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Abstract 

Since the beginning, for the last forty five years, it has been accepted that fuzziness and 
randomness are independent concepts. Workers in fuzzy mathematics have been trying to link 
randomness with fuzziness without any success. In this article, we would establish that trying 
to impose one probability space over an interval defining a possibility space is not correct. 
We need two probability spaces to define a possibility space. On the other hand, given a 
possibility space, it can be defined by two probability spaces. Hence the measure theoretic 
matters of possibility must be geared to forming two probability measures. The correct 
randomness - fuzziness consistency principle is: 

Poss [x] = θ Prob [a ≤ y ≤ x] + (1 – θ) {1 – Prob [b ≤ y ≤ x]}, 
where θ is 1, if a ≤ x ≤ b, and is 0, if b ≤ x ≤ c. In other words, fuzziness is rooted at 
randomness. 
 
Key words: Probability measure, fuzzy membership function. 
 

1. Introduction 

The theory of fuzzy sets came into existence forty five years ago as a competitor of the 

theory of probability to describe uncertainties that are not describable using probability 

measures. A normal fuzzy number N = [α, β, γ] is associated with a membership function µN 

(x), where  

 

µN(x) = Ψ1(x), if α ≤ x ≤ β, 

                    = Ψ2(x), if β ≤ x ≤ γ, and 

     = 0, otherwise, 

 

Ψ1(x) being a continuous nondecreasing function in the interval [α, β], and Ψ2(x) being a 

continuous nonincreasing function in the interval [β, γ], with Ψ1 (α) = Ψ2 (γ) = 0, Ψ1 (β) = Ψ2 

(β) = 1. Dubois and Prade (see for example, [1]) named Ψ1(x) as the left reference function 
and Ψ2(x) as the right reference function of the fuzzy number N = [α, β, γ]. 

Dubois and Prade however stopped short of defining wherefrom these two functions come 

up. We are interested in viewing Ψ1(x) and (1 - Ψ2(x)) as probability distribution functions 

and would study the membership function of a fuzzy number from this angle. We would first 

look into how such distribution functions can be constructed so that every fuzzy number can 

be explained with the help of two probability measures. For this we shall first define a set 

operation called superimposition, and use a classical result of Order Statistics on uniform 

convergence of empirical distribution functions thereafter to arrive at our result. 
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The Dubois – Prade definition was a firm step towards defining fuzziness with the help 

two different functions. We would like to start where they have stopped. To go further, we 

would need the spectacles of superimposition of sets which is our own finding. Further, we 

would need to apply the Glivenko – Cantelli theorem of order statistics to arrive at our 

conclusions.
1
 

  

2. The operation of set superimposition 

We first proceed to define a set operation that we have named superimposition. When we 

overwrite, the overwritten portion looks darker. Indeed, in the overwritten portion there 

happens to double representation due to superimposition, which is why that portion looks 
darker. The operation of union of sets cannot explain this. When two translucent papers with 

unequal opacities are placed one covering the other partially, the opacity in the portion 

covered by both the papers would be more than the maximum opacity in comparison with the 

other parts. This happens due to superimposition. We now proceed to define this 

mathematically.   

Defined by the present author ([2], [3]) and later used successfully in recognizing periodic 

patterns ([4], [5], [6]), the operation of set superimposition is expressed as follows: if the set 

A is superimposed over the set B, we get  
 

A (S) B = (A-B) ∪ (A ∩ B) (2) ∪ (B-A) 
 

where S represents the operation of superimposition, and (A ∩ B) (2) represents the elements of 

(A ∩ B) occurring twice, provided that (A ∩ B) is not void. We have defined this operation 

keeping view that fact that if two line segments A and B of unequal lengths are overdrawn 

one over the other, this is what we are going to see. 

It can be seen that for two intervals A = [a1, b1] and B = [a2, b2], we should have 

equivalently 

                                   [a1, b1] (S) [a2, b2] 

= [a1, a2] ∪ [a2, b1] 
(2)
 ∪ [b1, b2], if a1 < a2 < b1 < b2, 

= [a1, a2] ∪ [a2, b2] 
(2)
 ∪ [b2, b1], if a1 < a2 < b2 < b1, 

= [a2, a1] ∪ [a1, b1] 
(2)
 ∪ [b1, b2], if a2 < a1 < b1 < b2, 

=
 
[a2, a1] ∪ [a1, b2] 

(2)
 ∪ [b2, b1], if a2 < a1 < b2 < b1, 

 

where a1 < a2 < b1 < b2, a1 < a2 < b2 < b1, a2 < a1 < b1 < b2, and a2 < a1 < b2 < b1 are the four 

different possibilities in this case. Here we have assumed without loss of any generality that  

 

[a1, b1] ∩ [a2, b2] 

 

is not void, or in other words max (ai) ≤ min (bi), i = 1, 2. 

