ(x); x ε Ω} 
which is nothing but the null set φ. In other words, B (1, µ) is nothing but (A (µ, 0))C in the 
sense of classical set theory. This means, if we define a fuzzy set (see Fig. 4)  
                                              (A (µ, 0))C = {x, 1, µ(x); x ε Ω}, 
it can be seen that it is nothing but the complement of the fuzzy set  
                                                  A (µ, 0) = {x, µ(x), 0; x ε Ω}. 
    Our definition leads to the assertions that A ∩ AC = φ, the null set. Further, it can also be 
shown that A U AC = Ω, the universal set. It can be verified that in our definition the following 
properties are valid for fuzzy sets A, B and C, 
 

1) (i) A U B = B U A and  
      (ii) A ∩ B = B ∩ A (Commutativity), 
2) (i) A U (B U C) =  (A U B)  U C and  
      (ii) A ∩ (B ∩ C) = (A ∩ B) ∩ C (Associativity), 
3) (i) A U (B ∩ C) =  (A U B) ∩ (A U C) and  
      (ii) A ∩ (B U C) = (A ∩ B) U (A ∩ C) (Distributivity), 
4) (i) A U A = A and  
       (ii) A ∩ A = A (Idempotence), 
5) (AC)C = A (Involution ), 
6) A ⊆ B and A ⊆ B ⇒  A ⊆ C ( Transitivity), 
7) (i) A ∩ Ω = A,  
      (ii) A ∩ φ = φ,  
      (iii) A U Ω = Ω,  
      (iv) A ∩ Ω = A (Identity), 
8) (i) (A U B)C =  AC ∩ BC,  
      (ii) (A ∩ B)C =  AC U BC (De Morgan’s theorems),  
9) A U AC = Ω (Exclusion ), and  
10)  A ∩ AC = φ (Contradiction). 

 
   Thus  the last two properties which are not satisfied if we define the complement of a fuzzy 
set in the way that has been in use since the beginning, are satisfied if we define the 
complement of a fuzzy set in our manner. Observe that properties 5 and 8 are valid with the 
earlier definition too. However, had the definition been correct, we should not have been able 
to cite a counterexample. Therefore validity in the case of these two properties is not reason 
enough to accept that the definition is correct. On the other hand, the invalidity in the case of 
the counterexamples is reason enough to discard the current definition of complementation. 
The counterexamples do not effect our definition, because here fuzzy membership function 
and fuzzy membership value have been taken to be different in the case of complement of a 
fuzzy set.  We have gone for logic first, and then mathematics followed that logic.  
    Accordingly, if a normal fuzzy number N = [α, β, γ] is defined with a membership function 
µN (x), where µN(x) = Ψ1(x), if α ≤ x ≤ β, = Ψ2(x), if β ≤ x ≤ γ, and = 0, otherwise, while Ψ1 (α) 
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= Ψ2 (γ) = 0, Ψ1 (β) = Ψ2 (β) = 1, the complement NC will have the membership function µNC 
(x), where  

µN
C (x) = 1, - ∞ < x < ∞,  

with the condition that µNC (x) is to be counted from Ψ1(x), if α ≤ x ≤ β, from Ψ2(x), if β ≤ x ≤ 
γ, and from 0, otherwise, so that we keep a difference between the fuzzy membership function 
and the fuzzy membership value. Our definition of the complement of a fuzzy set thus is 
based on the following axiom: 
 
          Axiom-1: The fuzzy membership function of the complement of a normal fuzzy 
number N is equal to 1 for the entire real line, with the membership value counted from the 
membership function of N. 
 
