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Abstract 

To improve the performance of wide-issue superscalar processors, it is essential to 

increase the instruction fetch and issue rate. Removal of control hazard has been put forward 

as a significant new source of instruction level parallelism for superscalar processors and the 

conditional branch prediction is an important technique for improving processor 

performance. Branch mispredictions waste a large number of cycles, inhibit out-of-order 

execution, and waste power on mis-speculated instructions. Hence, the branch predictor with 

higher accuracy is necessary for good processor performance. In global-history-based 

predictors such as gshare and GAg, many mispredictions come from commit-time update of 

the branch history. Some works on this subject have discussed the need for speculative update 

of the history and the recovery mechanism for branch misprediction. In this paper, we present 

a new mechanism for recovering the branch history after mispredictions. The proposed 

mechanism adds age_counter to the original predictor and doubles the size of BHR (branch 

history register). The age_counter counts the number of outstanding branches and is used to 

recover BHR. Simulation results on SimpleScalar tool set and SPEC2000 benchmarks show 

that gshare and GAg with the proposed recovery mechanism improve the average prediction 

accuracy by 2.14% and 9.21%, respectively and the average IPC by 8.75% and 18.08%, 

respectively over original predictors. 
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1. Introduction 
 

Recently, the effort to improve the performance of processors that are used in all areas is 
one of the main points which make it possible to do high-capacity data in the shortest time.  
Achieving the highest possible branch prediction accuracies is critical to good processor 
performance. In wide-issue and deeply-pipelined processors, a single misprediction creates a 
pipeline bubble that can waste the opportunity to execute more instructions. For this reason, 
research continues to explore new techniques, especially for predicting branch outcomes [1-3]. 

Superscalar processors that perform lots of instructions per cycle need an accurate branch 

predictor so that it may provide useful instructions. If branch mispredictions happen, they can 

waste a lot of cycles and processor resources because it performs instructions in a wrong path 

before it does instructions in the correct path. Accordingly, the research on dynamic branch 

prediction technique, which has higher prediction accuracy, has been continued. Dynamic 

branch prediction method is a method that improves the accuracy of prediction using the 

information that is obtained during execution. Among the dynamic branch prediction methods, 
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two-level adaptive branch predictor which uses the correlation between preceding branch 

instructions and a predictive target branch is proved to be efficient [1]. 

 

 
 

Figure 1  Two-level adaptive branch predictor 

 

At present, two-level branch predictor and its variants are used in various kinds of 

commercial processors. Current commercial processors use a branch predictor that combines 

GAs with Agree mechanism, Alpha processor uses a branch predictor that combines the two 

kinds of two-level branch predictors [4,5]. Recently, hybrid branch predictors which use the 

local branch history and the global branch history have been researched [6,7]. 

In pipeline processors, a branch instruction is predicted by the fetch stage and the resolved 

outcome is determined by the execute stage. In case of a branch misprediction, instructions 

fetched in wrong path should be invalid and instructions in the correct path should be fetched 

and executed. There are several cycles between the branch prediction and the resolved 

outcome. During the cycles, quite a few of branch instructions are fetched and predicted in 

the processor which has larger pipeline depth and issue. If the branch history has been 

updated at commit stage, predicted results of in-flight branch instructions shows that it had 

been predicted by stale branch history. It can especially cause problems with the two-level 

adaptive branch predictor because these methods are based on the exact branch history of 

preceding branches [8-10].  

The problem can be solved if it is possible for the branch predictor to update the branch 

history speculatively by the predicted outcome instead of the resolved outcome. If the 

prediction is correct, the speculative update causes no problem. But, in case of branch 

misprediction, the polluted branch history must be recovered to the state of just before that 

prediction because the speculative update inserted wrong information into the branch history. 

Existing recovery mechanisms used a complicated mechanism in which they store the branch 

history at queue or reorder buffer. And in case of branch misprediction, it recovers the 

polluted history into the stored history [12-14]. 
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In this paper, a new mechanism was introduced in order to recover the branch history 

when branch prediction failed. It adds age_counter which stores the number of unresolved 

branch instructions and adds SHR which expands the size of BHR (Branch History Register) 

by two times. When it occurs a branch misprediction, it tries to recover BHR using 

age_counter.  

