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Abstract 

Influenza virus undergoes continuous changes, evolving into different types every year; 

in fact, there are up to 198subtypes of the influenza virus. Each subtype infects a different 

animal species and has different levels of infectivity. The infection pattern and time of 

outbreak of each subtype can be analyzed to predict its infectivity. Conventional 

approaches involve the use of simple DNA or protein sequencing methods to evaluate the 

viral toxicity. However, this approach cannot explain complex biological behavior 

resulting from various interactions. In this study, a new mathematical model was 

developed to evaluate the central dogma, and the model was used to predict the pandemic, 

epidemic, or reassortment nature of the virus.  
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1. Introduction 

Various types and combinations of the influenza virus emerge worldwide every year. It 

is often classified as an epidemic rather than a pandemic; however, major changes in the 

viral protein or a combination of various subtypes by reassortment can lead to strong 

pandemic-like infectivity [1-2]. Deadly influenza virus outbreaks recorded in history 

include the 1918 Spanish flu, 1950 flu (higher death toll than the Asian flu and Hong 

Kong flu [3]), 1957 Asian flu, and the 2009 novel swine-origin influenza A infection. The 

infectivity and pathogenicity of most of the causative viruses (of these diseases) were 

higher than those of ordinary strains because of the reassortment of various subtypes [2]. 

Infectious diseases can re-emerge with a higher infectivity because of the higher 

population density, which increases the likelihood of causing a pandemic. However, very 

few studies have attempted to predict pandemics at the early stages, or to evaluate the 

information gain or loss in the virus genome because of mutations in the virus [4]. The 

easiest approach to examining such materials (known to date) is the entropy-based 

approach. Entropy, a concept typically used in physics, can be applied to biology to reveal 

biological information such as the information on conformational constraints on side 

chains in protein residues [5], correlation between entropy, structure, and sequence [6], 

protein-protein interactions (antigen-bound immunoglobulin) [7], sequence conservation 

measures [8], and genomic sequence analysis [9]. Xiao detected sensitive proteins 

responsible for mutagenesis by genomic sequence analysis, based on the theory of entropy. 

In this study, analysis of the nucleic acid sequences of the coding and non-coding regions 

of the classical swine fever virus (CSFV) genome demonstrated that the first position of 

each triplet showed maximal entropy, according to the code theory. A majority of the 

studies conducted so far have attempted to explain the interactions between proteins and 

the characteristics of gene data based on the sequence information. Entropy was 

introduced to explain viral infection, and to characterize the important proteins involved 

in the infection process, or to interpret the prediction information. Resch used entropy to 

predict the phenotype of human immunodeficiency virus type 1 [10], and Koo measured 
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the diversity of the West Nile virus (WNV) sequence using an entropy-based analysis [11]. 

The concept of entropy was also used to analyze the co-evolution of the human influenza 

A/H3N2 virus, which specifically affects the antigenic variants [12]. Moreover, the 

entropy of the segment 7 nucleotide sequence of influenza A virus has been analyzed [13]. 

The aim of this study was to evaluate the complexity of information loss or gain when the 

influenza virus protein undergoes mutation or reassortment, as entropy values. First, the 

rate of changes in the amino acid composition was examined to predict the changes in 

virus patterns [14]. Subsequently, the virus protein and DNA entropy were calculated and 

compared. Changes in the protein entropy more accurately reflected the changes in viral 

information than the changes in DNA entropy. However, whereas DNA or protein entropy 

may indicate the degree of change in each, any information loss or gain resulting from the 

correlation between the two was not reflected. In other words, as a protein is synthesized 

from DNA, DNA can induce changes in the proteins by altering the base frequency, but 

this information is not considered while calculating the entropy. As entropy is calculated 

using only the DNA or protein sequence, the pandemic pattern caused by mutation and 

reassortment is not accurately described. Therefore, in this study, a new method was 

proposed that could account for all information. 

 

2. Method 
 

2.1. New Mathematical Model of Biological Information Stream (BIS) for the 

Prediction of Pandemics and Epidemics 

The simplest form of representing a system is by calculating its entropy, which was the 

goal of this study. Therefore, the conventional entropy equation was transformed to 

explain biological phenomena. Biological Information Stream (BIS) is an equation that 

integrates all information that changes continuously. Unlike the conventional entropy 

calculation, the DNA and protein information is not separate; therefore, all information is 

represented. In other words, one equation can provide a range of information, from the 

DNA to the protein level. The BIS developed in this study is represented by the following 

equation: 

      (1)  

The log value of the original Shannon entropy equation simultaneously describes the 

state of highest probability and the state of equal temperature. In this study, log values 

were used to account for the probability and quantity of information flow. Shannon also 

used the log2 transformation of all information for both factors. On the other hand, 

information used in this study involves more than two systems (pandemic, epidemic, 

endemic, and reassortment); therefore, the log values were used instead of the log2 values.  