We can express this as follows. Indeed   

 

[a1, b1] (S) [a2, b2] = [a (1), a (2)] ∪ [a (2), b (1)] 
(2)
 ∪ [b (1), b (2)] 

where  

a (1) = min (a1, a2), 

                                                 
1 This work was read as an invited talk in the International Congress of Mathematics Satellite International 
Conference on Probability and Statistics, September 1 – 3, 2010, Sambalpur University, Sambalpur, India.   
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a (2) = max (a1, a2), 

b (1) = min (b1, b2),  

and 

b (2) = max (b1, b2). 

 

This conversion in terms of ordered values is to be noted properly. We would soon see the 

applicability of this conversion in defining the randomness-fuzziness principle.  

In this way, for n intervals [a1, b1], [a2, b2], ………, [an, bn], subject to the condition that  

 

[a1, b1] ∩ [a2, b2] ∩ ……… ∩ [an- 1, bn-1] ∩ [an, bn] 

 

is not void, we would have (n!)
2 
different cases that can be in short written as  

 

[a1, b1] (S) [a2, b2] (S) ……… (S) [an- 1, bn-1] (S) [an, bn] 

= [a (1), a (2)] ∪ [a (2), a (3)] 
(2) 
∪………∪ [a (n-1), a (n)] 

(n-1) 
∪ [a (n), b (1)] 

(n)  

∪ [b (1), b (2)] 
(n-1)

 ∪ ………∪ [b (n-2), b (n-1)]
 (2)
 ∪ [b (n-1), b (n)], 

 

where  a(1), a(2), ………, a(n) are values of a1, a2, ………, an arranged in increasing order of 

magnitude, and  b(1), b(2), ………, b(n) also are values of b1, b2, ………, bn arranged in 

increasing order of magnitude, and for example [a(n-1), a(n)] 
(n-1) 

are elements of [a(n-1), a(n)] 

represented (n-1) times. Observe that order statistical matters can now enter into our 

discussions on superimposition. 

 

3. An application of superimposition of sets 

We now proceed towards an application of the operation of set superimposition. We refer 

to the example of two line segments A and B of unequal lengths overdrawn one over the other 

again. Double representation creates a doubly dark situation in the common portion. Now if 

the level of darkness in the common portion is taken to be unity, then that in the other 

portions would have to be partial. 

          For n fuzzy intervals [a1, b1] 
(1/n)

, [a2, b2]
 (1/n)

, …, [an, bn]
 (1/n) 

all
 
with membership value 

equal to 1/n everywhere, we shall have 

 

[a1, b1] 
(1/n)

 (S) [a2, b2]
 (1/n)

 (S) ……… (S) [an, bn]
 (1/n)

 

= [a (1), a (2)]
 (1/n)

 ∪ [a (2), a (3)] 
(2/n) 

∪………∪ [a (n-1), a (n)] 
((n-1) /n) 

∪ [a (n), b (1)] 
(1)  

∪ [b (1), b (2)] 
((n-1) /n) 

∪ ………∪ [b (n-2), b (n-1)]
 (2/n) 

∪ [b (n-1), b (n)]
 (1/n)

, 

 

where, for example, [b (1), b (2)]
((n-1) /n) 

represents the uniformly fuzzy interval [b (1), b (2)] with 

membership ((n-1) /n) in the entire interval, a (1), a (2), ………, a (n) being values of a1, a2, 

………, an arranged in increasing order of magnitude, and b (1), b (2), ………, b (n) being values 

of b1, b2, ………, bn arranged in increasing order of magnitude.  

