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Abstract 

Musculoskeletal modeling nowadays is becoming the most common tool for studying 

and analyzing human motion. Besides its potential in predicting muscle activity and 

muscle force during active motion, musculoskeletal modeling can also calculate many 

important kinetic data that are difficult to measure in vivo, such as joint force or ligament 

force. This paper will validate muscle activity predicted by the model during a static 

motion like knee flexion motion (squat motion). In this experiment, knee flexion motion 

was performed by 5 healthy subjects and modeled by using Gait Lower Extremity model 

from AnyBody Modeling System (AMS). Eight lower limb muscle activity prediction from 

the model will be validated by 8 EMG electrodes that measured the same muscles during 

squat motion. Muscle activity pattern and the position of onset would be used as a key 

factor in this validation study. Pearson correlation coefficient will be used to compare the 

pattern of both graphs. Knee joint force prediction from the model will also be compared 

with the literature studies. The result showed that 3 muscles showed high correlation 

coefficient, while the other 4 muscles showed slightly medium and one showed low 

correlation. Time delay of muscle activation between the model and EMG was recorded 

from Vastus Medialis muscle (18.38 ms) and Vastus Lateralis (22.8 ms), with muscle 

activation from the model was late compared to EMG. In conclusion, this statistical study 

has shown some detail differences between EMG and muscle activity prediction from the 

model. Knee flexion motion can be used as a trap motion when validating muscle activity 

of a musculoskeletal model, because the model will activate muscle activity based on 

motion data of markers, while in knee-flexed position, there was no marker’s movement, 

but the EMG was highly active due to the posture of the subjects in maintaining the knee-

flexed position. However, the knee compressive force prediction from the model has 

showed positive confirmation from the literatures.  

 

Keywords: Knee flexion motion, musculoskeletal modeling, Inverse dynamics analysis, 

muscle activity validation, EMG 

 

1. Introduction 

Studying human biomechanics especially during active movement is still challenging 

nowadays. This is explained by the fact that muscle activation during active motion is 

controlled by our central nervous system (CNS) in which until now, the exact mechanism 
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remains unclear
 
[6]. In Addition, some important data such as knee joint forces and joint 

moments that determined significantly the cause of most knee injuries during movement 

[14, 21] are difficult to obtain. Due to that condition, an alternative way in accessing those 

important data is by using a prediction tools such as a musculoskeletal modeling 

application [3]. From our previous study, we validated and analyzed three motion (normal 

walking, one legged forward hopping and side jumping). During those studies, muscle 

activity prediction from the model was validated by EMG using three variables of a 

graph; number of onset, offset and peaks. The result of validation during normal walking 

was low, however, during more prescribed movement like forward hopping and side 

jumping, the validation result was better [27]. Some conclusive points were obtained from 

those studies, such as predicted muscle activity by AMS was always late compared to 

EMG and EMG is always longer in duration compared to the predicted muscle activity by 

AMS. However, detail calculation on how much the model late was not yet done.  

From those experiences, we found that type of movement was taking a significant role 

in determining the level of agreement between the model with EMG, besides number of 

assumptions and simplifications in the modeling process. By referring to that result a 

simplest motion like knee flexion motion may show a clearer result of agreement between 

modeling and EMG. Knee flexion motion is the basic human motion from human’s early 

age. There were many studies that explored the biomechanical aspects during this motion 

[8] and the potential of this motion in describing the human mechanics especially for 

patients post Total Knee Arthroplasty (TKA) surgery [7] or patients with Osteoarthritis 

(OA) or rheumatoid arthritis [13]. Other modeling studies in approximating knee joint 

forces or muscle forces during knee flexion were also done in the past [9], a robotic 

simulation study by using cadavers in approximating knee kinematics and kinetics was 

also done previously by [12]. However, analyzing and comparing the predicted muscle 

activity by using Gait Lower Extremity model from AMS with EMG and related the 

analysis with knee joint forces prediction is still a new insight in the field of 

musculoskeletal model validation.  

The main goal of this study is exploring the level of agreement of muscle activity 

prediction from the model with EMG during knee flexion motion by using Pearson 

correlation coefficient calculation. We hipothesized that knee flexion motion can be used 

as a trap motion in validating muscle activity prediction from the model since the 

prediction of the model is based on marker’s movement data and ground reaction force. 

Time delay between onset timing of EMG with the model will be calculated. The second 

goal is analyzing knee joint forces and moments resulted from the models, and compare 

them with the result from the previous studies. At conclusion, this paper will analyze to 

which circumstance AMS predict better or less in term of muscle activity compared to our 

previous studies.  

