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Abstract 

Artifacts frequently corrupt biomedical signal recording and processing, therefore, 

removal of these artifacts from physiological signals is an essential step. The acuteness in 

the performance of healthcare technology has upgraded from the current hospital-centric 

environment towards portable ubiquitous approaches. The uncertainty in the subsequent 

performance of these   approaches introduced a dedicated research and past few decades 

have witnessed considerable improvement. In this research work an enhanced empirical 

approach to model the artifacts of EEG signal are described. The input EEG is a single 

channel and is converted into multichannel using Ensemble Empirical Mode 

decomposition (EEMD) operations and further filtered with Independent Component 

Analysis and Double Density Wavelet Transform to reject any traces of artifacts left at 

signal. This proposed algorithm is tested with different evaluation parameters and results 

pronounce the eligibility of the proposed algorithm to stand on top of currently deployed 

algorithms because significant improvement in results. 
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1. Introduction 

The design of a physiological signal is a long followed approach that illustrates the 

present condition of the health of an individual. The dynamic research in medical sciences 

towards superlative health assessment calls for paramount accuracy with low computing 

cost in signal recordings and imaging. The life of an instrument to function with minimal 

operation and maintenance cost is one of the primary factors that defines the probability 

of its selection as the practically acceptable technology. Also, the simplicity of an 

instrument is directly measured as its capability to function in a standard environment 

without failure in operation. Further, the complexity of instruments has direct relationship 

with its cost.  

It is evident that measurement of physiological signals in even the surgical 

environment is accustomed to some noise also referred as artifacts in medical terms. 

These artifacts are unwanted signals generated due to unregulated sources besides the 

source under consideration. The artifacts in neural signals have two prominent sources 

other than the machine and environment noise. The muscular and ocular activities of an 

individual generate electric pulses of low amplitude and frequency that falls in filter range 

of sensors and recording equipment. Hence, artifacts rejection is a fundamental subject of 

research and is well researched [[1][1]]. This paper considers the artifacts caused due to 

the motion. Till this point, numerous applications of Independent Component Analysis 

(ICA), wavelets, and adaptive filters are proposed in the same context of research [[2]]. 

Normally, a common approach is to reject all Electroencephalogram (EEG) epochs 

containing the signal amplitude larger than some selected value. These methods are 

inflexible and do not allow for any adaption, which causes in loss of a portion of meaning 

full data. A component based automated separator of artifacts is required to overcome this 
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issue based on the linear decomposition of signals into source components. These source 

components give the individual nature of information. However artifacts information 

combines into separate sources. The reconstruction of signals without these artifact 

sources are claimed as artifact free information. The Fast ICA Algorithm for source has 

applied by authors [[3]-[4]] using EEGLAB platform. They developed an automated 

system for artifact removal based on ICA and Bayesian Classification. Authors [[5]] 

analyzed EEG waves by Discrete Wavelet Transform (DWT) for frequency domain 

analysis. Authors [[4]] presented a statistical method based on wavelet transform to mimic 

ocular artifacts in EEG. Authors [[6]] discussed wavelet-based image processing 

technique with various window sizes. 1-D double density and 1-D double density 

complex were tested on the window size of 10s, 30s, 60s and 300s for EEG signals. 

Mijovic et al. [[7]] studied two techniques Single-Channel ICA (SCICA) and Wavelet-

ICA (WICA) and applied EEMD-ICA algorithm on single channel EEG signal for artifact 

removal. The EEMD-ICA algorithm was tested on simulated data and then applied on real 

EEG and EMG data for comparison. The conclusion from results is that the SCICA 

algorithm has the worst performance with root mean square error (RMSE) as 

consideration. The WICA algorithm has weaker performance in the simulations and 

although is comparable to the EEMDICA technique, 

 The organization of the paper is as follows: In this paper, section 2 describes EEMD 

followed by ICA in section 3 and Wavelet transform in section 4. The proposed system 

model is elaborated in section 5 and data acquisition in section 6. The performance 

evaluation parameters are discussed in section 7 and all results and discussion are in 

section 8. The results brace the splendid performance of proposed architecture and paper 

ends with a conclusion. 

 

2. Empirical Mode Decomposition (EEMD) 

In 1998 Empirical mode decomposition (EMD) is first defined by Huang et al. [[8]], 

for nonlinear signal processing and is well appropriate for non-stationary data. A time 

series signal decomposes into multiple “Intrinsic Mode Functions” (IMFs) by EMD. IMFs 

must have following property: 

 (1) Mono-component means all the IMFs should have only one frequency component 

at a time known as instantaneous frequency. 

 (2) Zero-mean oscillatory functions define that signals have the same number of local 

maxima and minima, with positive maxima and negative minima always. 

(3) Orthogonal means different IMFs should not have the same frequency.  

