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Abstract 

Present mathematical model represents the unsteady blood flow through constricted 

artery in the presence of velocity slip. Here the rheology of blood is characterized by 

Bingham plastic fluid model. An appropriate perturbation scheme has been adopted to 

solve the equations governing the fluid flow when the womerseley frequency parameter is 

small. Important flow parameters such as velocity, shear stress and flow rate have been 

computed. Graphical representation shows that the axial velocities, wall shear stress, 

flow rate decreases when the time increases along the axial distance.  
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1. Introduction 

 
1.1. Atherosclerosis 

Atherosclerosis occurs when the nature of blood flow changes from its usual state to a 

distributed flow condition due to the presence of stenosis in an artery. To understand the 

flow pattern in stenosed arteries, several authors have analyzed the flow of blood through 

an arterial stenosis [5, 6, 13]. The altered hemodynamic may further influence the 

development of the disease and arterial deformity and change the regional blood rheology 

[14]. Dechant [11] have presented a perturbation model for the oscillatory flow of a 

Bingham plastic in rigid and periodically displaced tubes. 

Initial understanding of blood flow dynamics was done by considering blood as a 

Newtonian fluid. But theoretical and experimental investigations indicated that blood 

cannot be treated as a single phase homogenous viscous fluid while flowing through small 

arteries. A model has been presented to study the axially symmetric, laminar, steady, one-

dimensional flow of blood through narrow stenotic vessel by considering blood as 

Bingham plastic fluid and shown that resistance to flow and wall shear stress increase 

with the size of stenosis but these increase are, however, smaller due to the non-

Newtonian nature of blood [20]. The problem of non-Newtonian and non-linear blood 

flow through stenosed artery has been presented by [15]. Finite difference scheme has 

been used to analyze and to solve the non-linear Navier-Stoke’s equation. Singh [2,3] 

formulated a mathematical model to study the effects of shape parameter and stenosis 

length on the resistance to flow and wall shear stress under stenotic conditions by 

considering, laminar, steady, one dimensional, non-Newtonian and fully developed flow 

of blood through axially symmetric but radially non-symmetric stenosed artery. 

 

1.2. Slip Effect on Blood Flow 

Experimental results on blood flow clearly indicate the existence of slip in velocity at 

the tube wall. Misra and Shit [8], Ponalgusamy [17] have developed mathematical models 

for blood flow through stenosed arterial segments, by taking a velocity slip condition at 

the constricted wall. Tanwar and Varshney [21] have investigated an effect of pulsatile 
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flow of Hershel-Bulkley fluid with stenoses artery with body acceleration subject to a slip 

velocity condition at the constricted wall. Ponalgusamy and Selvi [18] have presented a 

Mathematical model for blood flow through stenosed arteries with axially variable 

peripheral layer thickness and variable slip at the wall.  

Venkateswarlu and Rao [10] have studied the unsteady blood flow through an indented 

tube with atherosclerosis in the presence of mild stenosis, numerically by using finite 

difference method. Mandal et al. [16] have considered a model for showing the effect of 

body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed 

artery. Srikanth et al. [7] have studied the effects of  -shaped stenosis on the 

physiological parameters of the blood flow that is modeled as couple stress fluid through 

a catheterized tapered artery and also examined the effects of velocity slip at the 

constricted wall.  

Gaur and Gupta [12] have discussed a Casson fluid model for steady flow with slip 

effect through a stenosed porous blood vessel in which authors explained that the axial 

velocity, volumetric flow rate and pressure gradient increase with the increase in slip 

velocity and decrease with growth in yield stress. Bhatnagar and Srivastava [1] have 

developed a mathematical model for the analysis of blood flow through a multiple 

stenosed artery in the presence of slip velocity. Maruthi Prasad et al. [9] have worked on 

the Mathematical model for the steady flow of Herschel-Bulkely fluid through a tube 

having overlapping stenosis and obtained the solutions for mild stenosis and they 

discussed that the resistance to the flow increases with heights of the stenoses, yield stress 

and power law index but decreases with stress ratio parameter. Mallik et al., [4] have 

studied a non-Newtonian fluid model for blood flow using power law through an 

atherosclerotic arterial segment having slip velocity. Kumar and Diwakar [19] obtained a 

mathematical model of power law fluid with an application of blood flow through an 

artery with stenosis. 

In the present analysis we have considered the unsteady blood flow through constricted 

artery in the presence of slip velocity. Slip velocity is an important factor in blood flow 

modeling since it enhances the flow velocity. We have seen the variation of time on 

various flow parameters. 

 

2. Formulation of Problem 

Let us consider unsteady flow of non-Newtonian incompressible blood, through a 

circular tube having an axially symmetric stenosis. Blood is assumed to be behaves like 

Bingham plastic fluid. The geometry of stenosed artery is shown below and described by 

equation (2.1). 
 

 

Figure 1. Geometry of Stenosed Artery 
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Where   is the maximum height of the stenosis, sl is the length of the stenosis and d is 

the location of the stenosis, L  represents the vessel length. ( )R z  and 0R
  is the radius of 

the artery with and without stenosis respectively. 

 

Considering the above assumptions, equation of motion governing the fluid flow can be 

written as; 
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Where  is the density of the blood, p is the pressure at any point at time t  and B is the 

shear stress. 

 

The constitutive equations for Bingham plastic fluid are, 
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where y denotes yield stress, Bv
is the axial velocity of the blood and 


denotes the 

viscosity of the blood. 