Consider now two spaces (Ω1, A1, Π 1) and (Ω2, A2, Π 2), Ω1 and Ω2 being real intervals [α, 

β] and [β, γ] respectively. Let x1, x2, …, xn, and y1, y2, …, yn, be realizations in [α, β] and [β, 

γ] respectively. So for n such equally fuzzy intervals [x1, y1] 
(1/n)

, [x2, y2]
 (1/n)

, …, [xn, yn]
 (1/n) 

all
 

with membership value equal to 1/n everywhere, we shall have 

 

[x1, y1] 
(1/n)

 (S) [x2, y2]
 (1/n)

 (S) ……… (S) [xn, yn]
 (1/n)

 

= [x (1), x (2)]
 (1/n)

 ∪ [x (2), x (3)] 
(2/n) 

∪………∪ [x (n-1), x (n)] 
((n-1) /n) 

∪ [x (n), y (1)] 
(1)  
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∪ [y (1), y (2)] 
((n-1) /n) 

∪ ………∪ [y (n-2), y (n-1)]
 (2/n) 

∪ [y (n-1), y (n)]
 (1/n)

 

 

where for example [y (1), y (2)]
((n-1) /n) 

represents the uniformly fuzzy interval [y (1), y (2)] with 

membership ((n-1) /n) in the entire interval, x (1), x (2), ………, x (n) being values of  x1, x2, 

………, xn arranged in increasing order of magnitude, and y (1), y (2), ………, y (n) being values 

of y1, y2, ………, yn arranged in increasing order of magnitude.  

       Recall that for the fuzzy intervals [x1, y1]
 (1/n)

, [x2, y2]
 (1/n)

, …, [xn, yn]
 (1/n)

, all with uniform 

membership 1/n, the values of membership of the superimposed fuzzy intervals are 1/n, 2/n, 

…, (n-1)/n, 1, (n-1)/n, …, 2/n, and 1/n. These values of membership considered in two halves 

as  

(0, 1/n, 2/n, …, (n-1)/n, 1), 

and  

(1, (n-1)/n, …, 2/n, 1/n, 0), 

 

would suggest that they can define an empirical probability distribution and a complementary 
empirical distribution on x1, x2, …, xn, and y1, y2, …, yn, respectively.  In other words, for 

realizations of the values of x(1), x(2), ………, x(n)  in increasing order and  of y(1), y(2), ………, 

y(n)  again in increasing order, we can see that if we define  

 

                                        Ψ1(x) = 0, if x < x (1), 

                                                  = (r-1)/n, if x (r-1) ≤ x ≤ x (r), r = 2, 3, …, n, 

                                                  = 1, if x ≥ x (n),  

                                        Ψ2(y) = 1, if y < y (1), 

                                                  = 1 - (r-1)/n, if y (r-1) ≤ y ≤ y (r), r = 2, 3, …, n, 

                                                  = 0, if y ≥ y (n), 

then we are assured that  

Ψ1(x) → Π 1 [α, x], α ≤ x ≤ β, 

Ψ2(y) → 1 – Π 2 [β, y], β ≤ y ≤ γ. 

 

We have thus seen that existence of two densities dΨ1(x)/dx and dΨ2(y)/dy for α ≤ x ≤ β and β 

≤ y ≤ γ is a sufficient condition to construct a fuzzy number [α, β, γ]. We can now summarize 

our findings as follows: if Ψ1(x) and (1 - Ψ2(x)) are two independent distribution functions 

defined in [α, β] and [β, γ] respectively, then the membership function of a fuzzy number N = 

[α, β, γ] can be expressed as µN (x) = Ψ1(x), if α ≤ x ≤ β, = Ψ2(x), if β ≤ x ≤ γ, and = 0, 

otherwise ([7], [8]).            

Thus the existence of two uniform densities, the simplest form of all densities, in the 

intervals [α, β] and [β, γ], is sufficient for the construction of a triangular fuzzy number [α, β, 

γ], the simplest form of all fuzzy numbers. Other kinds of densities would be sufficient 

accordingly to give rise to other kinds of fuzzy numbers. We are asserting that assumption of 

two densities, and hence assumption of two distribution functions in [α, β] and [β, γ], would 

give rise to a fuzzy number. It can be expected that defining a fuzzy number in this way 

would be helpful in explaining fuzzy arithmetic in a much simpler way.             

Hence, not one but two distributions with reference to two probability measures defined 

on two disjoint spaces can construct a fuzzy membership function. For this however one 

needs to look into the matters through application of the Glivenko – Cantelli theorem of order 

statistics on superimposed uniformly fuzzy intervals. The distributions may be geared to the 

measure theoretic definition of randomness. What we mean is that the variable concerned 

need not be associated with any error term as in statistics. Even when the values of the 
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variable are already ordered, the construction would still be valid. We shall discuss more 

about it later  

The membership function of a fuzzy set defines the concerned possibility distribution ([9], 

[10]). It is known that if FΩ and PΩ are the possibility distribution and the probability 
distribution respectively defined on Ω, one can not infer FΩ and PΩ from each other [10]. 
Various other authors (see for example [11]) have tried to link probability with possibility, 
without success. 

