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Abstract 

Simulated gait experiments have provided evidence of the possibility of falls when test 

subjects experienced abnormal gait (fluctuating gait cycle). Falls will lead to increased 

healthcare and social cost. This study explored the possibility to classify normal gaits 

(stable gait cycle) and abnormal gaits. A triaxial accelerometer was used to capture 3-

dimensional values of trunk acceleration data for 144 healthy subjects. Normal and 

abnormal gait experiments were carried out and the experiment data was analyzed 

statistically.  Quantitative analysis results revealed significant differences between the 

values of trunk acceleration of normal and abnormal gaits.  The values of trunk 

acceleration of abnormal gaits in medio-lateral, anterior-posterior and vertical directions 

are 257%, 376% and 217% larger than those of a normal gait respectively. A threshold 

based algorithm to classify normal and abnormal gaits was proposed and evaluated by 

the developed prototype classifier using the smartphone. The prototype classifier has 

achieved 100% accuracy in the ability to classify normal and abnormal gaits.  

 

Keywords: Trunk acceleration, normal and abnormal gaits classification. triaxial 

accelerometer, fall reduction system 

 

1. Introduction 

A fall is defined as an unexpected event in which a person comes to rest on the 

ground or floor. Every year there are 37.3 million falls that require medical attention 

[1]. The study has shown that stride-to-stride fluctuations of gaits will increase the 

risk of falls [2] and gait fluctuations can be detected by an accelerometer [3]. In 

Malaysia, a 10-year follow-up of older individuals with falls ending up in the 

emergency department, revealed 1-year, 3-year, 5-year, and 10-year mortality rates 

of 22%, 37%, 49%, and 80% respectively. 70% percent of falls occurred indoors [4]. 

Falls are the leading cause of injury and death among older adults [5,6]. With an 

increasing rate of an aging population [7], many research studies related to falls 

have been carried out worldwide.  Judy et al. [8] studied the difference between 

gender in seeking medical care for falls and the information about falls they 

received from healthcare providers. Pohl, et al. [9] performed a qualitative study to 

explore older women’s and men’s fall risks and their experiences with safety 

precautions taken to prevent falls. Gillespie et al. [10] assessed the effects of 

interventions designed to reduce the incidence of falls in older  people living in the 

community. In Malaysia, researchers have carried out studies on falls in the elderly. 

Lim et al. [11] reported, the most common type of home injury among the elderly 

was a result of falling. Tan et al. [12] performed the fall assessments and evaluated 

individually-tailored multifaceted interventions. Loganathan, et al. [13] studied the 

barriers faced by healthcare professionals when managing falls for older people in 

Malaysia.  Loganathan, et al. [14] conducted a quantitative study on views and 

experiences of elderly Malaysian concerning falls and their preventions. Many 
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algorithms have been developed for fall detection systems [15] and various sensors 

were used to detect falls. Abbate et al. [17] developed a technique by using an 

accelerometer to monitor the movements of patients and when recognizing falls an 

alert signal will automatically be sent to caregivers for help. Tasoulis et al. [18] 

evaluated human activity and fall detection methodologies. Then, they created the 

fall detection system based on visual data captured from the user’s environment by 

cameras along with motion and audio data from wearable accelerometers and 

microphone modules. Liu et al. [19] developed a classification algorithm for a fall 

detection system. The system has the accuracy of 84.44% on fall detection and 

horizontal position detection. Dobashi et al. [20] designed a sensing system for the 

detection of bather’s fall using ultrasound sensors installed below the bathroom 

ceiling. Bourke, et al. [21] developed a biaxial gyroscope sensor to detect falls and 

applied triaxial accelerometer sensors on the trunk and thigh to distinguish falls 

from daily living activities.  

Fall detection may not be practical because it sometimes occurs too late to protect the 

elderly. Before addressing fall detection, this paper examines a gait classification method. 

It aims to classify normal and abnormal gaits which might cause falls. For the classification, 

we used the triaxial accelerometer which is lightweight, low-cost and has a low power 

consumption.  

In the first stage of the study, trunk acceleration data was collected and analyzed 

to confirm the practicality of applying the accelerometers to classify normal and 

abnormal gaits. In the second stage of the study, the threshold based gait 

classification algorithm was created. Finally, the study proceeded with the prototype 

experiments to verify the accuracy of normal and abnormal gait classification.  