    A blunder remains a blunder even if it continues to be used repeatedly for nearly half a 
century. We have two options now; either we continue using the Zadehian definition of 
complement of a fuzzy set, and allow the mathematics of fuzziness to be dubbed a great hoax 
in course of time, or we start to see reason that the counterexamples cited by us are enough to 
discard the old definition of complementation and rebuild the mathematics of fuzziness from 
level zero. We would like to repeat that our definition is necessary for defining the 
complement only of a normal fuzzy set. For a usual fuzzy set, we do not need this definition. 
Even after seeing the counterexamples that we have mentioned here, if the current workers 
continue using the earlier definition of the complement of a fuzzy set, we leave it to the new 
generation of workers to decide the fate of the mathematics of fuzziness. When a proof faces 
a challenge from a counterexample, the counterexample always wins. That the earlier 
definition is not acceptable is clear from our counterexamples. Accordingly, all mathematical 
formalisms and applications in which this definition of complementation had been used must 
be discarded forthwith. If our definition is accepted, the field theoretic matters with reference 
to fuzzy sets would be able to grow and to develop just like every other field of earthly 
mathematics.    
    It may be noted that the axiom defining the operation of complementation of a fuzzy set 
was considered unsatisfactory by quite a few earlier workers too (see for example [21]). 
However, the snag regarding forming a field of fuzzy sets remained. From our standpoint, the 
fuzzy sets do conform to the definition of a field, and therefore the field theoretic matters 
related to fuzzy sets should now be revised thoroughly. At this point, we would like to state 
that with all humility we actually called ours an extended definition of fuzziness [20]. Our 
definition is not an extension; it is indeed the definition describing any normal fuzzy set. The 
Zadehian definition fails to describe the complement of a fuzzy set correctly. Instead of trying 
to understand that the definition of complementation was defective, some people went further 
forward to build up a theory in which logic has been forced to follow mathematics. What has 
resulted is not mathematics at least, whatever else that may be.   
    Regarding defining axioms, we would like to add the following comments. An axiom can 
not just fall from the blue. One has to observe first that a particular statement is true. To 
define something thereafter, one may use that truth as an axiom. It is not however always 
necessary that what has been observed must be true. Once upon a time, people believed that 
the Universe was geocentric. Copernicus scrutinized the matter differently, and found that the 
solar system was heliocentric after all. In the same way, mathematicians once observed that 
the real numbers follow certain properties like sum of two real numbers is again a real 
number, etc. That gave the idea that a structure named group could be defined following 
certain axioms. That is how mathematics has been growing, and would continue to grow. One 
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should not just state an axiom based on plain belief and start a branch of study based on that 
kind of an axiom. That way, one might end up defining a geocentric Universe all over again!  
    As far as the classical theory of probability was concerned, we can find in the literature the 
statement and the proof (see for example, [22], page 27 – 28) of the Theorem of Total 
Probability. This theorem however was later on taken as an axiom, known as the additivity 
axiom, in the measure theoretic definition of probability. Here then is an example of how a 
theorem that could be proved while remaining in a particular system became an axiom in 
another system, and therefore became unprovable, following Gödelian logic, as long as we 
remain within the new system.  
    We cite another example of how a definition, mathematical or otherwise, naturally comes 
up. Indeed, the measure of an interval A in the real line is given by  ψ (A) = inf ∑ l (In) where 
the infimum is taken over all countable collections of intervals In  of length l (In) such that A is 
an improper subset of  UIn, and the intervals In are of the form [a, b) with finite a and b . If A 
is not a subset of UIn, the intervals would not entirely cover A, and so that there is no 
overlapping of intervals, we must take the infimum of the sum of the lengths as the measure 
of the set. In this case, these two conditions therefore were necessary to arrive at the required 
definition of a measure.  
    Sometimes, an axiom may even reappear possibly in a different shape and may even get a 
different name. Euclid’s fifth axiom better known as Playfair’s axiom is one such example. A 
straight line in a Eucildean space can be parallel to at most one of two intersecting straight 
lines. As far as Euclidean Geometry is concerned, here was an uprovable truth that can be 
actually seen to be true.  
    Using ring theoretic axioms applied to the real numbers with reference to the operations of 
addition and multiplication, it can be proved that (-1).(-1) = 1, which leads to the conclusion 
that the square of a real number can not be negative, and therefore that the sum of squares of 
real numbers can not be negative. This can be stated also as follows: given a vector a in a 
linear space, the scalar product a.a is never negative. The readers may note that this is 
precisely the first of the four axioms needed to define a Euclidean space from a linear space. 
Here then is an example of a theorem in ring theory leading to an axiom in defining a 
Euclidean space.      
   This is how an axiom should emerge, logically and naturally, as a statement about a truth, 
sometimes to define a form, and sometimes to form a definition. Our logic is that when a 
glass is partially full of water, then the height of empty portion is to be counted from the 
height upto which the glass is partially full. What we are proposing can therefore be clearly 
seen from this particular example, just as Playfair’s axiom can actually be seen to be true. 
Indeed, the definition of complementation of a fuzzy set should have been such that the 
axioms of exclusion and contradiction are satisfied. Without thinking that membership value 
and membership function need not always be the same, a definition of complementation was 
forwarded, which had led to invalidity of these two axioms. Instead of thinking that rather 
unnatural kind of a situation had been arrived at, the workers in fuzziness just followed the 
leader blindly, and contributed to build up a baseless theory. Acceptance of our views 
notwithstanding, what we are defining is the truth concerned. Even if workers from the new 
generation come forward to accept what we have just described, they need to understand that 
it might actually be very difficult for them to make most of the current workers in fuzziness 
see reason. Galileo was punished for supporting the Copernican views, and as we all know, 
history repeats itself.  
 