The equation subjected to log is used to calculate the conditional probability of change 

in „j‟ amino acid, which combines the probability of finding the amino acid „j‟ and the 

frequency of the base „i‟ in the codon. In other words, the probability of change in a 

specific amino acid is the product of the probability of finding that amino acid in the 

selected protein multiplied by the probability of the base that form the codon which 

produces the amino acid. The change in amino acid is affected by the frequency of the 

specific amino acid and the change in codon composition (A, G, C, or T); therefore, a 

conditional probability method was employed. The values differ when the changes in 

amino acid are affected by the base in the codon. Therefore, the numerator in the above 

equation indicates the change in „i' caused by changes in the amino acid „j‟. The 

numerator, which is the common set in both cases, is described in detail, as follows: 
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(2) 

 

Where Pbi I represents the probability of finding the base „i‟ in the DNA sequence. nj 

denotes the number of changes in the amino acid „j‟ (compared to the original sequence), 

Paj is the probability of occurrence of „j‟, and Pbci is the probability of using the base „i‟ in 

the codon. 

 

2.2. Using Shannon Entropy to Analyze the Properties of DNA and Protein 

The primary structure of the protein is determined by the amino acid sequence; as the 

DNA sequence determines the basic amino acid sequence, its biological value is much 

higher. Rudolf Julius Emanuel Clausius introduced the concept of entropy in the 1950s to 

propose the first and second laws of thermodynamics (http://www-history.mcs.st-

and.ac.uk/Biographies/Clausius.html). Claude E. Shannon explained the theory of entropy 

by integrating statistical concepts into the Ludwig Eduard Boltzmann theory [15-16]. 

Information theory states that entropy is a measure of uncertainty among random 

variables. In other words, entropy represents the degree of disorder as a specific quantity. 

This quantity is calculated from probability values, with the possible values being 

calculated in each state. Lower entropy indicates no randomness, which allows for the 

prediction of information from the standard biological properties of various phenomena. 

System maintenance requires a large amount of energy, and insufficient energy can lead to 

disorder. The Shannon entropy is calculated by the following equation: 

 
(3) 

Where H represents the entropy of information theory and p(i) denotes the probability. 

Therefore, as shown in equation (4), the probability of a system is represented at each 

position „i‟.  

 

 
(4) 

In conclusion, entropy is a set of the probabilities in each state (p1, p2, p3…….pk). The 

entropy with the probabilities of “k” events is calculated as follows: 

 

 
(5) 

The entropy of amino acid at each position was calculated in this study; therefore, the 

value of k was 20. The calculated Shannon entropy provides information on genes, as 

well as the resultant proteins. For example, the sequence analysis of amino acid was used 

to measure the conservation of protein sequence [8]. Information can be also be obtained 

by aligned sequence [17]. 

 

2.3. Data Collection for Protein Analysis (1918 H1N1 Influenza A virus ~ 2009 H1N1 

Influenza A virus and H2N2, H3N1, H5N1) 

In 2008, reassortment events in the H1N1 influenza A virus gene were 

phylogenetically analyzed using the evolutionary history of 8 constituent genes (PB2, 

PB1, PA, HA, NP, NA, M1, NS) from 1918 to 2006 [18]. Additionally, this study analyzed 

data from Nelson and that of the 2009 novel swine-origin influenza A virus epidemic. For 

the proteins, only the CDS of the complete genome sequence of the H1N1 influenza A 
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virus from 1918 to 2009 was used, as the protein properties have been previously 

compared and analyzed. All protein sequences and DNA sequences were downloaded 

from the Influenza Virus Resource, available on GenBank 

(http://www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html). 