We have already answered as to why they did not succeed in linking probability with 
possibility. We have with the help of the set operation called superimposition and using the 
Glivenko-Cantelli theorem on order statistics established that fuzziness can indeed be linked 
with randomness. We would show that not one but two probability distributions are needed to 
define a possibility distribution of a normal fuzzy set with membership equal to one for some 
element of the set. In other words, we could be able to conclude that there is no logical reason 
why a PΩ should be imposed on an Ω on which an FΩ is defined. This would therefore define a 
principle linking randomness and fuzziness.  

We have therefore arrived at our answer to the question which we have raised earlier. We 
have seen that two probability spaces (Ω1, A1, P1) and (Ω2, A2, P2) where Ω1 and Ω2 are the 
real intervals [a, b] and [b, c] respectively can define a possibility space Ω = Ω1 ∪ Ω2 

represented by [a, b, c]. Hence there can not be any mathematically valid reason why a PΩ 

should be imposed on Ω on which an FΩ is defined. Indeed, an Ω can not be used in the same 
sense for a PΩ as well as an FΩ. 

Now, if f(x) is integrable in an interval a ≤ x ≤ b, and  
 

F(x) = ∫a
x f(x) dx 

then  
d F(x)/ dx = f(x). 

 
Any function F(x) whose derivative is equal to f(x) is a primitive or an indefinite integral of 
f(x). Thus the definite integral regarded as a function of the upper limit of the integral, is a 
primitive of the integral whenever the latter is a continuous function.  

It can be seen that equivalence of the definitions of the Dubois – Prade left reference 
function Ψ1(x), if a ≤ x ≤ b, and a distribution function, gives us  

 
d Ψ1(x)/ dx = φ1 (x), say, 

where  
∫a 

b φ1 (x) dx = 1. 
 
Similarly, equivalence of the definitions of the Dubois – Prade right reference function Ψ2(x), 
if b ≤ x ≤ c, and a complementary distribution function, gives us  
 

d (1 – Ψ2(x)) / dx = φ2 (x), 
 say, where  

∫b 
c φ2 (x) dx = 1. 

 
This means, our condition is not just sufficient but necessary as well in the sense that a 

possibility space can be bifurcated into two distinct probability spaces. In other words, a 
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possibility space can be defined on a triad [a, b, c] if and only if two probability spaces can be 
defined on [a, b] and [b, c] respectively. 

It is seen that while fuzzifying crisp matters, we invariably start with the triangular fuzzy 
number. As a reason as to why it is used, it is always said that it is easy to use the triangular 
fuzzy number. For the uniform probability density function  

f(x) = 1/ (b – a), a ≤ x ≤ b, 
the probability distribution function is given by  

F(x) = ∫a
x f(x) dx = (x –a)/ (b – a). 

 
Similarly, for the uniform probability density function  

g(x) = 1/ (c – b), b ≤ x ≤ c, 
the probability distribution function is given by  

G(x) = (x –b)/ (c – b). 
 
It can be seen that F(x) is the left reference function and (1 – G(x)) is the right reference 
function as defined by Dubois and Prade (see e. g. [1]) of the triangular fuzzy number [a, b, c] 
with membership  
                                              µ (x) = 0, if x ≤a, 
                                                      = F(x) = (x – a)/ (b – a), if a ≤ x ≤ b, 
                                                      = 1 – G(x) = 1 – (x – b)/ (c – b), if b ≤ x ≤ c, 
                                                      = 0, if x ≥ c. 
 

In fact, just as in the theory of probability the simplest continuous probability law is the 
uniform probability law, equivalently triangular fuzziness is the simplest possibility law. In 
other words, what we are trying to assert is found to be satisfactory from this standpoint too. 
We use triangular fuzzy numbers not just because they are easy to handle. They are in fact the 
simplest possible normal fuzzy numbers arising out of the simplest possible probability law. 