4. Fuzzy randomness from our perspective  
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    Fuzzy randomness in terms of uncertain probabilities has been studied by Buckley and 
Eslami ([23], [24]) and Buckley [25], among others. Assume that X is a random variable 
following the normal probability law with mean µ and variance unity. Now if the parameter µ 
is fuzzy,  with membership defined in [µ - δ, µ, µ + δ], we would actually define an infinite 
number of normal probability density functions with location parameter ranging from (µ – δ) 
to (µ + δ ) with maximum membership assigned at the value µ. This is where the current 
definition of fuzzy randomness ends.  
   Assume now that we have a normally distributed population with mean µ and variance σ2. 
From this population, a sample of n observations x1, x2… xn has been drawn, and we can then 
proceed to infer about the population, based on the sample data. Assume that we have fuzzy 
data and we need to proceed for statistical analysis with reference to fuzzy randomness.  
   The fuzzified data are in terms of fuzzy numbers around xi, i = 1, 2, …, n defined as, say,  Xi 

= [xi – δ, xi , xi + δ], δ ≥ 0. The analysis can now proceed accordingly towards making a fuzzy 
statistical conclusion. Without loss of generality, and for computational simplicity, such fuzzy 
numbers are usually taken as triangular. 
   It can bee seen that equivalence of the definitions of the Dubois – Prade left reference 
function Ψ1(x), for a ≤ x ≤ b, and a distribution function, gives us  

d Ψ1(x)/ dx = φ1 (x), say, 
where  

∫a b φ1 (x) dx = 1. 
Similarly, equivalence of the definitions of the Dubois – Prade right reference function Ψ2(x), 
for b ≤ x ≤ c, and a complementary distribution function, gives us  

d (1 – Ψ2(x)) / dx = φ2 (x), say, 
where  

∫b c φ2 (x) dx = 1. 
  
   Now according to our analysis, a triangular fuzzy number of the type Xi = [xi – δ, xi , xi + δ] 
with membership function  

µ(x) = (x - xi + δ)/ δ, if xi – δ ≤ x ≤ xi , 
                                                        = (xi + δ – x)/ δ, if xi ≤ x ≤ xi + δ,  
                                                        = 0, otherwise,  
is in fact defined by two laws of randomness with distribution functions  

