
International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

21

A Branch Predictor with New Recovery Mechanism

Young-Il Cho

Department of Computer Science, University of Suwon

yicho@suwon.ac.kr

Abstract

To improve the performance of wide-issue superscalar processors, it is essential to

increase the instruction fetch and issue rate. Removal of control hazard has been put forward

as a significant new source of instruction level parallelism for superscalar processors and the

conditional branch prediction is an important technique for improving processor

performance. Branch mispredictions waste a large number of cycles, inhibit out-of-order

execution, and waste power on mis-speculated instructions. Hence, the branch predictor with

higher accuracy is necessary for good processor performance. In global-history-based

predictors such as gshare and GAg, many mispredictions come from commit-time update of

the branch history. Some works on this subject have discussed the need for speculative update

of the history and the recovery mechanism for branch misprediction. In this paper, we present

a new mechanism for recovering the branch history after mispredictions. The proposed

mechanism adds age_counter to the original predictor and doubles the size of BHR (branch

history register). The age_counter counts the number of outstanding branches and is used to

recover BHR. Simulation results on SimpleScalar tool set and SPEC2000 benchmarks show

that gshare and GAg with the proposed recovery mechanism improve the average prediction

accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%,

respectively over original predictors.

Keywords: branch prediction, misprediction, speculative update, branch history, recovery

mechanism, outstanding branch, prediction accuracy, IPC

1. Introduction

Recently, the effort to improve the performance of processors that are used in all areas is
one of the main points which make it possible to do high-capacity data in the shortest time.
Achieving the highest possible branch prediction accuracies is critical to good processor
performance. In wide-issue and deeply-pipelined processors, a single misprediction creates a
pipeline bubble that can waste the opportunity to execute more instructions. For this reason,
research continues to explore new techniques, especially for predicting branch outcomes [1-3].

Superscalar processors that perform lots of instructions per cycle need an accurate branch

predictor so that it may provide useful instructions. If branch mispredictions happen, they can

waste a lot of cycles and processor resources because it performs instructions in a wrong path

before it does instructions in the correct path. Accordingly, the research on dynamic branch

prediction technique, which has higher prediction accuracy, has been continued. Dynamic

branch prediction method is a method that improves the accuracy of prediction using the

information that is obtained during execution. Among the dynamic branch prediction methods,

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

22

two-level adaptive branch predictor which uses the correlation between preceding branch

instructions and a predictive target branch is proved to be efficient [1].

Figure 1 Two-level adaptive branch predictor

At present, two-level branch predictor and its variants are used in various kinds of

commercial processors. Current commercial processors use a branch predictor that combines

GAs with Agree mechanism, Alpha processor uses a branch predictor that combines the two

kinds of two-level branch predictors [4,5]. Recently, hybrid branch predictors which use the

local branch history and the global branch history have been researched [6,7].

In pipeline processors, a branch instruction is predicted by the fetch stage and the resolved

outcome is determined by the execute stage. In case of a branch misprediction, instructions

fetched in wrong path should be invalid and instructions in the correct path should be fetched

and executed. There are several cycles between the branch prediction and the resolved

outcome. During the cycles, quite a few of branch instructions are fetched and predicted in

the processor which has larger pipeline depth and issue. If the branch history has been

updated at commit stage, predicted results of in-flight branch instructions shows that it had

been predicted by stale branch history. It can especially cause problems with the two-level

adaptive branch predictor because these methods are based on the exact branch history of

preceding branches [8-10].

The problem can be solved if it is possible for the branch predictor to update the branch

history speculatively by the predicted outcome instead of the resolved outcome. If the

prediction is correct, the speculative update causes no problem. But, in case of branch

misprediction, the polluted branch history must be recovered to the state of just before that

prediction because the speculative update inserted wrong information into the branch history.

Existing recovery mechanisms used a complicated mechanism in which they store the branch

history at queue or reorder buffer. And in case of branch misprediction, it recovers the

polluted history into the stored history [12-14].

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

23

In this paper, a new mechanism was introduced in order to recover the branch history

when branch prediction failed. It adds age_counter which stores the number of unresolved

branch instructions and adds SHR which expands the size of BHR (Branch History Register)

by two times. When it occurs a branch misprediction, it tries to recover BHR using

age_counter.

We can show improvement of prediction accuracy and performance through results of

simulation of the SimpleScalar tool set in case of applying the suggested recovery mechanism

to existing global-history based branch predictors.

2. Suggested Recovery Mechanism

When a branch misprediction is occurred, existing recovery mechanisms mostly used the

QUEUE and required a complicated hardware. The recovery mechanism suggested by this

paper is implemented by a simple hardware. In existing mechanisms such as History-based

methods and Future-based methods, the size of OBQ (Outstanding Branch Queue) entry has

21 bits (13 bits for storing the content of GHR and 8 bits for tag). Therefore, they are

necessary for 420 bits and logic to drive the Queue. But, the suggested mechanism only needs

18 bits (13 bits for SHR and 5 bits for age_counter).