 

3. Result 
 

3.1. Pandemic and Epidemiology of Influenza Virus 

The most prominent characteristic of the influenza virus is its reassortment ability. An 

examination of the incidence of H1N1 over the years showed certain specific trends: the 

1918–1919 Spanish flu outbreak resulted in 50 million deaths worldwide [3], and 

continuous cases of the flu were reported from 1920 to 1950. Although no flu pandemic 

occurred during the 1950–1951 period, the death tolls were higher than those recorded for 

the Asian flu and Hong Kong flu; therefore, this was classified as a flu epidemic. The 

incidence of H1N1 increased temporally during 1957 with the reassortment of H1N1 to 

H2N2. This led to the H2N2 Asian flu pandemic, which subsequently co-circulated with 

the H3N2 type flu. Human infections began in 2007, resulting in a pandemic by 2009. 

Analysis of the 8 proteins of the 2009 H1N1 strain showed that it contained NA and M 

protein information of the Eurasian avian-like swine A (H1N1) virus, whereas the other 6 

proteins contained reassortment of 3 different subtypes. Reassortment of PB2 and PA 

from the avian virus, PB1 from human A (H3N2) virus, and HA, NP, NS from classical 

swine A (H1N1) virus resulted in a triple-reassortment virus. The antigenic shift that 

occurred during the Hong Kong flu (1968–1969) led to the evolution of the H3N2 strain. 

Triple-reassortment of the H3N2 strain with the H1N1 and H1N2 occurred during 1998. 

The strain that emerged during 1968 evolved from H2N2. Finally, H5N1 infection of 

humans started in 1997. Probing of the H5N1 sequence identified a reassortment with a 

portion of the HA sequence from H1N1. This virus then re-emerged in Hong Kong during 

2003. 

 

3.2. Biological Information Stream (BIS) of H1N1 Hemagglutinin 

Influenza can occur annually as a pandemic, epidemic, or endemic via mutations in the 

causative virus or antigenic shifts. Figure 1(c) depicts the information stream of influenza 

virus H1N1 hemagglutinin developed using the biological information system (BIS) 

developed in this study. 

 

 
 

a 

b 
b 
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Figure 1. Entropy of the H1N1 Influenza Virus 

Information on the changes in amino acids in the H1N1 hemagglutinin protein and 

their causative bases during DNA-protein synthesis during each year was obtained using 

the MEGA 4 software. The amino acid undergoing the maximum number of changes each 

year is presented in Figure 2. These changes can help identify which amino acids had an 

influence on viral pandemic, epidemic, and endemic outbreaks.  

 

 

Figure 2. Number of Changed Amino Acids Based on the 1918 H1N1 Virus 

Amino acid and base probabilities were calculated by the JAVA program developed to 

calculate Shannon entropy. BIS was also calculated using this program. The amino acid 

sequence for each year was compared to the 1918 viral amino acid sequence. Results with 

higher impact than the Shannon entropy-based protein and DNA (Figures 1a and 1b) were 

obtained. BIS indicated that the number of deaths caused by H1N1 infection increased in 

b 
d 

a 
e 
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a; Asian flu 

b; novel swine-origin flu 
c; epidemic 

d; antigenic variation 
e; Hong Kong flu 
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1950 and temporarily in 1957. Influenza-related information increased steadily with slight 

changes every year; these were characterized by abrupt changes caused by the increase in 

death rate, which gradually decreased thereafter. The flu of 1950 resulted in a greater 

number of deaths than that reported for the Hong Kong flu; therefore, the entropy value 

increased steadily before the outbreak and peaked at 1950. Another peak was noted in 

1957, during the Asian flu H2N2 pandemic resulting from a reassortment with H1N1. 

Therefore, the change was higher for information related to H1. Another increase was 

observed in 1957 during the outbreak of H5N1 influence; although this may seem 

unrelated to the outbreak of H1N1, the development of this virus was attributed to a 

portion of the HA sequence in H1N1 being reasserted into H5N1. In other words, there 

was a change in HA in the H1N1 virus, which was reflected in the graph. Although no 

significant peak was observed in 1980, another epidemic could be identified during this 

period. We also observed a stage change in information pertaining to the novel swine-

origin influenza A virus, reaching a peak during the 2008 pandemic, indicated that 

changes in the viral genome were recorded steadily until a pandemic or epidemic event 

(with a high number of deaths), which occurred when the change was at its peak. 

Although reassortment with other types does not lead to H1N1 infection, an increase in 

entropy was also observed during the outbreak of infections caused by a type other than 

the H1N1 protein. In this case, the number of deaths is not related to H1N1; therefore, the 

entropy increase is steady (neither an increase nor a decrease was observed after the peak). 