F1(x) = (x - xi + δ)/ δ, if xi – δ ≤ x ≤ xi , 
and  

F2(x) = 1 - (xi + δ – x)/ δ, if xi ≤ x ≤ xi + δ, 
so that their densities  

dF1(x)/ dx = 1/ δ, if xi – δ ≤ x ≤ xi , 
and  

dF2(x)/ dx = 1 / δ, if xi ≤ x ≤ xi + δ 
are uniform. 
   This is how the question of fuzzy randomness should come up. First, there should be a 
variable following some law of randomness. Secondly, around every realization of the 
random variable, there should be fuzziness. The conclusions arrived at from analysis of such 
data will also be in terms of fuzziness. The present author had actually used the concept of 
fuzzy randomness quite a few years earlier to the works cited above ([23], [24], [25]) in 
analyzing fuzzy data available in the form of a Latin Square Layout of experimental data [26] 
taking care however of not mentioning the need of using two laws of randomness to define a 
normal fuzzy law.  
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   We have mentioned here how exactly such a situation can come up. What we now have to 
add is that every fuzzy observation in a sample would be governed by two laws of 
randomness already. In addition, there would be a probability law that is supposed to be 
followed by the random variable which we have fuzzified to get an approximate reasoning. In 
other words, we have to add the following explanations. As soon as we surmise that the data 
are fuzzy, or in other words that the data are of the interval type with appropriately defined 
membership functions, we presume that there is one probability law of in [µ - δ, µ] while there 
is another probability law of in [µ, µ + δ]. The readers would note here that for probabilistic 
conclusions based on fuzzy random data, we need to define two probability laws in the 
statistical sense in the two concerned intervals [µ - δ, µ] and [µ, µ + δ].  In fact, if we say that 
the fuzzy membership function defined on [µ - δ, µ, µ + δ] is given by ξ (x) = Ψ1(x), if µ - δ ≤ 
x ≤ µ, = Ψ2(x), if µ ≤ x ≤ µ + δ, and = 0, otherwise, then the probability that the probability 
density function of the random variable X would be       

f(x, µ*) = exp {-(x - µ*)2 } / √ (2π), - ∞ ≤ x < ∞, 
is Ψ1 (µ*), if µ - δ ≤ µ* ≤ µ, and is (1 - Ψ2 (µ*)), if µ ≤ µ* ≤ µ + δ.  So in a fuzzy random case, 
we are able to describe the situation in terms of the probability that the underlying probability 
density function would be of a particular format, and only then the mathematical explanation 
of fuzzy randomness would actually be complete. The question of drawing inferences from 
such fuzzy data now remains to be discussed in the following way. 
    We first cite a numerical example of what we are trying to express. In our work cited 
earlier [26], we started with data of the interval type [x – 0.5, x, x + 0.5] with an assumption 
that the data are triangular. The random variable X of which x is a realization in the sample 
was assumed to be normally distributed. In other words, we started with an assumption that 
the two uniform probability laws, one on [x – 0.5, x] and the other on [x, x + 0.5], are uniform, 
for a normally distributed realization x with mean µ and error variance σ2, say. We finally 
arrived at a fuzzy value of Snedecor’s F - statistic with the following fuzzy membership 
function: 

µF (x) = 174.303 x / (157.733 x + 17.992), if 0 ≤ x ≤ 0.482, 
= 86.858 / (78.866 + 16.570 x), if 0.482 ≤ x < ∞.  

Accordingly, from our standpoint this fuzzy number had been decided by the following two 
distribution functions: 

Ψ1(x) = 174.303 x / (157.733 x + 17.992), if 0 ≤ x ≤ 0.482, 
and  

(1 - Ψ2(x)) = 1 – {86.858 / (78.866 + 16.570 x)}, if 0.482 ≤ x < ∞. 
This means, the fuzzy number F = [0, 0.482, ∞) with left and right reference functions Ψ1(x) 
and Ψ2(x) defined in 0 ≤ x ≤ 0.482 and 0.482 ≤ x < ∞ respectively, would be defined by the 
two densities d (Ψ1 (F))/ dF and d (1 - Ψ2 (F))/ dF in the respective ranges.            
    In the non-fuzzy situation as described in [26], we would have concluded that there is no 
reason to reject the null hypothesis of equality of the treatment means at 5% probability level 
of significance as the data dependent value of F (= 0.482) is smaller than the theoretical value 
of F (= 4.7571), (see for example [27], page 536) for 3 and 6 degrees of freedom. We now 
proceed to look into the matters of making a fuzzy conclusion statistically. The theoretical 
non-fuzzy value of F (= 4.7571) to the right of which the area under the probability density 
function of Snedecor’s F is 0.05, is on that part of the interval on which the right reference 
function is defined. We note that the membership for F = 4.7571 is Ψ2 (4.7571). Now, in our 
perspective the probability density function concerned would be given by 