2.1. Branch Prediction and Speculative Update Method

The predictor suggested by this paper has been further equipped with age_counter in order

to recover the branch history at a branch misprediction. It also uses SHR (Speculative History

Register) instead of GHR (Global History Register).

The age_counter stores the number of outstanding branches which have been fetched and

predicted but have not yet updated the branch history as resolved outcomes. If new branch

instruction has been fetched, age_counter is incremented because of increasing outstanding

branches. In commit stage, if the resolved outcome is same as the predicted result,

age_counter is decremented because of decreasing outstanding branches.

In existing predictors, GHR has the branch history which has been updated by the

resolved branch outcome at commit stage in order of being fetched. But the SHR includes

history which is updated at commit stage and speculative history which is updated at fetch

stage.

The Figure 2 shows SHR when age_counter is C which means that the number of

outstanding branches is C. The range from B0 to BC-1 points out the speculative update history

of branch instructions which would have been currently executing. The range from BC to

Bn+m-1 points out the updated history at commit stage. SHR adds m bit for the speculative

update which is different from the GHR. At the time of simulation, it has been arranged for

the value of m to have the same as one of n.

In the modified gshare branch predictor, which is allowable of the speculative update of

GHR, the prediction of conditional branch instructions as shown in the Figure 3 does an

'exclusive-OR' program counter of current branch with the outcome of last n branch

instructions in SHR(in case the number of PHT is 2n), and indexes PHT using that result. If

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

24

the value of selected PHT entry (saturating counter) is more than 2(two), the branch is

predicted by 'taken'. If the value is less than 1(one), the branch is predicted by 'not taken'. As

a conditional branch instructions are predicted, the value of age_counter is increased by

1(one) and this points out that the number of unresolved branch instructions has been

increased by 1(one). The speculative update is updated by the outcome of branch prediction.

That is, SHR is shifted by 1(one) bit to the left and the prediction outcome would be stored

in B0.

Figure 2 SHR(Speculative History Register)

Figure 3 Recovery Mechanism (gshare)

2.2. Recovery Mechanism for Branch Misprediction

If the prediction value is same as the value of resolved outcome, the processor would

normally operate. If the prediction value is not same as the value of resolved outcome, SHR

must be recovered. If it is not recovered, the polluted SHR would be used continuously to

predict following branches and this leads to low prediction accuracy eventually. Accordingly,

it is necessary that the polluted SHR should be recovered to the history just prior to prediction

of the mispredicted branch.

The recovery mechanism suggested in this paper uses age counter and recovers SHR to

the history just prior to prediction of the mispredicted branch. In the Figure 2, BC points to the

resolved outcome of a branch instruction which was committed lastly. When the resolved

outcome of the branch instruction has been obtained, it should be compared to BC-1 which is

the speculative updated outcome of the branch instruction. If two outcomes are same, the

processor would proceed normally because the prediction is correct. At this time, age_counter

is decreased by 1(one). It points out that the number of unresolved branch instructions in

branch history is decreased. However, if two outcomes are different, it has been turned out to

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

25

be branch misprediction and branch histories from BC-2 to B0 in SHR were polluted as

predicted results of a wrong path. Accordingly, SHR should be shifted to the right by C-1 bits

and recovered to the state just prior to prediction of the branch instruction which has been

mispredicted. Subsequent histories which has been fetched and updated speculatively after the

mispredicted branch instruction should be nullified and the resolved outcome of mispredicted

branch should be stored. At this time, the value of age_counter was reset to 0(zero) and this

points out that there remain no unresolved branch instructions.

3. Performance Measurement and Analysis

3.1. Experiment Environment

For the performance measurement we have modified bpred and sim-outorder in order to

apply the suggested branch misprediction recovery to gshare and GAg predictor, which is

allowable for the speculative update in SimpleScalar tool set [13] that is the cycle level

simulator of superscalar processors. Table 1 shows a machine parameter to the structure of a

simulated processor. The outcome was based on 8-issue processor with gshare and GAg

branch predictors with 1K~8K entry PHT. BTB (Branch Target Buffer) of all branch

predictors has been fixed in 512 sets 4-way. Also, it has been used of 128KB L1 Data Cache,

512KB L1 instruction Cache and 1MB unified L2 Cache. Table 2 describes SPEC2000

benchmarks [15] used in simulation and input data. The input data used ref input. The number

of executed instructions of benchmarks in order to save time for simulation is limited to 200

million instructions.

3.2. Performance Measurement

 We measured the prediction accuracy and performance of original gshare, original GAg,

gshare+recovery which applies the proposed recovery mechanism to gshare and

GAg+recovery which applies to the proposed recovery mechanism to GAg for 1K, 2K, 4K

and 8K entry PHT.