 

2. Method  
 

2.1 Subjects 

This study was involving 5 healthy subjects performing knee flexion motion. Subject’s 

age were above 18 years, and below 50. Subject who has pain in the knee or other lower 

limb parts that could cause abnormal knee flexion is excluded, including having lower 

limb trauma, neurological or metabolic disorders that can effect on lower limb functioning 

(diagnosed by a sports physician). The characteristics of subjects (2 males and 3 females) 

were: mean age of 27.8 ± 5 years, mean body weight 63.6 ± 5.6 kg. The study was 

approved by the Medical Ethical Committee of the University Medical Center Groningen 

(UMCG). Each subject signed an inform consent before performing the experiment. 

This experiment was performed in a Gait Laboratory, Centre for Rehabilitation 

Medicine, UMCG, Groningen, The Netherlands. A 9.0 m long walkway was prepared. 
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Two force plates (AMTI) were embedded on the floor to measure the ground reaction 

force (GRF) with a sampling frequency of 1000 Hz. Two cameras (Basler A602 FC) in 

fixed positions were used to record the motion with sampling frequency of 50 Hz. Vicon 

system was used to record, synchronize and analyse the motion. Sixteen reflective 

markers were attached to bony landmarks on both lower limbs so that the eight infrared 

cameras could track and record the trajectories of the markers during motion. The rule for 

placing the markers was based on the study of Hayes and Davis [4].  

Non-invasive EMG Zerowire electrodes (Aurion SRL) were used for subject’s comfort 

to record the muscle activity of the right lower limb. The skin was prepared and cleaned 

before attaching the EMG electrodes on the muscles: Rectus Femoris (RF), Vastus 

Medialis (VM), Vastus Lateralis (VM), Semitendinosus (ST), Bicep Femoris (BF), 

Gastrocnemius Medialis (GM), Gastrocnemius Lateralis (GL) and Tibialis Anterior (TA). 

Seniam standard placement was used as a guidance for EMG electrodes placement [15]. 

 

2.2 Protocol and Modeling the Motion  

The subjects were asked to stand on the plate form for the first position, and wait for a 

sign before performing a flexion. The angle of knee flexion is approximately 45
0
. When a 

sign was given, subjects performed knee flexion and maintain that position for about 5 

seconds then rise up again, back to standing position as previously. This performance was 

done two or three times in each trial. Figure 1 showed the steps during knee flexion 

motion and figure 2 shows the model during knee flexion. A C3D file which was obtained 

during experiment, consists of marker trajectories and ground reaction force data that will 

be used to model the motion.     

 

 

Figure 1. (a) Standing Position Before Knee Flexion; (b) Subject Maintains 
the Knee-flexed Position; 
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Figure 2. Musculoskeletal Model of Knee Flexion 

In this study, Gait Lower Extremity Model - GLEM (AMMR.1.3.1) from AnyBody 

Modeling System version 5.0 was used to model the knee flexion motion. GLEM consists 

of lower limb bones, including pelvis, with all muscles and tendons are attached, but 

without upper body [27]. Anthropometric data such as body weight, body height, pelvis, 

thigh, shanks and foot length were imported from the subject measurement. The default 

scaling algorithm which is based on mass-fat scaling algorithm was applied in the model 

[1]. In GLEM, the knee was modeled as a hinge between femur and tibia bone. This type 

of the knee enables only movement in the sagittal plane. AMS modeling uses inverse 

dynamic algorithms to predict muscle activity and all knee joint forces in 3 directions 

(anterior-posterior: AP, medial-lateral: ML, proximal-distal: compressive force) and 2 

knee joint moments (axial moment and varus-valgus moment). The orientation of the 3 

knee joint forces and 2 knee joint moments are defined from femur coordinate system as 

described in fig 3.   
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Figure 3. Femur Coordinate System for Determining the Knee Joint Forces 
Direction 

C3D file resulted from lab measurement contains raw EMG data. During simulation, 

AMS is also capable of doing rectifying and filtering the raw EMG data into smoothed 

EMG. All parameters of filtering EMG is editable in AMS script files. In this study, AMS 

filtered the raw EMG using Butterworth band pass filter [5] with a frequency range of 30-

200 Hz and 6 Hz low pass filter [17], so that when inverse dynamic analysis is finished, 

then the measured EMG is also ready for comparison. 

