Industry Energy Consumption Prediction Using Data Mining Techniques

AUTHORS

Sathishkumar V E,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Jonghyun Lim,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Myeongbae Lee,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Kyeongryong Cho,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Jangwoo Park,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Changsun Shin,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea
Yongyun Cho,Dept. of Information and Communication Engineering, Suncheon, Sunchon National University, Korea

ABSTRACT

Predicting energy consumption is an essential part of the electricity company supply. This paper presents and explores energy consumption prediction models using data mining approach for the steel industry. DAEWOO steel industry energy consumption data is used in this study. Data used include lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission, and load types. The prediction models are trained with its best hyperparameters selected using repeated cross-validation and are evaluated using a test set: (a) General Linear Regression, (b) Classification and Regression Trees (c) Support Vector Machine with Radial Basis Kernel (d) K Nearest Neighbor, (e) Random Forest. Four evaluation indices such as Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error and Coefficient of Variation are used to measure the prediction efficiency of regression models. The results show that the Random Forest model can best predict energy consumption and outperforms other conventional algorithms in comparison.

 

KEYWORDS

Energy consumption, Data mining, Predictive analytics, Data analysis

REFERENCES

[1]     Xiao L., Shao W., Liang T., and Wang C., “A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting,” Applied Energy, vol.167, pp.135-153, (2016) DOI: 10.1016/j.apenergy.2016.01.050(CrossRef)(Google Scholar)
[2]     Wang Z.X., Li Q., and Pei L.L., “A seasonal GM (1, 1) model for forecasting the electricity consumption of the primary economic sectors,” Energy, vol.154, pp.522-534, (2018) DOI: 10.1016/j.energy.2018.04.155(CrossRef)(Google Scholar)
[3]     Schwab Klaus, The fourth industrial revolution, Currency, (2017)
[4]     Lee Seung-moon, “Mid-term Korea Energy Demand Outlook,” Korea Energy Economics Institute, May (2014)
[5]     Simeone O., “A very brief introduction to machine learning with applications to communication systems,” IEEE Transactions on Cognitive Communications and Networking, vol.4, no.4, pp.648-664, (2018) DOI: 10.1109/TCCN.2018.2881442(CrossRef)(Google Scholar)
[6]     Candanedo L.M., Feldheim V. and Deramaix D., “Data driven prediction models of energy use of appliances in a low-energy house,” Energy and buildings, vol.140, pp.81-97, (2017) DOI: 10.1016/j.enbuild.2017.01.083(CrossRef)(Google Scholar)
[7]     Cherkassky V. and Ma Y., “Practical selection of SVM parameters and noise estimation for SVM regression,” Neural networks, vol.17, no.1, pp.113-126, (2004) DOI: 10.1016/S0893-6080(03)00169-2(CrossRef)(Google Scholar)
[8]     Jinhu L., Xuemei L., Lixing D., and Liangzhong J., “Applying principal component analysis and weighted support vector machine in building cooling load forecasting,” In 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, vol.1, pp.434-437, (2010) DOI: 10.1109/CCTAE.2010.5543476(CrossRef)(Google Scholar)
[9]     Alsharif M.H., Younes M.K. and Kim J., “Time series ARIMA model for prediction of daily and monthly average global solar radiation: The Case Study of Seoul,” South Korea, Symmetry, vol.11, no.2, p.240, (2019) DOI: 10.3390/sym11020240(CrossRef)(Google Scholar)
[10]  Candanedo Luis M., Véronique Feldheim, and Dominique Deramaix, “Data driven prediction models of energy use of appliances in a low-energy house,” Energy and buildings, vol.140, pp.81-97, (2017) DOI: 10.1016/j.enbuild.2017.01.083(CrossRef)(Google Scholar)
[11]  Li K., Su H., and Chu J., “Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study,” Energy and Buildings, vol.43, no.10, pp.2893-2899, (2011) DOI: 10.1016/j.enbuild.2011.07.010(CrossRef)(Google Scholar)
[12]  Mocanu E., Nguyen P.H., Gibescu M., and Kling W.L., “Deep learning for estimating building energy consumption,” Sustainable Energy, Grids and Networks, vol.6, pp.91-99, (2016) DOI: 10.1016/j.segan.2016.02.005(CrossRef)(Google Scholar)
[13]  C. Sandels, J. Widén, L. Nordström, and E. Andersson, “Day-ahead predictions of electricity consumption in a Swedish office building from weather, occupancy, and temporal data,” Energy Build, vol.108, pp.279-290, (2015) DOI: 10.1016/j.enbuild.2015.08.052(CrossRef)(Google Scholar)
[14]  P. Bacher, H. Madsen, H.A. Nielsen, and B. Perers, “Short-term heat load forecasting for single family houses,” Energy Build, vol.65, pp.101-112, (2013) DOI: 10.1016/j.enbuild.2013.04.022(CrossRef)(Google Scholar)
[15]  Yu Z., Haghighat F., Fung B.C., and Yoshino H., “A decision tree method for building energy demand modeling,” Energy and Buildings, vol.42, no.10, pp.1637-1646, (2010) DOI: 10.1016/j.enbuild.2010.04.006(CrossRef)(Google Scholar)
[16]  Díaz-Uriarte R. and De Andres S.A., “Gene selection and classification of microarray data using random forest,” BMC bioinformatics, vol.7, no.1, p.3, (2006) DOI: 10.1186/1471-2105-7-3(CrossRef)(Google Scholar)
[17]  Cutler D.R., Edwards Jr T.C., Beard K.H., Cutler A., Hess K.T., Gibson J., and Lawler J.J., “Random forests for classification in ecology,” Ecology, vol.88, no.11, pp.2783-2792, (2007) DOI: 10.1890/07-0539.1(CrossRef)(Google Scholar)
[18]  Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M., and Rigol-Sanchez J.P., “An assessment of the effectiveness of a random forest classifier for land-cover classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.67, pp.93-104, (2012) DOI: 10.1016/j.isprsjprs.2011.11.002(CrossRef)(Google Scholar)
[19]  Sun H., Gui D., Yan B., Liu Y., Liao W., Zhu Y., Lu C. and Zhao N., “Assessing the potential of random forest method for estimating solar radiation using air pollution index,” Energy Conversion and Management, vol.119, pp.121-129, (2016) DOI: 10.1016/j.enconman.2016.04.051(CrossRef)(Google Scholar)
[20]  Cutler D.R., Edwards Jr T.C., Beard K.H., Cutler A., Hess K.T., Gibson J., and Lawler J.J., “Random forests for classification in ecology,” Ecology, vol.88, no.11, pp.2783-2792, (2007) DOI: 10.1890/07-0539.1(CrossRef)(Google Scholar)
[21]  Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M., and Rigol-Sanchez J.P., “An assessment of the effectiveness of a random forest classifier for land-cover classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol.67, pp.93-104, (2012) DOI: 10.1016/j.isprsjprs.2011.11.002(CrossRef)(Google Scholar)
[22]  Khalilia M., Chakraborty S. and Popescu M., “Predicting disease risks from highly imbalanced data using random forest,” BMC medical informatics and decision making, vol.11, article no.51, (2011) DOI: 10.1186/1472-6947-11-51(CrossRef)(Google Scholar)