The algorithm could be extended to the fall reduction system by subsequently 

modifying it in future.  

 

2. Method 
 

2.1. Participants 

144 healthy subjects without any gait disturbances performed simulated normal  

and abnormal gaits. Each subject underwent the experiment twice to verify the 

reliability of the data collection system. Informed consent was obtained from all 

subjects in advance. Subjects’ ages ranged from 20 to 69 years old, with weight 

from 50 to 76 kg and height from 1.55 to 1.85 m. 

 

2.2. Devices 

The wireless sensor, KinetiSense [22] was used to collect trunk acceleration data 

in normal and abnormal gait experiments. The trunk data collection system 

consisted of the triaxial accelerometers, a command module, a USB wireless 

receiver and a personal computer (Figure 1). The analog data captured by the 

triaxial accelerometer was sampled at 128 Hz and coded by a 12-bit resolution in the 

command module. Then the digitized signal was sent to the personal computer by 

wireless transmission. The noise filtration and signal normalization were conducted 

by the personal computer. 

The acceleration unit is g (9.8 m/s
2
) 
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Figure 1. Data collection system 

 

 

The triaxial accelerometer was attached to the subject’s waist because the trunk 

occupies the most mass of the human body [23]. In addition, it is more ergonomic 

for sensors to be attached to or detached from the belt around the waist (Figure 2). 

 

2.3. Procedures 

For the simulated normal gait, subjects were requested to walk with their normal and 

daily gaits on 10 meters of dry flat concrete floor. For the simulated abnormal gait, 

subjects were requested to walk on a treadmill. This experiment was to simulate unstable 

gaits by walking on the treadmill supported by safety belt (Figure 3). The safety belt was 

loose enough to avoid impeding the test subject’s gait. At the beginning of the 

experiment, subjects were requested to walk on the treadmill for twenty minutes to get 

used to the treadmill. After this period, the subjects were requested to walk on the 

treadmill by avoiding steps on 10mm diameter round stickers pasted randomly on the 

treadmill until the subjects experienced near fall conditions. In near fall conditions, 

subjects lost their balance control and had to depend on the safety belt to support 

their body and prevent them from falling. In this situation, the safety belt became 

tense. 

The trunk acceleration data obtained from the experiments were statistically analyzed. 

 

 

Figure 2. Wireless Triaxial Accelerometer attached to the Waist 
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Figure 3. Treadmill Walking Supported by the Safety Belt 

3. Results 
 

3.1. Statistical Data of Trunk Acceleration of Normal and Abnormal Gaits 

Table 1 summarizes the results of the trunk acceleration measurements. The trunk 

acceleration data with a 99% confidence interval on the mean, for various gaits are 

indicated in Table 1, as most of the data is normally distributed. 

The mean value for normal gaits was found to be smaller than abnormal gaits 

indicating that the trunk acceleration is larger in abnormal gaits. The standard 

deviation of normal gaits was also found to be smaller than for abnormal gaits. The 

small standard deviation in normal gait indicates that the trunk acceleration tends to 

be closed to the mean value, while the large standard deviation observed in 

abnormal gaits indicates that the trunk acceleration is spread out over a wider range 

of acceleration values. The small range of normal gaits indicates that the differences 

between the maximum and the minimum trunk acceleration values are small, while 

the large range of abnormal gaits indicates that the differences between maximum 

and minimum trunk acceleration value is large. The small variance in normal gaits 

indicates that the trunk acceleration tends to be very close to the mean. The large 

variance in abnormal gaits indicates that the trunk accelerations widely spread out 

from the mean. The differences between the mean and the median are small in 

normal gaits indicating that the collected data is equally distributed. The mean is 

larger than the median in the abnormal gaits indicating that the distribution is 

skewed to the right.  

For the data to be normally distributed, the skewness and kurtosis values should 

be in the range of -1.96 to +1.96 [24]. In the normal and abnormal gait experiments, 

the trunk accelerations distribution data for Medio-Lateral (ML), Anterior Posterior 

(AP) and Vertical (VT) are normally distributed with skewness and kurtosis values 

within the normal distribution range.  