We now state the correct randomness – fuzziness consistency principle. Indeed possibility 
of a value in a given triad [a, b, c] can be expressed as 

 
Poss [X = x] = θ Prob [a ≤ X ≤ x] + (1 – θ) {1 – Prob [b ≤ X ≤ x]}, 

 
where θ = 1, if a ≤ x ≤ b, and = 0, if b ≤ x ≤ c. We insist that possibility is expressible either 
as probability or as a complementary probability. For any individual value of X, possibility is 
simply a probability of an event.  
 

4. The existing probability – possibility consistency principles          

We now shift our discussions towards the probability – possibility consistency principles 
which are available in the literature. There are quite a few such principles. In fact, there 
should not have been more than one such principle had there been a real link between 
probability and possibility defined on the same interval. First, we shall discuss in short 
regarding use of such consistency principles by various authors. As we shall see, workers in 
various applicational fields have widely used such probability – possibility consistency 
principles.  

The earliest attempt at making probability and fuzzy set theory work in concert was made 
by Loginov [12], who interpreted the membership function as a frequentist conditional 
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probability. That attempt was made during the days of the beginning of studies about 
fuzziness. Zadeh himself [13] later on dismissed that idea, and expressed that probability 
should be used in concert with fuzzy logic to enhance its effectiveness. In that perspective, 
probability theory and fuzzy logic were presumed to be complementary rather than 
competitive.  

Before actually constructing the theory of fuzziness, Zadeh [14] felt that the conventional 
mathematics – the mathematics of precisely defined points, functions, sets, probability 
measures, etc. were inadequate to deal with certain types of uncertainties. He at that time felt 
that we need a different kind of mathematics, the mathematics of fuzzy quantities which are 
not describable in terms of probability distributions. That was his view in 1962. About thirty 
years later, by 1995, he seemed to have softened his views regarding probability theory as we 
can see.  

Singpurwala and Booker [15] in a survey article discussed about membership functions 
and probability measures. However, they started speaking in the same language spoken by the 
workers of fuzzy mathematics. They discussed about imposing probability laws on a given 
possibility space. They did not try to find whether there could be any mathematical link 
between the membership functions of a normal fuzzy number and probability distributions.  

We conclude that trying to bring about some sort of consistency between a fuzzy 
membership function and some probability law defined on a fuzzy number is not at all 
logical, and hence not mathematically meaningful. It has anyway been accepted that 
imposition of such probability laws is heuristic and arbitrary. We should see that mathematics 
follows logic. It must not be the other way around in any case. At this point, we would like to 
refer to a work done by Sheen [16] who has suggested a method of probabilistic conversion 
of fuzzy number, and has gone for conversion of the membership function of a fuzzy number 
µ (x) into an equivalent probability density function by using one of two linear 
transformations: proportional probability density function: p(x) = kp µ(x), and uniform 
probability density function: u(x) = µ(x) + ku where kp and ku are values of the conversion 
constants which ensure that the area under the continuous probability function is equal to 1. 
When the proportional conversion method is used, the height of the resultant proportional 
probability density function is independent of the fuzzy number height, but its domain 
remains the same as that of the original fuzzy number. When the uniform conversion 
approach is adopted, the domain and the height of the resultant distribution both reduce or 
increase from their original fuzzy number values. The reduced or increased domain indicates 
the partial ejection or addition of some members from or to the set. Hence, the uniform 
distribution reveals certain undesirable properties. Therefore, the application of the 
proportional density function conversion is recommended in the comparison of fuzzy 
numbers.  

As we can see, Sheen’s method of getting proportional probability density function looks 
like Klir’s conversion principle to get probability from possibility. In Sheen’s method of 
conversion, the value of the resultant probability density function is independent of the 
corresponding fuzzy membership value, while the domain remains the same as that of the 
original fuzzy number. This is something like Lemaire’s conversion of a subnormal fuzzy 
number to a normal fuzzy number [17]. While Lemaire was absolutely correct in his approach 
to convert a subnormal fuzzy number to a normal one, Sheen has ended up making everything 
look very fuzzy indeed. Depending on the value of kp in p(x) = kp µ(x) one may end up getting 
a subnormal fuzzy number also. If Sheen is correct, the subnormal fuzzy number defined by 
Lemaire should be a probability density function! Obviously, not both Sheen and Lemaire can 
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be correct at the same time. While Lemaire stayed in fuzziness after his conversion from 
subnormality to normality, Sheen has ended up defining the concept of probability in his own 
way.  