Small changes in the amino acid can lead to an increase in the total entropy prior to a 

pandemic; moreover, this leads to an increased chance of human infection during the 

pandemic. The viral protein is assumed to change to an appropriate form during this time. 

A widespread pandemic infection is accompanied by various changes in the protein, 

leading to an increase in BIS. This may contradict the protein or DNA entropy 

distribution information obtained via conventional Shannon entropy. Table 2 lists the 

values of biological information entropy over the years. These were not obtained by a 

conventional method, wherein the DNA entropy is calculated from the DNA or protein 

sequence alone, without taking into consideration the changes in DNA information or 

protein entropy. Such a method does not integrate the information regarding changes, and 

is limited to separating each condition. On the other hand, BIS integrates all information 

from DNA to protein. In other words, it represents the information entropy that represents 

biological phenomena. Therefore, this method accurately records the changes in protein 

information resulting from changes in DNA compared to the Shannon entropy. The 

information is not simply calculated by amino acid or base probability, but using 

biological information entropy, which represents all information of the central dogma in 

biology. In addition, the extent of differences of a newly discovered DNA sequence from 

the original sequence can be properly interpreted by implying the changes in amino acid 

and DNA. BIS can predict the extent of change in virus, which in turn can predict the 

likelihood of a viral pandemic or epidemic. Furthermore, increased values indicate 

continual mutation or reassortment; therefore, specific amino acids with large changes or 

specific bases that cause these changes can be identified. Table 1 presents the amino acids 

that underwent yearly changes, with larger changes indicating the occurrence of a high 

death toll or pandemic. The bases that resulted in these changes were almost identical. 

This information can help determine the time point of the viral mutation. In other words, 

by looking at the amount of change in the information at the point of mutation, the 

probability of viral mutation or viral reassortment and whether a pandemic would occur or 

not can be predicted. 
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Table 1. Biological Information Stream (BIS) of H1N1 Hemagglutinin 

 (BIS)1918 Protein DNA 

1933 5.7556 4.29 1.963 

1935 5.4733 4.287 1.966 

1940 5.5581 4.276 1.961 

1950 5.6752 4.278 1.961 

1954 5.6760 4.288 1.967 

1957 5.9107 4.292 1.966 

1977 5.7708 4.279 1.961 

1980 5.8825 4.28 1.962 

1984 5.9022 4.274 1.96 

1991 5.7376 4.307 1.965 

1995 5.8092 4.285 1.967 

1997 5.9277 4.297 1.974 

2000 5.7696 4.292 1.965 

2001 5.8438 4.285 1.966 

2003 5.8511 4.285 1.967 

2006 5.9060 4.287 1.969 

2008 6.0522 4.322 1.964 

2009 5.9476 4.291 1.941 

 

3.3. Calculation of Shannon Entropy for H1N1 Protein and DNA Sequences 

The Shannon entropy plots of H1N1 protein and DNA (Figure 1a and 1b) were very 

different. An increase in protein entropy corresponded to a decrease in DNA entropy, or 

vice versa. Alternately, no special pattern was noted in DNA entropy during a pandemic 

or epidemic; therefore, proteins underwent a greater number of changes than DNA. In fact, 

we observed multiple peaks in protein entropy values over the years; specifically, abrupt 

increases were recorded in 1957 (Asian influenza-H2N2 virus), 1991, 1997 (H5N1-Hong 

Kong), and 2008, corresponding to pandemics or epidemics, except in 1991. The pattern 

cannot explain the abrupt increase in 1991, similar to the pattern exhibited by H1N1. 

Moreover, it was difficult to represent the years wherein a large number of deaths 

occurred as a result of infection with different types of the virus, rather than the 

occurrence of a pandemic or epidemic due to mutations or reassortment with another 

subtype. In addition, the year wherein a large number of deaths occurred due to H1N1, 

but where the spread was not classified as a pandemic, cannot be explained.  