The statistical analysis has indicated that the normal gaits demonstrate small 

trunk acceleration variability when compared to the abnormal gaits. 
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Table 1. Statistical Data of Trunk Acceleration of Normal and Abnormal 
Gaits (144 subjects) (Unit of the Acceleration: g = 9.8 m/s2) 

TYPE OF GAITS NORMAL  ABNORMAL  

DIRECTION ML AP VT ML AP VT 

MEAN 0.51 0.46 1.64 1.31 1.73 3.56 

CI FOR LB* 0.46 0.40 1.60 1.14 1.46 3.28 

CI FOR UB** 0.56 0.51 1.69 1.48 1.99 3.83 

MEDIAN 0.47 0.44 1.61 1.14 1.43 3.46 

VARIANCE 0.04 0.06 0.04 0.33 0.83 0.86 

STD DEVIATION 0.21 0.25 0.20 0.58 0.91 0.93 

MIN 0.06 0.03 1.39 0.54 0.07 1.65 

MAX 1.14 1.06 2.24 2.94 4.50 4.52 

RANGE(MAX-MIN) 1.08 1.03 0.85 2.40 4.43 2.87 

SKEWNESS  0.61 0.31 1.30 1.07 1.45 -0.22 

KURTOSIS  0.38 -0.61 1.64 0.66 1.71 -1.58 

(Notes) 

*: CI for LB =99% Confidence Interval for Mean of Lower Bound 

**: CI for UB = 99% Confidence Interval for Mean of Upper Bound 

 

3.2. Threshold Levels Definition for Normal and Abnormal Gaits Classification 

The LB and UB of the trunk acceleration of normal and abnormal gaits in ML, AP and 

VT are plotted in Figure 4. The results showed that the UB of normal gait acceleration, do 

not overlap with the LB of abnormal gait acceleration, and all normal gait mean values are 

smaller than those of abnormal gaits. This finding was used to create the threshold based 

algorithm to classify normal and abnormal gaits. The method used to determine the 

threshold level is proposed in Table 2. The threshold levels are defined as half of the 

ranges between the UB trunk acceleration for normal gaits and the LB trunk acceleration 

for abnormal gaits. 

 

 

Figure 4. LB and UB for Various Gait Types 
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Table 2. The Threshold Levels Defined Between Normal and Abnormal  
Gaits Trunk Accelearation 

Trunk acceleration of 

normal gaits  

Trunk 

acceleration of 

abnormal gaits 

Threshold level ranges and 

threshold levels 

 

ML 

[Medio-

lateral] 

LB 0.46 LB 1.14 ML threshold level ranges:   0.56 

<TH<1.14 

 

ML Threshold level: 1.14-0.29 = 

0.85 

UB 0.56 UB 1.48 

Min 0.06 Min 0.54 

Max 1.14 Max 2.94 

AP 

[Anterior 

Posterior] 

 

LB 0.40 LB 1.46 AP threshold level ranges:       0.51 

<TH<1.46 

 

AP Threshold level: 1.46-0.48= 

0.98 

UB 0.51 UB 1.99 

Min 0.03 Min 0.07 

Max 1.06 Max 4.50 

VT 

[Vertical] 

LB 1.60 LB 3.28 VT threshold level  ranges:      1.69 

<TH<3.28 

 

VT Threshold level: 3.28-0.80= 

2.48 

UB 1.69 UB 3.83 

Min 1.39 Min 1.65 

Max 2.24 Max 4.52 

(Notes) 

1. The threshold level ranges are in between the UB trunk acceleration for normal gaits 

and the LB trunk acceleration for abnormal gaits. 

2. The threshold levels are defined in the middle of the range of values. 

 

The following proposed gait classification algorithm is adopted using the threshold levels 

obtained from Table 2: 

                                    (1) 

The stable (periodic) gait cycle is defined as the normal gaits and fluctuating (non-

periodic) gait cycle is defined as the abnormal gaits. When the values of trunk 

acceleration in ML, AP or VT directions are equal or more than 0.85g, 0.98g or 

2.48g, respectively, the gaits are classified as the abnormal gaits. Figure 5 shows the 

block diagram of the normal and abnormal gaits classifier. 