We can not define a probabilistic variable following more than one probability laws 
simultaneously. For example, if a random variable y follows the normal probability law with 
the probability density function   

f(y) = exp {- (y – µ )2 / (2 σ2 )} / {σ √ (2π )}, - ∞ < y < ∞, 

for the same variable we can not say that it follows another probability law defined by another 
probability density function, for example a triangular probability density, in a different 
interval of reference. For if such an assumption has to hold good, then we should be able to 
impose any number of probability laws on the same variable just changing the interval of 
reference. That would be illogical, and hence outside the philosophy of mathematics.  

Further, Sheen’s proportional probability density function is unacceptable for one more 
reason. If we need to construct a probability law followed by a random variable defined in a 
given interval, there are mathematical rules in the theory of statistical inferences to do so. In 
fact, statistics too like any other field of knowledge follows certain basic formalisms. Instead, 
defining first a fuzzy number around a point, and then using some conversion factor to 
redefine a function obtained from the membership function concerned so that the area under 
the derived function of reference is equal to 1, and finally calling it a probability density, is 
totally against the philosophy of statistics. Probability density functions are never constructed 
in this manner. As for the uniform probability density function defined by Sheen, first, the 
very nomenclature is incorrect. In the theory of probability, the uniform probability density is 
defined as one that takes a constant value in the interval of reference concerned. At least in 
mathematics, any standard name of a function must not be used to mean something else. We 
have discussed in detail matters concerning construction of a normal fuzzy number with the 
help of two probability laws in one of our recent works [18].  

There are three probability – possibility consistency principles, each of them proposed to 
link probability with fuzzy membership. We would like to stress that had there really been a 
sort of consistency between probability and possibility defined on the same space, there 
would have been not three but only one such principle. The very presence of three principles 
to define just one mathematical formalism is reason enough to suspect that none of them is 
simply acceptable. As we have shown, to relate probability with possibility, we need two 
probability spaces to define a possibility space. Therefore the consistency principles in 
existence are not quite logical. We now proceed to discuss in short the consistency principles 
available in the literature.  

4.1 Zadeh’s consistency principle 

Zadeh [9] defined the probability-possibility consistency principle stating that a high 
degree of possibility does not imply a high degree of probability, nor does a low degree of 
probability imply a low degree of possibility. He defined the degree of consistency between a 
probability distribution p = ( p1,  p2, … , pn)  and the possibility distribution π = (π 1, π 2 , … , π 

n) as  
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Cz = Σ π i  p i. 
 
Zadeh pointed out that his probability-possibility consistency principle is not a precise law or 
a relationship between possibility and probability distributions. It is an approximate 
formalization of the heuristic connection that a lessening of the possibility of an event tends 
to lessen its probability but not vice-versa. Zadeh himself declared it to be heuristic, and that 
is an important point to be noted.  

Indeed the possibility curve is a culmination of a probability distribution function and a 
complementary distribution function. As such, if we try to impose one probability law over 
the entire interval on which the possibility law has been described, we might find that 
lessening of possibility lessens probability also.  

As we have seen, Zadeh tried to define a probability law over the same space over which a 
possibility law has been defined. Thereafter the scalar product of p and π has been defined as 
some sort of an index. Here is where we would like to raise a question. Mathematics should 
follow logic; logic must not be made to follow mathematics or anything else for that matter. 
But of course, Zadeh himself has commented that the principle is not a precise law. Therefore 
other such principles have come into picture. We shall now discuss two more such principles 
available in the literature on fuzzy mathematics.  
 

4.2 Klir’s consistency principle 

Klir [19] defined a probability – possibility consistency principle as follows. Let X = {w1, 
w2, …, wn} be a finite universe of singletons. Let pi = pi (wi) and πi = πi (wi). The elements of 
X are assumed to be ordered. Thereafter 

 
pi = πi 

1/ α / Σ πi 
1/ α 

 

for some parameter α in the open interval (0, 1) defined a two sided relation between π and p. 
In effect, defining pi from πi in this way to satisfy the uncertainty preservation principle 

defined by Klir himself is actually nothing but trying to define a probability space, in the 
measure theoretic sense, from the knowledge of the possibilities concerned. This is nothing 
but a process of normalizing the values of πi so that total probability is equal to 1.  