d (1 - Ψ2 (F))/ dF = 1439.23706/ (78.866 + 16.570 F)2, for 0.482 ≤ F < ∞. 
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Therefore the probability that F ≥ 4.7571 would be the area under this probability density 
function for F ≥ 4.7571, which is the area of the right tail beyond 4.5751. The area of the left 
tail from 0.482 to 4.5751 is (1 - Ψ2 (4.7571)). Thus the area of the right tail is Ψ2 (4.7571) 
again, which is nothing but the membership value of F at 4.7571. Ψ2 (4.7571) = 0.5508 is 
therefore the probability that the fuzzy  null hypothesis of equality of treatment means would 
have to be rejected at 5% probability level of significance. In other words, when a non-
rejectable hypothesis is fuzzified, there will still be a probability that the fuzzy hypothesis 
would actually be found rejectable. In the same way, if a rejectable hypothesis is fuzzified, 
there would still be a probability that the fuzzy hypothesis would be found non-rejectable, the 
probability of non-rejection being decided by the left reference function this time. 
     Fuzzy randomness defined in our way can be of use in sampling theory and therefore in 
demography. In sampling, for example, the age of a person is usually taken as an integer. In 
fact, that should not be the case. A better way to deal with this would be to consider the data 
as intervals of length unity, and then assume that the data are in terms of triangular fuzzy 
numbers. As soon as we assume without loss of generality that the data are triangular fuzzy 
numbers, we would assume uniform laws of randomness to the left and to the right of the 
points of maximum membership. That way, the analysis would be more practical.  
    With reference to fuzzy randomness, we would like to add one particular comment. In 
testing the rejectability of a fuzzy hypothesis, the workers have always referred to the 
alternative hypothesis as the complement of the fuzzy set defined in the current manner. 
According to us, such a definition of complementation is not correct. Therefore in every case 
of fuzzy statistical hypothesis testing available in the literature, the alternative hypotheses 
must necessarily be redefined.  
    We would like to add one further comment in this regard. If we discard the old view and 
look into the matters from our standpoint of defining normal fuzziness with reference to two 
probability measures, then fuzzy randomness can have one more explanation. In the case of 
the classical Bayesian statistical mathematics, a prior probability law is assumed with 
reference to a parameter associated with the law of randomness of the variable concerned. 
Here in our explanations, we presume two laws of randomness defining fuzziness of a 
parameter associated with a random variable following some probability law of errors. In fact, 
not all in the Statistics fraternity give credence to the Bayesian statistical analysis. But 
fuzziness is not just an abstract concept. Hence, instead of presuming one prior probability 
law followed by the parameter concerned defining a law of randomness, we may presume a 
law of fuzziness followed by the parameter. That law of fuzziness in turn will be explainable 
in terms of two laws of randomness. That way, instead of Bayesian analysis, we may opt for 
an analysis with reference to fuzzy randomness, and arrive at a conclusion based on 
approximate reasoning. 
  
 
5. Randomness as a special case of fuzziness from our perspective 
 

    There has been a lot of unnecessary confusion regarding whether a law of fuzziness defined 
over an interval can in some way be related to a law of randomness defined in the same 
interval. We are now going to describe the one and only situation in which that is possible. In 
no other way can we infer a law of randomness from a law of fuzziness or a law of fuzziness 
from a law of randomness.  
    An immediate consequence of Theorem-1 stated in Section-2 is the following corollary 
([28], page 51). Can a normal law of fuzziness lead to one law of randomness? The answer is, 
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yes, and it can be attained in the following manner only. This result too, just as the others 
included in this article, is based on plain logic, and not on unreasonable belief. If theorem-1 is 
true, then the following statement has to be equally true.  
 
        Corollary 1: For a fuzzy number N = [α, β, β] with membership function  

µN(x) = Ψ (x), if α ≤ x ≤ β, 
 = 0, otherwise, 

where Ψ (α) = 0 and Ψ (β) = 1, with nondecreasing Ψ (x) in α ≤ x ≤ β, Ψ(x) has to be a 
probability distribution function in the interval [α, β]. 
 
     In other words, every interval that is a probability space is basically a fuzzy number. For 
example, if we have an exponentially distributed random variable X with the probability 
density function 

f(x) = exp {- x/ σ}/ σ, 0 ≤ x < ∞, 
its probability distribution function will be given by  

F(x) = 1 - exp {- x/ σ}, 0 ≤ x < ∞. 
In our way, [0, ∞) then is a fuzzy number with membership function F(x).  
    In fact, if X is a random variable following a probability law in the interval [α, β], then we 
shall have for α ≤ γ ≤ δ ≤ β,  