 

2.3. Data Analysis  

From 5 subjects who performed 3 trials of knee flexion motion, there should be 15 

knee flexion models for analysis, but due to some marker errors during experiment, there 

were only 13 knee flexion models. The analysis of knee joint forces and moments 

prediction was done in each plane (see figure 3). Each plane contains two values, negative 

and positive. This value is actually representing the direction of the predicted knee joint 

force relative to femur coordinate system whether they show distally or proximally (see 

fig 3 above), or anteriorly/posteriorly. For example, in figure 3, knee joint force is 

pointing out at positive X direction, this is assumed by the model as the anterior direction, 

vice versa condition for posterior direction. The predicted knee joint moments are also 

being assumed similarly in the model. For example, the knee axial moment, when the 

direction of this moment is positive, this means that the moment is rotating laterally. 

Opposite condition happened for negative knee axial moment. For the knee varus-valgus 

moment, its original name generated by AMS is actually knee lateral moment, meaning 

that all positive value of this moment will be define as moment that pointing out at lateral 

direction (varus) and vice versa for valgus moment.  

 

2.4. EMG Comparison 

Activation level of EMG is specific for each subjects. This level depends greatly on 

subject’s anatomical condition
5
, therefore it is important to process the EMG graph, 

especially its baseline threshold, into a more reproducible way. In this study, before the 
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EMG was being compared with AMS by using Pearson correlation coefficient 

calculation, the data was cut from the minimum value (the lowest point of the graph) until 

the maximum value of the graph. So the baseline was determined from the lowest EMG 

data for each muscle [17]. 

For the predicted muscle activity from the model, baseline threshold was determined 

by value 10
-7

, meaning that all values below 10
-7 

will be zeroed. This was because the data 

of predicted muscle activity from AMS never reach a zero level, so we need this threshold 

to define the zero level. When both data (EMG and predicted muscle activity) were ready 

then Pearson correlation coefficient calculation was performed to find their level of 

agreement in term of graph pattern. Onset time point of EMG will be used as reference for 

calculating the delay of muscle activity predicted by the model.  

 

3. Result 

Typical EMG and predicted muscle activity by AMS of 8 muscles during knee flexion 

motion was described in figure 4-5.  

 

 

Figure 4. Typical Muscle Activity from EMG During Knee Flexion (Red 
Graph is Knee Flexion Angle During Knee Flexion Motion) *Frame is Equal 

to Milisecond 
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Figure 5. Typical Predicted Muscle Activity from AMS During Knee Flexion 
(Red Graph is Knee Flexion Angle During Knee Flexion Motion) *Frame is 

Equal to Milisecond 

Knee joint forces and moments prediction during knee flexion motion was showed in 

figure 6. This figure was showing the mean of maximum knee joint forces or moments 

from all 13 models.  

 

 
Figure 6. Mean of Maximum Knee Joint Forces and Moments Prediction 

During Knee Flexion Motion *Compressive is Knee Compressive force (CF) 
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Knee compressive force within model variation was presented in relation with body 

weight (BW) (see figure 7 below). 

 

 

Figure 7. Model Variation in Knee Compressive Force During Knee Flexion 
Motion 

 

Figure 8. Pearson Correlation coefficient between Predicted Muscle 
Activities by The Model with EMG from all Eight Muscles During Knee 

Flexion Motion 

From our previous study, we found that EMG is always longer and initiated earlier 

before AMS during normal walking, forward hopping and side jumping activities [27]. In 

this knee flexion modeling, some muscles like VM and VL can show a clear onset timing 

from standing position, until subject was in position maintaining knee-flexed position. So 

these two muscles were used to calculate the time delay of muscle activation between 

Models 
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EMG and AMS. By calculating the mean of time delay happened from all models in VM 

and VL muscle, we found that for VM muscles, the mean of time delay was calculated as 

18.38ms, and for VL muscle was 22.8ms.   

 

4. Discussion and Conclusion 

This discussion part was divided into three stages of analysis, during standing position, 

transient condition when the knee is flexing, and when the knee maintains the flexing 

condition. Stage 1, during standing position, from figure 4-5 we can see how the model 

predicted muscle activity, comparing to EMG activity. Some differences happened at this 

stage. In EMG for example, there was only small activities from muscle ST, BF, GM, GL 

and TA during standing. Compared to AMS, contrary condition happened in the model 

due to the significant activities of the same muscles. Continuing the observation into stage 

2, during flexing motion. Considering the timing when the knee was about to flex, in 