 

3.3. Prototype Normal and Abnormal Gaits Classifier  

The Android program based on the proposed algorithm (see equation (1)) is 

designed and installed into a smartphone to develop the prototype normal and 

abnormal gaits classifier. The incoming tri-axis accelerometer data of ML, AP and 

VT direction are digitized and compared with pre-determined thresholds. Whenever, 

incoming data exceeds the thresholds an alert message is sent to the caregiver via 

the internet and to the user via a pager or simple beeper. A random selection of 23 
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healthly subjects, with ages of between 20 to 24 years old, weight from 60 to 75 kg 

and height from 1.68 to 1.80 m were used in the experiment. The same experimental 

procedures and conditions adopted in section 2.3 were used. When incoming triaxial 

accelerometer data was digitized in the smartphone, the sampling frequency of 

128Hz was used with the 12-bit resolution. The smartphone position on the subject 

is shown in Figure 6. The purpose of the experiment was to verify the accuracy of 

the prototype system.  The accuracy of the classifier was confirmed by comparing 

the statistical data of the classifier with statistical data captured using the 

KinetiSense (Table 1). 

 

 

Figure 5. Normal and Abnormal Gaits Classifier 

 

Figure 6. Smart Phone Position on the Subject 
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Table 3. Prototype Classifier Statistical Data of Trunk Acceleration of 
Normal and Abnormal Gaits (23 subjects) 

TYPE OF GAITS NORMAL ABNORMAL 

DIRECTION ML AP VT ML AP VT 

MEAN 0.43 0.43 1.48 1.44 1.28 3.28 

CI FOR LB* 0.34 0.29 1.35 1.18 1.15 2.91 

CI FOR UB** 0.52 0.56 1.61 1.70 1.41 3.66 

MEDIAN 0.42 0.44 1.47 1.75 1.19 3.45 

VARIANCE 0.02 0.05 0.5 0.20 0.05 0.41 

STD DEVIATION 0.15 0.23 0.22 0.44 0.22 0.64 

MIN 0.14 0.07 1.00 0.86 0.99 2.55 

MAX 0.63 0.83 1.96 1.87 1.72 4.65 

RANGE(MAX-MIN) 0.49 0.76 0.96 1.01 0.73 2.10 

SKEWNESS -0.24 -0.21 0.18 -0.41 0.75 0.70 

KURTOSIS -1.30 -0.63 1.50 -1.89 -0.73 -0.07 

(Notes) 

*: CI for LB =99% Confidence Interval for Mean of Lower Bound 

**: CI for UB = 99% Confidence Interval for Mean of Upper Bound 

 

Table 3 shows prototype statistical data for 23 subjects. The data is similar to those of 

listed in Table 1.  

 

4. Discussion 
 

4.1. Trunk Acceleration 

From Table 1, the statistical data illustrated that there were significant differences 

between observed trunk acceleration values of normal and abnormal gaits. The 

values of abnormal gait trunk acceleration ML, AP and VT were larger than those of 

normal gaits. According to the study conducted by Winter [25] and Winter et al. 

[26], the gait is a continuous state of imbalance, and the only way to prevent a fall is 

to position the swinging foot ahead of and lateral to, the forward-moving centre of 

gravity. Two-thirds of the total body weight is centred in the upper body and stores 

a large amount of potential energy. If the trunk is not controlled in an upright 

position, this potential energy can easily be converted to kinetic energy to induce a 

fall [27]. Active control of the trunk motion is believed to maintain the stability 

during walking [25, 26].   

According to Newton's second law of motion, acceleration is produced when a force is 

applied to a mass, 

 

Ftrunk = Mtrunk x atrunk                                                    (1)                                                                                         

 

atrunk  = Ftrunk /Mtrunk                                                     (2)                                                                                                                                                                                                                                                                                             

 

Where Mtrunk = mass of the trunk, atrunk = trunk acceleration and Ftrunk =Force of the 

trunk.  