 

3.4. A Comparison of the BIS and Shannon Entropy 

Figures 1a and 1c appear to be similar, excluding the DNA-based information, with 

slight differences. The years 1950–1954, 1977 ~ 1980, 1991, and 2001 specifically 

indicated an abrupt spread of disease. Whereas the Shannon entropy (Figure 1a) increased 

during 1950–1954, the BIS curve showed a peak during 1950, followed by a steady-state 

curve. This can be attributed to an epidemic, and not a pandemic spread of disease. The 

1977 ~ 1980 Russian flu epidemic, or the abrupt epidemic that occurred in Russia and 

China in 1977 after a peak in 1957 (which was followed by a decrease in the number of 

deaths) was represented well by both the Shannon and NIS curves. No noticeable event 

was found prior to 1991, occurring as a seasonal flu until 1997 during the outbreak of 

H5N1. Finally, the steady increase in H1N1 that reached a peak during the pandemic 

stage was described differently by BIS and Shannon entropy. Moreover, the 1968 Hong 

Kong influenza pandemic was not represented in the graph. As this was caused by a 
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reassortment of the H3N2 subtype with the NA of H2N1, it may not have been 

represented in the HA graph. 

 

4. Discussion 

The values obtained by BIS corresponded to the pattern of influenza virus infection and 

the series of significant events leading to changes in the virus. An examination of the 

influenza subtype with the highest infectivity in humans during a pandemic, epidemic, or 

reassortment revealed distinctive patterns in H3N2 during the Hong Kong flu, when the 

pandemic occurred in humans for the first time. H1N1 re-emerged during 1976–1977 and 

co-circulated with H3N2 in 1977. Novel swine-origin influenza A underwent 

reassortment with H3N2 PB1, leading to protein changes that caused an increase in 

entropy during 2009 during the occurrence of novel swine-origin influenza A virus. H5N1, 

the first influenza virus to infect humans (1997) re-emerged in Hong Kong in 2003, 

accompanied by a corresponding change in entropy. However, the protein entropy was 

not consistent with the DNA entropy. The differences between DNA and protein entropy 

were investigated by examining the base compositions for the DNA and the amino acid 

compositions for the proteins. The results showed that the A, G, C, and T content became 

constant with time (despite the small quantity). Therefore, this resulted in a decrease in 

entropy. However, the changes in A, G, C, and T induce a number of changes in the 

codon, inducing a greater number of changes in the protein level (as each codon uses each 

base at a different frequency). Therefore, changes in A, G, C, and T content of each virus 

were compared to the frequency of each base in each codon. This work demonstrates the 

redundancy possessed by each codon. 

Table 2. DNA Bases Frequencies for Amino Acids 

Nucleic acid 

Amino acid 
A G C U Total 

Ala (A) 1 5 5 1 12 

Cys (C) 0 2 1 3 6 

Asp (D) 2 2 1 1 6 

Glu (E) 3 3 0 0 6 

Phe (F) 0 0 1 5 6 

Gly (G) 1 9 1 1 12 

His (H) 2 0 3 1 6 

Ile (I) 4 0 1 4 9 

Lys (K) 5 1 0 0 6 

Leu (L) 2 2 5 9 18 

Asn (N) 4 0 1 1 6 

Pro (P) 1 1 9 1 12 

Gln (Q) 3 1 2 0 6 

Arg (R) 4 10 3 1 18 

Ser (S) 3 3 6 6 18 

Thr (T) 5 1 5 1 12 

Val (V) 1 5 1 5 12 

Trp (W) 0 2 0 1 3 

Tyr (Y) 2 0 1 3 6 

 

As shown in Table 2, P can comprise of a total of 4 codons. Moreover, C was the most 

frequently used (9/12) base; therefore, a decrease in the ratio of C compared to other 

bases can result in the conversion of P to another amino acid, in turn reducing the P value. 

In this study, transition and transversion was believed to influence the change in protein 

quantity or type, as well as the change in bases (e.g. codon usage pattern, amino acid 
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composition, and DNA base content); therefore, all information was represented in one 

equation. In conclusion, we attempted to represent the amount of information changed by 

the DNA sequence using one equation. Consequently, we found that the viral protein 

changed continuously, while the quantity of protein decreased temporally prior to a 

pandemic, followed by an abrupt increase during the pandemic. A temporary decrease in 

information change indicates that the strain and sequence composition was almost 

comparable, as seen during the worldwide Spanish flu pandemic. This led to an 

exponential increase in the death rate, followed by changes in the viral protein, in turn 

leading to another pandemic. In other words, pandemics occur when a strain shows a 

similar degree of sequence change as the previous pandemic or epidemic, as shown by 

BIS. Substantially, the protein can change exponentially to adapt to a new host. Using 

these results, the sequence of a new strain can be compared to conventional sequences to 

predict the progression of an infection to a pandemic level in the future. 
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