EMG level we saw ST, BF and TA muscles were increasing the activity gently, then 

being continued by RF, VM and VL at some frames later. Similar condition happened in 

predicted muscle activity especially on muscles: RF, VM and VL (see figure 5). However, 

for muscle ST and BF, the activity was even opposing EMG. On the stage 3, when the 

knee was keeping the flexing position, EMG of all muscles remain active (ST, BF, RF, 

VM, VL and TA). Additional activities were showed by GM and GL muscles in holding 

the knee position and keeping the balance of the upper body from falling. In contrast, 

different conditions were shown by the model, while during the same timing, ST, BF, GL, 

GM and TA were inactive. There were only three muscles that showed similar pattern as 

EMG in this time frame, they were RF, VM and VL (see figure 4-5). This result was 

projected by figure 8, where the Pearson correlation coefficient for muscles: RF, VL and 

VM were higher than the other 5 muscles.    

More over during stage 3, when the knee was keeping the flexed position, the marker’s 

movement data was absent, but the lower limb muscles were tensioning because they 

must hold the whole upper body from falling. We think that this position can cause error 

in the model’s prediction especially in calculating muscle activity, because in the 

calculation process, model needs the marker’s movement data to calculate the velocity 

and acceleration of a body segment. By combining them with the GRF data, model then 

can predict the force that is needed to move a body segment, including muscle activity. 

This knee flexion experiment, to our opinion, is a trap motion for the model in predicting 

muscle activity. We speculated that this was mostly caused by the absence of co-

contraction muscles function in the model. As we can see in flexing condition, ST and BF 

not only handle the impact of upper body part (including the pelvis) [20] but also 

functioning as knee flexor. Setting this double function to some muscles at the same time 

is challenging in term of modeling especially in this modeling version (AMMR1.3.1). 

These findings certainly provide significant difference between muscle activity prediction 

by the model with the EMG.  

In addition, there are also some other factors that may cause the low level of agreement 

between the model’s prediction and EMG such as uncertainty of inverse dynamics 

analysis like what has been studied by [25]. This uncertainty can be caused by several 

aspects like inaccuracy in segmental parameter (including mass, moment of inertia and 

center of mass) [11], inaccuracy in marker’s data such as noise in surface marker [24] or 

ground reaction force [18] and inaccuracy in determining (predicting) the location of joint 

center [2,19]. All of those factors for now is still a challenging tasks in term of modeling.       

In this study, a time delay was recorded between EMG and AMS. In this finding, we 

used only two muscles (VM and VL) to calculate time delay because only from these two 

muscles, the activation time point was clearly shown (see figure 4-5). This information is 

useful for future validation study or for a clinical use that the muscle activity from the 

model should be calculated about 20 ms later compare to EMG. The existance of delay is 
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confirmed well by the previous review study done by [28]. In that previous study, some 

adjusment strategy need to be performed when comparing EMG and muscle activity 

prediction from the model.      

Considering the knee compressive force (CF) analysis, figure 6 showed clearly that 

knee CF was the main knee joint forces working in the knee during knee flexion motion, 

this is because when we compare knee CF to the other knee joint forces such as knee 

anterior-posterior force or knee medial-lateral force, knee CF was way higher. This result 

was different compared to our previous study during forward hopping and side jumping 

modeling. In those studies, knee anterior-posterior force (knee A-P force) was showing at 

about 0.5 of the predicted knee CF. When comparing to this study, knee A-P force was 

below 10% of knee CF prediction. Mean of knee CF in relation with BW that was 

calculated from figure 7, was reported 2.29 BW. Compared to other studies [16] this 

result was similar to some previous studies that investigated the walking compressive 

force as reported by [10, 22, 25, 26]. This is a positive point from this modeling software 

to the science because then we can use it analysis tool for many clinical applications such 

as early detection in the knee ligament disorder or rehabilitation.  

Despite low result in agreement using EMG and the fact of time delay, however, the 

knee compressive force prediction by model reach similar result as predicted by other 

studies. We conclude that AMS model predicts well muscle activity in more dynamics 

circumstance or more prescribed movement (referring to our previous validation studies 

during forward hopping and side jumping) rather than in a statics movement like knee 

flexion motion. The AMS model has a great potential for a clinical use when considering 

the knee compressive force analysis. Some additional features like adapting co-

contraction muscle function and later timing of muscle activation during modeling have 

been proposed from this paper so that more precise prediction can be achieved in the 

future. A validation study that involves more participants from different race may yield a 

better knowledge in comparing muscle activity predicted by the model with EMG in the 

future.  
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