 

Boundary conditions are: 
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Where sv
is the slip velocity in the axial direction, 

As the pressure gradient is the function of  z  and t , we take 
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where 0A
 is the steady state pressure gradient, 1A

 is the amplitude of the fluctuating 

component, 2 ,f   where f  is the pulse rate frequency. 

 

By using the following Non dimentional quantities  

 

0 02

0 0

2
2 0

0 2
0 00 0

1 0

0 0

, , (z) (z) / , / , ,
4

/ , , , ,
24

/ ,
2

sB
B

s B
s B

y

d l zv
v z R R R r r R t t

dA R

v R
H R v

A RA R

e A A
A R





  






 
     





    


 

                        

(2.8) 

 
Where α is called Womersley frequency parameter also known as pulsatile Reynold 

number and e represents the amplitude of the flow. 

 

The geometry of stenosis in the non-dimensional form is given by 
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The equation of motion (2.2) in the non-dimensional form is written as 
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The non-dimensional constitutive equation for the Bingham plastic fluid is 
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The dimensionless boundary conditions are  

( )

0

B s

B

v v at r R z

is finite at r

  


                                 (2.13) 

 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.5 (2016) 

 

 

47          Copyright ⓒ 2016 SERSC 

3. Method of Solution 

We have used perturbation method for getting the required solution of the problem. In 

the present method we have taken 
2 1  to maintain the non-Newtonian nature of blood 

in which a plug flow region is developed through the stenosed arteries in small blood 

vessels. 

 

Let the velocity u and shear stress  can be expressed in the following form 
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 is the non-dimensional plug core radius. 

Using equations (3.1) and (3.3) in equation (2.10), and comparing the constant terms and 

coefficient of 
2 , we have 
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Substituting equation (3.1) and (3.3) in equation (2.11), we have 
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Using equation (3.1), the boundary conditions (2.13) reduce to 
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Solving equations (3.5) to (3.8) and using boundary equation (3.9) we have 
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Thus the axial velocity distribution for 
( )pr r R z 

is 
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The plug flow velocity distribution for the region 
0 pr r 
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The shear stress B is given as 
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The wall shear stress w is given as  
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The non-dimensional volumetric flow rate for the region 0 ( )r R z   is defined as 
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4. Results and Discussion 

The expressions for various flow parameters have been found by solving the Navier- 

stokes equations using perturbation technique. MATLAB has been used as a tool for 

getting solutions of axial velocity, plug flow velocity, volumetric flow rate, wall shear 

stress for unsteady flow of blood through stenosed artery. Results are shown and 
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discussed through graph for different values of stenosis height, yield stress and slip 

velocity.  

 

Figure 2 represents the velocity profile for axial velocity. It shows the variation of 

axial velocity along the along the axial distance z for different values of time t, stenosis 

height H, yield stress   and slip velocity sv
 taking fixed values 0.1e   and 0.1  . 

Graph shows that axial velocity of the fluid increases with the slip velocity as well as with 

the pulse. It is found that axial velocity decreases with the increse in time, yield stress and 

stenosis height along the axial distance. 

 

 
 

Figure 3 gives the variation of axial velocity with the radial distance r  for some fixed 

values of pressure gradient e = 0.1 and womersley number  & for different values of 

stenosis height, time and slip velocity. It is found that axial velocity increses with the 

increase in stenosis height and slip velocity and decreases with the increase in time. 
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Figure 4 exhibit how wall shear stress varies with the axial distance z for different 

times and for some fixed values of pressure gradient 0.1e   and yield stress 0.01    

and 0.1  . Figure describes that the wall shear stress shows a wave like variation along 

the axial distance. Wall shear stress decreases with the increase in time. 

 
Figure 5 shows the variation of wall shear stress with time for different values of 

stenosis height and pressure gradient. It depicts that wall shear stress decreases with the 

increase in stenosis height. Wall shear stress also varies for different values of pressure 

gradient e . 
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Figure 6 shows the variation of volumetric flow rate along the axial distance z  for 

different values of time t , stenosis height H, yield stress   and slip velocity sv
 . It is 

found that along the axial distance, the volumetric flow rate varies. The flow rate 

decreases with the increase in time; yield stress or stenosis height but it increases when 

the slip velocity increases. 

 

 
Figure 7 shows the variations of volumetric flow rate along the stenosis height 

for different values of time with fixed values of 0.1, 0.1e    . It is observed 

from the graph that volumetric flow rate decreases with the increase in stenosis 

height and found that flow rate decreases with the increase in time. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

t 

Figure  5. Variation of Wall Shear Stress with 
Time for Different Values of Stenosis Height 

and Pressure Gradient  

w

0.1, 0.1H e 

0.15, 0.2H e 

0.2, 0.2H e 

0.25, 0.1H e 

0.25, 0.2H e 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Q
 

z 
Figure 6. Variation of Volumetric Flow 
Rate Against the Axial Distance for the 

Different Values of Shear Stress and Slip 

0.01, 0.05sv  

0.01, 0.1sv  

0.01, 0.2sv  

0.02, 0.25sv  



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.5 (2016) 

 

 

Copyright ⓒ 2016 SERSC             52 

 
 

5. Conclusion 

Present study brings out many interesting results on rheological properties of blood 

flow through stenosed artery considering blood as Bingham plastic fluid model. Since 

high blood viscosity is very dangerous for the cardiovascular disorders. Slip velocity at 

the stenotic wall may be used as the major tool in reducing the blood viscosity. It is also 

found that the effect of stenosis reduce the flow rate. It is also noticed that the flow rate 

decreases with the increase in time, yield stress or stenosis height but it increases when 

the slip velocity increases.  
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