We can show improvement of prediction accuracy and performance through results of 

simulation of the SimpleScalar tool set in case of applying the suggested recovery mechanism 

to existing global-history based branch predictors. 

 

2. Suggested Recovery Mechanism 
 

When a branch misprediction is occurred, existing recovery mechanisms mostly used the 

QUEUE and required a complicated hardware. The recovery mechanism suggested by this 

paper is implemented by a simple hardware. In existing mechanisms such as History-based 

methods and Future-based methods, the size of OBQ (Outstanding Branch Queue) entry has 

21 bits (13 bits for storing the content of GHR and 8 bits for tag). Therefore, they are 

necessary for 420 bits and logic to drive the Queue. But, the suggested mechanism only needs 

18 bits (13 bits for SHR and 5 bits for age_counter). 

 

2.1. Branch Prediction and Speculative Update Method 

 

The predictor suggested by this paper has been further equipped with age_counter in order 

to recover the branch history at a branch misprediction. It also uses SHR (Speculative History 

Register) instead of GHR (Global History Register).  

The age_counter stores the number of outstanding branches which have been fetched and 

predicted but have not yet updated the branch history as resolved outcomes. If new branch 

instruction has been fetched, age_counter is incremented because of increasing outstanding 

branches. In commit stage, if the resolved outcome is same as the predicted result, 

age_counter is decremented because of decreasing outstanding branches. 

In existing predictors, GHR has the branch history which has been updated by the 

resolved branch outcome at commit stage in order of being fetched. But the SHR includes 

history which is updated at commit stage and speculative history which is updated at fetch 

stage. 

The Figure 2 shows SHR when age_counter is C which means that the number of 

outstanding branches is C. The range from B0 to BC-1 points out the speculative update history 

of branch instructions which would have been currently executing. The range from BC to 

Bn+m-1 points out the updated history at commit stage. SHR adds m bit for the speculative 

update which is different from the GHR. At the time of simulation, it has been arranged for 

the value of m to have the same as one of n. 

In the modified gshare branch predictor, which is allowable of the speculative update of 

GHR, the prediction of conditional branch instructions as shown in the Figure 3 does an 

'exclusive-OR' program counter of current branch with the outcome of last n branch 

instructions in SHR(in case the number of PHT is 2n), and indexes PHT using that result. If 
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the value of selected PHT entry (saturating counter) is more than 2(two), the branch is 

predicted by 'taken'. If the value is less than 1(one), the branch is predicted by 'not taken'. As 

a conditional branch instructions are predicted, the value of age_counter is increased by 

1(one) and this points out that the number of unresolved branch instructions has been 

increased by 1(one). The speculative update is updated by the outcome of branch prediction. 

That is, SHR is shifted by 1(one) bit to the left and the prediction outcome would be stored 

in B0. 

 

 
Figure  2  SHR(Speculative History Register) 

 
Figure  3  Recovery Mechanism (gshare) 

 

2.2. Recovery Mechanism for Branch Misprediction 

 

If the prediction value is same as the value of resolved outcome, the processor would 

normally operate. If the prediction value is not same as the value of resolved outcome, SHR 

must be recovered. If it is not recovered, the polluted SHR would be used continuously to 

predict following branches and this leads to low prediction accuracy eventually. Accordingly, 

it is necessary that the polluted SHR should be recovered to the history just prior to prediction 

of the mispredicted branch.  

The recovery mechanism suggested in this paper uses age counter and recovers SHR to 

the history just prior to prediction of the mispredicted branch. In the Figure 2, BC points to the 

resolved outcome of a branch instruction which was committed lastly. When the resolved 

outcome of the branch instruction has been obtained, it should be compared to BC-1 which is 

the speculative updated outcome of the branch instruction. If two outcomes are same, the 

processor would proceed normally because the prediction is correct. At this time, age_counter 

is decreased by 1(one). It points out that the number of unresolved branch instructions in 

branch history is decreased. However, if two outcomes are different, it has been turned out to 
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be branch misprediction and branch histories from BC-2 to B0 in SHR were polluted as 

predicted results of a wrong path. Accordingly, SHR should be shifted to the right by C-1 bits 

and recovered to the state just prior to prediction of the branch instruction which has been 

mispredicted. Subsequent histories which has been fetched and updated speculatively after the 

mispredicted branch instruction should be nullified and the resolved outcome of mispredicted 

branch should be stored. At this time, the value of age_counter was reset to 0(zero) and this 

points out that there remain no unresolved branch instructions. 