It is obvious that probabilities found by normalizing possibilities would of course show 
consistency in principle. Zadeh’s initiative in this regard looked at least better in the sense 
that in that case probabilities and possibilities were defined independently. In Klir’s case, that 
independence is not there. It looks as though we need a principle of consistency between two 
things; so define one as a function of the other, and then claim that there is consistency in 
principle after all. In other words, in this case, the mathematics of normalizing the possibility 
values has been forced to follow logic. We should see whether we can formalize a set of logic 
mathematically. Given an event we can consider its probability of happening. Probability can 
not just be imposed externally on any event. In simple terms, total probability of some related 
events would be unity; but that does not mean that if some positive fractions sum up to unity, 
we can impose a probability law suddenly from nowhere. Our point is, either we accept that 
in a particular situation the theory of fuzzy sets is to be applied, and therefore in that kind of a 
situation we should set aside theory of probability as a tool unworthy of application in that 
situation in particular, or we accept that the situation can be handled by applying the theory of 
probability whence we would not even think of applying the theory of fuzzy sets in that case. 
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On one hand, if we continue to say that probability theory is inappropriate to deal with a 
particular situation, while on the other hand we continue to say that we get probabilistic 
inferences from the membership function concerned, then we would actually be making a 
philosophical error.  
 

4.3 The Dubois – Prade consistency principle 

Dubois and Prade [20] have also put forward another consistency principle. According to 
them, the possibilistic representation is weaker than the probabilistic one, because it explicitly 
handles imprecision and because possibility measures are based on ordering structure than an 
additive one in the probability measures. Thus in going from a probabilistic representation to 
a possiblistic one, some information is lost because we go from point valued probabilities to 
interval valued ones; the converse transformation adds information to some possibilistic 
incomplete knowledge. The transformation from probability to possibility is guided by the 
principle of maximum specificity, which aims at finding the most informative possibility 
distribution. While the transformation of possibility to probability is guided by the principle 
of insufficient reason which aims at finding the probability distribution that contains as much 
uncertainty as possible but that retains the features of possibility distributions. Dubois and 
Prade proved that their asymmetric transformation from probability to possibility is the most 
specific transformation which satisfies the condition of consistency defined by Dubois and 
Prade themselves in that article.  

Here in this case, the reference of the possibility measure has come up. The possibility 
measure is not a measure in the classical sense. We have established that with the help of two 
probability measures one can study possibility mathematically. We therefore would not like 
to discuss further about this consistency principle. Defining a set function that does not follow 
the additivity postulate is one thing, but calling it a fuzzy measure is quite another. Instead of 
calling it a fuzzy measure, if some other name is given, and mathematics proceeds 
accordingly, no one should have any objection. We insist that fuzziness can definitely be 
studied measure theoretically in the classical sense.  
 

5. Conclusions  

    We conclude that: 
 
a. Trying to impose one probability space over an interval defining a possibility space is not 
correct. We need two, and not one, probability spaces to define a possibility space. On the 
other hand, given a possibility space, it can be bifurcated into two probability spaces. Hence 
the measure theoretic matters of possibility must be geared to forming two probability 
measures. 
 
b. The correct randomness – fuzziness consistency principle should be: 

Poss [x] = θ Prob [a ≤ y ≤ x] + (1 – θ) {1 – Prob [b ≤ y ≤ x]}, 
where θ is 1, if a ≤ x ≤ b, and is 0, if b ≤ x ≤ c. So, possibility of [X = x] for a ≤ x ≤ c is 
expressible as nothing but a probability only, either as Prob [a ≤ X ≤ x] or as {1 – Prob [b ≤ X 
≤ x]}, whichever is the case. We would like to reiterate that we have used the term probability 
in the broader measure theoretic sense here. 
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c. Trying to impose a probability law on the same interval where a normal fuzzy number has 
been defined, and to try to find a principle of consistency between probability and possibility 
is not logical. Constructing a probability law from the knowledge of the membership function 
of a fuzzy number does not make sense. If one is not satisfied with applying probabilistic 
mathematics in some case, and if it is decided that the mathematics of fuzziness would put 
forward scope of a better analysis of the situation, then it is better to apply fuzzy 
mathematical analysis and forget about probability. Applying fuzzy mathematics, and at the 
same time trying to pull into the picture probability theory in the name of constructing one 
probability law from a possibility law, can not be a correct proposition. We have shown that 
two probability laws are needed to define a possibility law. If the theory of probability is used 
to explain fuzziness in this way, then of course it is a different matter. From this standpoint, 
formalisms of the theory of probability can certainly be applied to explain fuzziness without 
any heuristic assumptions whatsoever.  
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