Prob [γ ≤ X ≤ δ] = Prob [α ≤ X ≤ δ] - Prob [α ≤ X ≤ γ] 
                                                              = µ (δ) - µ (γ), 
where µ (γ) and µ (δ) are the membership values at γ and δ respectively. 
    It is clear that from our standpoint theory of probability could be taken as a special case of 
the theory of normal fuzziness.  To deduce the probability law of a function of a random 
variable, for example to find the probability law of X2 when the probability law of X is known, 
the usual statistical procedure is to deduce the probability density of the transformed variable 
based on the probability law of the given variable. If we use our method, the membership 
function of the new variable can be found from the membership function of the given 
variable, and after differentiation of the membership function we would get the probability 
density function of the transformed variable. Matters related to distribution theory may 
therefore be studied in this way too. This may actually lead to simplifying certain statistical 
formalisms existing in the literature. 
   We would like to cite an example. Tshebysheff's Lemma ([22], page 182) is stated as 
follows: Let u be a variable which does not assume negative values, and a be its mathematical 
expectation. Then  

Prob {u ≤ at2} ≥   1 – (1/ t2 )  
whatever t may be. This is a very general statement in the sense that it is independent of the 
underlying probability law followed by the variable. In our perspective, this lemma can 
equivalently be stated as follows: Let U = [0, ∞) be a fuzzy number with nondecreasing 
membership function µ (u), with µ (0) = 0 and µ (u) tending to 1 as u tends to ∞. Then 
  

µ (at2) ≥ 1 – 1/t2 
where  

a = ∫0 ∞ u dµ(u).                 
 
This is the only way to get one law of randomness from one law of fuzziness, and to get one 
law of fuzziness from one law of randomness. There is no other alternative. 
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    We have come across situations where fuzziness for a certain parameter and statistical 
randomness for another, both occurring in the same mathematical model, have been 
suggested. In our sense, both of such parameters are fuzzy with the original fuzzy parameter 
defined as a fuzzy number of the type [α, β, γ] and with the probabilistic parameter defined as 
a fuzzy number of the type [α, β, β]. In other words, what is known as a mixed model is 
indeed a model with two different types of fuzziness, one with both left as well as right 
reference functions, while the other is with just the left reference function. 
 

6.  Conclusions  

   The following points are to be included in the theory of fuzzy sets so as to make it truly 
logical. Partial presence of an element in a normal fuzzy number can in fact be expressed in 
terms of randomness. The membership function of a normal fuzzy number [α, β, γ] is actually 
a distribution function in [α, β] and a complementary distribution function in [β, γ]. Therefore 
trying to conclude anything in terms of the area under the membership function is absolutely 
meaningless because integration of both a distribution function and a complementary 
distribution function does not have any physical significance. Accordingly, trying to bring in 
some sort of equivalence between the area under the membership function and the area under 
a probability density function defined in the same interval is not logical because an area under 
the membership function can not in any way lead to any kind of probability, while an area 
under a probability density function is the probability of an event. Hence, the existing 
probability – possibility consistency principles in turn are not logical. In fact, if we look from 
our perspective, measures such as belief, plausibility, credibility etc. are not at all 
mathematical in the classical sense.   
     The definition of complement of a fuzzy set is not correct. Hence all sorts of mathematical 
and applicational matters in which this definition had been used must also be wrong. Indeed, 
fuzzy membership function and fuzzy membership value are two different things with 
reference to the complement of a normal fuzzy set. The membership function of the 
complement of a normal fuzzy number is 1 over the entire real line, with the condition that it 
has to be counted from the membership function of the original fuzzy number. To continue 
applying a wrong axiom just because it has been arrogantly believed to true for nearly half a 
century goes totally against the philosophy of mathematics. Meanwhile this unearthly 
definition has been used so extensively in all sorts of fields for so many years that it may now 
be actually impossible to undo most of the things done so far in this context.    
     Fuzzy randomness leads to fuzzy conclusions. Such fuzzy conclusions can indeed be 
viewed probabilistically also. Note that here too in testing of fuzzy hypotheses the definition 
of alternative hypotheses concerned were all wrongly stated. Further, a fuzzy random 
situation may be viewed as an extension of the Bayesian statistical analytical procedure if we 
look into the matters defining fuzziness from our perspective.  
     Finally, the theory of probability can be studied as a special case of the theory of fuzziness 
with reference to fuzzy numbers of the type [α, β, β]. This in itself looks a vast field of study.  
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