 

3. Performance Measurement and Analysis 
 
3.1. Experiment Environment 

 

For the performance measurement we have modified bpred and sim-outorder in order to 

apply the suggested branch misprediction recovery to gshare and GAg predictor, which is 

allowable for the speculative update in SimpleScalar tool set [13] that is the cycle level 

simulator of superscalar processors. Table 1 shows a machine parameter to the structure of a 

simulated processor. The outcome was based on 8-issue processor with gshare and GAg 

branch predictors with 1K~8K entry PHT. BTB (Branch Target Buffer) of all branch 

predictors has been fixed in 512 sets 4-way. Also, it has been used of 128KB L1 Data Cache, 

512KB L1 instruction Cache and 1MB unified L2 Cache. Table 2 describes SPEC2000 

benchmarks [15] used in simulation and input data. The input data used ref input. The number 

of executed instructions of benchmarks in order to save time for simulation is limited to 200 

million instructions. 

 

3.2.  Performance Measurement  

 

 We measured the prediction accuracy and performance of original gshare, original GAg, 

gshare+recovery which applies the proposed recovery mechanism to gshare and 

GAg+recovery which applies to the proposed recovery mechanism to GAg for 1K, 2K, 4K 

and 8K entry PHT.  

The proposed recovery mechanism has a simple hardware in comparison with existing 

recovery mechanisms. But the prediction accuracy and the performance of predictors with the 

proposed recovery mechanism are proved to improve in comparison with those of existing 

recovery mechanisms.  

Figure 4 shows the prediction accuracy of GAg, gshare, GAg+recovery and 

gshare+recovery for PHTs with 1K, 2K, 4K and 8K entry. GAg+recovery is GAg branch 

predictor with the proposed recovery mechanism. Also, gshare+recovery is gshare branch 

predictor with the proposed recovery mechanism.  

The prediction accuracy of Gag+recovery is improved by 8.89% (1K entry PHT) in 

minimum, 9.63% (8K entry PHT) in maximum and 9.21% in average in comparison with that 

of Gag. As the number of PHT entry increases, it turns out to improve the prediction accuracy 

more. 
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Table 1.  Machine parameter of simulation processor 

classification Factor value others 

Processor Core 

RUU size 

LSQ size 

Fetch width 

Decode width 

Issue width 

Commit width 

 
Functional units 

 

128 entries 

64 entries 

8 instructions/cycle 

8 instructions/cycle 

8 instructions/cycle 

8 instructions/cycle 

8 i-ALU(1), 8 f-ALU(2) 
2 i-MULT/DIV(3/12) 
2 f-MULT/DIV(4/12) 

Instruction window 

Load store queue 

In order 

In order 

Out of order 

In order 

 
( ) is latency 

 

Memory 
Memory ports 

 
Memory access latency 

2 ports, 8byte bus 

first_chunk(18), 
inter_chunk(2) 

( ) is latency 

Branch predictor 

gshare 

GAg 

BTB 

(1K/2K/4K/8K) entries 

(1K/2K/4K/8K) entries 

512 sets, 4 way 

( ) is PHT entry size 

Cache 

L1 data cache 

 
L1 instruction cache 

 

L2 unified cache 

128K, 32B block, 4 way, 
LRU, 1 cycle latency 
512K, 32B block, d-map, 
LRU, 1 cycle latency 
1M, 64B block, 4 way, 
LRU, 6 cycle latency 

 

 
Table 2.  Benchmarks & input data  

benchmark Input data 
instructions  

(million) 
remark 

gcc cccp.i 200  The GNU C compiler version 2.5.3. 