 

The summation of total trunk forces at any specific time applied to subjects’ waist is;  

 Ftrunk = ∑ 
n
i=n {(FVT )+ (FML) + (FAP )}                                                                              (3)                                                                                                                                                                                                                                                                                                                                                     

Where, FVT = vertical force, FML= mediolateral force, and FAP = anterior-posterior force,  

In the case of AP, torques applied to the subject induced by forward (anterior-posterior) 

direction trunk force (Figure 7). The anterior-posterior trunk force (FAP) can be calculated 

https://www.grc.nasa.gov/www/k-12/airplane/newton2.html
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by equation (4) and anterior-posterior torques applied to a subject’s waist can be 

calculated by equation (5) 

 FAP = Mtrunk x aAP                                                     (4)                                                                                                                                                           

TAP = FAP x R                                                         (5)                                                                                     

 

Where Mtrunk =  mass of the trunk, and R is the vertical distance between the body 

supporting base and subject’s waist. 

 
 

Figure 7. Torques Applied to Subject’s Waist Induced by Forward (Anterior-
Posterior) Direction Trunk Force 

When the trunk acceleration increases and the mass of the trunk remains constant, the 

trunk force will increase. Comparing average trunk acceleration of normal gaits with 

abnormal gaits, maximum trunk acceleration of normal gaits is smaller, where as large 

trunk acceleration of abnormal gaits will result in high-velocity change in a short period 

of time as shown in equation (6): 

 

atrunk = d(vtrunk2 - vtrunk1)/dt                                                 (6)                                                                                                                                                   

                  

Evidence shows that gait speed will affect gaits stability [28, 29]. When trunk 

acceleration (atrunk) increases in abnormal gaits, the total forward force (FAP) and torque 

will also increase.  

 

Forward force (FAP) and forward torque (TAP) in normal and abnormal gaits for the AP 

direction can be obtained by using equation (4) and (5).  

 

FAP(normal) = Mtrunk x 0.46g and TAP(normal) = (Mtrunk x 0.46g x R)                (7)                                                                                

 

FAP(Abnormal) = Mtrunk x 1.73g and TAP(abnormal) = (Mtrunk x 1.73g x R)              (8) 

 

It was found that the forward force (FAP) and forward torque (TAP) in abnormal gaits 

are 376% larger than for normal gaits. Therefore, the increase in acceleration will result in 

an increase of the force and torque, as forward force, FAP tends to topple the trunk with a 

torque (T) that will result in a near fall condition. 
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4.2. Algorithm Verification Results 

Figure 7 shows that all trunk acceleration values in normal gaits are smaller than 

the predetermined threshold levels while all trunk acceleration values in abnormal 

gaits are larger than the predetermined threshold levels (Figure 8). Thus the gaits 

classification algorithm using the pre-determined threshold levels was verified and 

achieved 100% accuracy for the 23 subjects.  

 

 

 

Figure 7. Prototype Normal Gaits Trunk Acceleration and Pre-Determined 
Threshold levels in Table 2 

 

Figure 8. Prototype Abnormal Gaits Trunk Acceleration and Pre-Determined 
Threshold levels in Table 2 

5. Conclusions  

This article studied prospective normal and abnormal gaits classifier through a series of 

experiments and prototype development. Conclusions for this study can be summarized as 

below. 

(1) The simulated normal and abnormal gait experiments have been conducted 

using the triaxial accelerometer attached to the 144 subjects. 

(2) Significant data differences were observed in the trunk acceleration between 

normal and abnormal gaits. Trunk acceleration values of the abnormal gaits were 

always larger than those of normal gaits. 

(3) Statistical analysis of the trunk acceleration data found that the UB of the 

trunk acceleration for normal gaits do not overlap with the LB of the abnormal gaits.  

Therefore, it is understood that the threshold levels can be set between UB of 

normal gaits and LB of abnormal gaits. The threshold can classify incoming trunk 

acceleration data as normal or abnormal gaits.  
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(4) The prototype classifier was implemented on the smartphone by developing 

the Android application program. The 100% accuracy of the classifier has been 

confirmed experimentally for the 23 subjects, by comparing prototype data and data 

captured by KinetiSense. 

(5) The classifier can be applied to rehabilitation of patients who have suffered 

from a walking disorder caused by injuries or surgery. Further confirmation may be 

obtained through clinical testing in hospitals in future. 

(6) The classifier algorithm could be modified for the fall reduction system. 
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