The proposed recovery mechanism has a simple hardware in comparison with existing

recovery mechanisms. But the prediction accuracy and the performance of predictors with the

proposed recovery mechanism are proved to improve in comparison with those of existing

recovery mechanisms.

Figure 4 shows the prediction accuracy of GAg, gshare, GAg+recovery and

gshare+recovery for PHTs with 1K, 2K, 4K and 8K entry. GAg+recovery is GAg branch

predictor with the proposed recovery mechanism. Also, gshare+recovery is gshare branch

predictor with the proposed recovery mechanism.

The prediction accuracy of Gag+recovery is improved by 8.89% (1K entry PHT) in

minimum, 9.63% (8K entry PHT) in maximum and 9.21% in average in comparison with that

of Gag. As the number of PHT entry increases, it turns out to improve the prediction accuracy

more.

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

26

Table 1. Machine parameter of simulation processor

classification Factor value others

Processor Core

RUU size

LSQ size

Fetch width

Decode width

Issue width

Commit width

Functional units

128 entries

64 entries

8 instructions/cycle

8 instructions/cycle

8 instructions/cycle

8 instructions/cycle

8 i-ALU(1), 8 f-ALU(2)
2 i-MULT/DIV(3/12)
2 f-MULT/DIV(4/12)

Instruction window

Load store queue

In order

In order

Out of order

In order

() is latency

Memory
Memory ports

Memory access latency

2 ports, 8byte bus

first_chunk(18),
inter_chunk(2)

() is latency

Branch predictor

gshare

GAg

BTB

(1K/2K/4K/8K) entries

(1K/2K/4K/8K) entries

512 sets, 4 way

() is PHT entry size

Cache

L1 data cache

L1 instruction cache

L2 unified cache

128K, 32B block, 4 way,
LRU, 1 cycle latency
512K, 32B block, d-map,
LRU, 1 cycle latency
1M, 64B block, 4 way,
LRU, 6 cycle latency

Table 2. Benchmarks & input data

benchmark Input data
instructions

(million)
remark

gcc cccp.i 200 The GNU C compiler version 2.5.3.

li train.lsp 183 Xlisp interpreter.

vortex persons.250 200 An object oriented database.

go 50 9 2stone9.in 200 An internationally ranked go playing program.

m88ksim dcrand.lit 200
 A chip simulator for the Motorola 88100

microprocessor.

compress 100000 e 2231 200
 An in-memory version of the common UNIX

utility.

perl primes.pl 200 An interpreter for the Perl language.

ijpeg penguin.ppm 200
 Image compression/decompression on in

memory images.

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

27

The prediction accuracy of gshare+recovery is improved by 1.9% (8K entry PHT) in

minimum and 2.65% (1K entry PHT) in maximum and 9.21% in average in comparison with

that of gshare. As the number of PHT entry decreases, it turns out to improve the prediction

accuracy more.

The prediction accuracy of GAg+recovery has been improved more than that of

gshare+recovery because GAg uses only GHR when it indexes PHT but gshare uses GHR and

the address of branch instruction. It is considered to be a reason that gshare has a less effects

on the GHR than GAg. Furthermore, as the change of prediction accuracy according to the

change of the number of PHT entries has been measured in Figure 4-e, there had been no

great change even when the number of PHT entries increase. Therefore, the recovery

mechanism turned out that it has no effect on the number of PHT entry.

(a) Prediction accuracy (1K entry PHT)

(b) Prediction accuracy (2K entry PHT)

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

28

(c) Prediction accuracy (4K entry PHT)

(d) Prediction accuracy (8K entry PHT)

 (e) Prediction accuracy according to the change of the number of PHT entries

Figure 4. Prediction accuracy of GAg, gshare, GAg+recovery and

gshare+recovery

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

29

Figure 5 shows the performance of GAg, gshare, GAg+recovery and gshare+recovery for

PHTs with 1K, 2K, 4K and 8K entry through IPC (Instruction Per Cycle).

The performance of Gag+recovery is improved by 17% (2K entry PHT) in minimum,

20.2% (8K entry PHT) in maximum and 18.8% in average in comparison with that of Gag.

As the number of PHT entry increases, it also turns out to improve the performance more.

The performance of gshare+recovery is improved by 6.3% (8K entry PHT) in minimum

and 13.09% (1K entry PHT) in maximum and 8.75% in average in comparison with that of

gshare. It is thought that GAg+recovery improves the prediction accuracy better than

gshare+recovery and it has caused the performance of processor to be improved more better.

Furthermore, as the change of performance according to the change of the number of PHT

entries has been measured in Figure 5-e, there had been no great change even when the

number of PHT entries increase. Therefore, the recovery mechanism also turned out that it

has no effect on the number of PHT entry.