li train.lsp 183  Xlisp interpreter.  

vortex persons.250 200  An object oriented database.  

go 50 9 2stone9.in 200  An internationally ranked go playing program. 

m88ksim dcrand.lit 200 
 A chip simulator for the Motorola 88100 

microprocessor. 

compress 100000 e 2231 200 
 An in-memory version of the common UNIX 

utility. 

perl primes.pl 200  An interpreter for the Perl language. 

ijpeg penguin.ppm 200 
 Image compression/decompression on in 

memory images. 
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The prediction accuracy of gshare+recovery is improved by 1.9% (8K entry PHT) in 

minimum and 2.65% (1K entry PHT) in maximum and 9.21% in average in comparison with 

that of gshare. As the number of PHT entry decreases, it turns out to improve the prediction 

accuracy more.  

The prediction accuracy of GAg+recovery has been improved more than that of 

gshare+recovery because GAg uses only GHR when it indexes PHT but gshare uses GHR and 

the address of branch instruction. It is considered to be a reason that gshare has a less effects 

on the GHR than GAg. Furthermore, as the change of prediction accuracy according to the 

change of the number of PHT entries has been measured in Figure 4-e, there had been no 

great change even when the number of PHT entries increase. Therefore, the recovery 

mechanism turned out that it has no effect on the number of PHT entry.  

 

 
(a) Prediction accuracy (1K entry PHT) 

 

 
(b) Prediction accuracy (2K entry PHT) 

 



International Journal of Energy, Information and Communications 

Vol. 2, Issue 1, February 2011 

 
 

 

28 

  
(c) Prediction accuracy (4K entry PHT) 

 

           
(d) Prediction accuracy (8K entry PHT) 

 

  
 (e) Prediction accuracy according to the change of the number of PHT entries  

Figure  4.  Prediction accuracy of GAg, gshare, GAg+recovery and 

gshare+recovery 
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Figure 5 shows the performance of GAg, gshare, GAg+recovery and gshare+recovery for 

PHTs with 1K, 2K, 4K and 8K entry through IPC (Instruction Per Cycle).  

The performance of Gag+recovery is improved by 17% (2K entry PHT) in minimum, 

20.2% (8K entry PHT) in maximum and 18.8% in average in comparison with that of Gag. 

As the number of PHT entry increases, it also turns out to improve the performance more.  

The performance of gshare+recovery is improved by 6.3% (8K entry PHT) in minimum 

and 13.09% (1K entry PHT) in maximum and 8.75% in average in comparison with that of 

gshare. It is thought that GAg+recovery improves the prediction accuracy better than 

gshare+recovery and it has caused the performance of processor to be improved more better.  

Furthermore, as the change of performance according to the change of the number of PHT 

entries has been measured in Figure 5-e, there had been no great change even when the 

number of PHT entries increase. Therefore, the recovery mechanism also turned out that it 

has no effect on the number of PHT entry. 

 

 
(a) IPC (1K entry PHT) 

 

 
(b) IPC (2K entry PHT) 
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(c) IPC (4K entry PHT) 

 

 
(d) IPC (8K entry PHT) 

 

 
 (e) Performace according to the change of the number of PHT entries 

 Figure  5.  Performace of GAg, gshare, GAg+recovery and gshare+recovery 
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4. Conclusion 
 

In this paper, we presented a simple mechanism through which GHR is recovered to the 

history just prior to branch prediction after a branch misprediction. Existing recovery 

mechanisms required a complicated hardware such as QUEUE. But the proposed mechanism 

could get same effect without almost additional hardware.  

We could recognize effects of improvement of the processor performance as well as 

improvement in the prediction accuracy from the result of simulation in SimpleScalar tool set 

when the proposed recovery mechanism was applied to GAg and gshare. As the proposed 

recovery mechanism had been applied to GAg predictor, it has turned out that the prediction 

accuracy was improved by 9.21% in average and 18.08% of IPC in average. Also, as it had 

been applied to gshare predictor the prediction accuracy has been improved by 8.75% of  IPC 

in average. 
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