CITATION

  • APA:
    V E,S.& Lim,J.& Lee,M.& Cho,K.& Park,J.& Shin,C.(2020). Industry Energy Consumption Prediction Using Data Mining Techniques. International Journal of Energy, Information and Communications, 11(1), 7-14. 10.21742/IJEIC.2020.11.1.02
  • Harvard:
    V E,S., Lim,J., Lee,M., Cho,K., Park,J., Shin,C.(2020). "Industry Energy Consumption Prediction Using Data Mining Techniques". International Journal of Energy, Information and Communications, 11(1), pp.7-14. doi:10.21742/IJEIC.2020.11.1.02
  • IEEE:
    [1] S.V E, J.Lim, M.Lee, K.Cho, J.Park, C.Shin, "Industry Energy Consumption Prediction Using Data Mining Techniques". International Journal of Energy, Information and Communications, vol.11, no.1, pp.7-14, Feb. 2020
  • MLA:
    V E Sathishkumar, Lim Jonghyun, Lee Myeongbae, Cho Kyeongryong, Park Jangwoo and Shin Changsun. "Industry Energy Consumption Prediction Using Data Mining Techniques". International Journal of Energy, Information and Communications, vol.11, no.1, Feb. 2020, pp.7-14, doi:10.21742/IJEIC.2020.11.1.02

ISSUE INFO

  • Volume 11, No. 1, 2020
  • ISSN(p):2093-9655
  • ISSN(e):2652-1989
  • Published:Feb. 2020

DOWNLOAD