(a) IPC (1K entry PHT)

(b) IPC (2K entry PHT)

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

30

(c) IPC (4K entry PHT)

(d) IPC (8K entry PHT)

 (e) Performace according to the change of the number of PHT entries

 Figure 5. Performace of GAg, gshare, GAg+recovery and gshare+recovery

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

31

4. Conclusion

In this paper, we presented a simple mechanism through which GHR is recovered to the

history just prior to branch prediction after a branch misprediction. Existing recovery

mechanisms required a complicated hardware such as QUEUE. But the proposed mechanism

could get same effect without almost additional hardware.

We could recognize effects of improvement of the processor performance as well as

improvement in the prediction accuracy from the result of simulation in SimpleScalar tool set

when the proposed recovery mechanism was applied to GAg and gshare. As the proposed

recovery mechanism had been applied to GAg predictor, it has turned out that the prediction

accuracy was improved by 9.21% in average and 18.08% of IPC in average. Also, as it had

been applied to gshare predictor the prediction accuracy has been improved by 8.75% of IPC

in average.

References

[1] T.-Y. Yeh and Y. N. Patt "Alternative implementations of two-level adaptive branch prediction", in

Proceedings of the 19th Annual International Symposium on Computer Architecture, May 1992, pp. 124-34.

[2] Hyesoon Kim, J A Joao, O Mutlu, et al. "Virtual Program Counter (VPC) Prediction: Very Low Cost Indirect

Branch Prediction Using Conditional Branch Prediction Hardware", IEEE Transactions on Computers, Sep.

2009 pp 1153-1170
[3] Nadav Levison, Shlomo Weiss "Low Power Branch Prediction for Embedded Application Processors",

ISLPED 10 Volume: 1, Pages: 67-72 Aug. 2010
[4] K. Diefendorff(1998) "K7 challenges Intel", Microprocessor Report, Oct. 1998, pp. 1, 6-11.

[5] R. E. Kessler, E. J. McLellan, and D. A. Webb "The Alpha 21264 microprocessor architecture", in Proceedings

of the 1998 International Conference on Computer Design, Oct. 1998, pp. 90-95.

[6] G.H. Loh, D.S. Henry "Predicting Conditional Branches with Fusion-based Hybrid Predictors", PACT2002,

Sep. 2002 pp 395-405.

[7] Z. Lu, J. Lach, M. Stan, and K. Skadron "Alloyed Branch History: Combining Global and Local Branch

History for Robust Performance", International Journal of Parallel Programming, Kluwer, volume 31, number

2, Apr. 2003.

[8] A. R. Talcott, W. Yamamoto, M. J. Serrano, R. C. Wood, and M. Nemirovsky "The impact of unresolved

branches on branch prediction scheme performance", in Proceedings of the 21st Annual International

Symposium on Computer Architecture, Apr. 1994, pp. 12-21.

[9] E. Hao, P.-Y. Chang, and Y. Patt "The effect of speculatively updating branch history on branch prediction

accuracy, revisited", in Proceedings of the 27th Annual International Symposium on Microarchitecture, Nov.

1994, pp. 228-32.

[10] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt(1998) "An analysis of correlation and predictability:

What makes two-level branch predictors work", in Proceedings of the 25th Annual International Symposium

on Computer Architecture, June 1998, pp. 52-61.

[11] K. Skadron, and M. Martonosi "Speculative Updates of Local and Global Branch History : A Quantitative

Analysis", JILP Vol. 2, Jan. 2000.

[12] S. Jourdan, J. Stark, T.-H. Hsing, and Y. N. Patt(1997) "Recovery requirements of branch prediction storage

structures in the presence of mispredicted-path execution", International Journal of Parallel Programming,

vol. 25, Oct 1997, pp. 363-83.

[13] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark(1998) "Improving prediction for procedure returns

with return-address-stack repair mechanisms," in Proceedings of the 31st Annual ACM/IEEE International

International Journal of Energy, Information and Communications

Vol. 2, Issue 1, February 2011

32

Symposium on Microarchitecture, pp. 259-71, Dec.

[14] D. Burger, T. M. Austin, and S. Bennett "Evaluating future microprocessors: the SimpleScalar tool set", Tech.

Report TR-1308, University of Wisconsin-Madison Computer Sciences Department, July 2000.

[15] The Standard Performance Evaluation Corporation "SPEC2000 Benchmarks", WWW site:

http://www.specbench.org/, Dec. 2000.

Authors

Young-Il Cho received B.S., M.S. and Ph.D. in Electronical Engneering
from Hanyang University, Seoul Korea in 1980, 1982 and 1985. Currently,
he is a professor at Department of Computer Science, University of Suwon.
His current research interests include High Performance
Microarchitecture, Sensor Network, Optimized Compiler and RFID.