The EMD technique uses a different approach for decomposition rather than Wavelet 

analysis. Decomposition of the signal in EMD is a data-driven process, whereas wavelet 

analysis, decomposition is based on the selection of the appropriate wavelet. Since EMD 

technique is data driven, hence this approach is more flexible in nature. 

The IMFs are functions that must fulfill two conditions:(1) the number of maxima and 

the number of zero crossings must be the same or differ at most by one over the full 

length of data (2) the mean value of the envelope defined by the maxima and the envelope 

defined by the minima must be zero at any point over the data [[8]]. 

To calculate IMF of a time series, steps are as follows: Time series is       where L 

is the number of samples. EMD is based on using a sifting process that uses only local 

extreme.  

Step 1: All the local maxima and minima will find the full length of the time series. 

Then, an upper envelope is created by connecting all the maxima using a cubic spline, and 

the same process is repeated for the all local minima.  

Step 2: Average of the two envelopes is calculated and this average is subtracted from 

the data signal, which produces a new signal         , where       and n is average 

of envelope. 
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Step 3: Now signal c is considered as a new data signal and above-mentioned steps are 

repeated till c fulfills all the above-detailed properties of IMFs. Finally, when c, have all 

the properties of IMF, it is termed as first IMF (  ).  

Step 4: Then all the above mention steps are repeated on the residual signal        
  . As the residual signal    becomes a monotonic function this sifting process will stop. 

Once all the IMFs    are calculated, the original data y (or   ) can be restored by adding 

them together as shown in equation (1). 

 y  ∑      
 
          (1) 

Where,    are extracted IMF components and    is the residual of data [[8]-[10]]. 

The method of detecting IMFs is sensitive to the amalgam of undesired signal 

components present in surrounding. These noises affect the EMD process. Thus mode 

mixing is used to overcome the disparate scale oscillations with amplitude in near range 

of the IMFs peaks and randomly available in the whole dataset [[9]]. Moreover, the 

momentary spectral components are sometimes misinterpreted as artifact components. An 

enhanced version of empirical mode decomposition [[10]] minimized this mode mixing 

quandary. Another version of EMD known as Ensemble-EMD (EEMD) employs the 

average value of EMD ensembles that filters out the IMFs from signal. Each iteration of 

EMD process is identical and independent in nature towards the undesired signals. 

The IMFs from the EMD process are filtered with ICA to discard the artifacts present 

in them (details available in the following sections). ICA filtered IMFs are further 

processed for second stage filtering through wavelet transform for better outputs of 

evaluation parameters and signal quality. 

 

3. Independent Component Analysis (ICA) 

ICA employs statistical and computational techniques for separating the mixture of 

signals into independent components. The IMF(s) generated by EEMD are further 

sampled to ICA by equation 2 with input as                     are generated by 

independent sources                     where A is the     mixing matrix. 

          (2) 

Fast ICA algorithm is depicted in figure 1. Here,    is a column vector and   
  is 

temporary variable,   ( )       ( ) represent first and second derivate of nonlinear and 

non-quadratic functions. When the convergence is received then signal is reconstructed 

using equation S=WC with reducing the artifact component to zero. 

 

 

Figure 1. Fast ICA Algorithm 

One-sample Kolmogorov-Smirnov test (K-S Test) [[11]] measures the non-Gaussianity 

in ICA. The output of ICA based on Gaussianity is classified into two types of signals, i.e. 
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signals either having random behavior or signals with stationary waveforms. The KS test 

separates both these signals by allocating a „0‟ and „1‟ to these signals respectively. The 

independent source components being artifacts are selected and relative matrix C column 

components are defined as null. 

 The KS test is implemented as the function in MATLAB and shown mathematically 

as equation 3: 

         (| ̂( )   ( )|)    (3) 

Where,  ̂( ) is empirical CDF and  ( ) is the CDF of hypothesized distribution. The 

original source signal is thus as in equation 4: 

    ( )         (4) 

The Fast ICA algorithm is a fixed point iterative method that provides the highest 

value of non-Gaussianity to evaluate the statistical independence. This algorithm looks for 

the course of weight vector by elevating the value of non-Gaussianity of projection   
   

for input data x (figure 1). When the computation of the weight parameters completes, the 

estimated independent components will be generated by applying the unmixing matrix to 

EEG source signals. 

With this technique, spectral enhancement can be achieved, but at the same time, it‟s 

very difficult to estimate the variances of Independent components [[12]]. To make more 

precise, analysis in time and frequency further wavelet technique is adopted [[4]]. 

 

4. Discrete Wavelet Transform (DWT) 

The wavelet technique came into existence to overcome the resolution limitations of 

spectral analysis of Fourier Transform and denoise the corrupted signal. Selesnick and  

Ivan W [[13]] presented the Double Density Discrete Wavelet Transform (DD-DWT)as 

the custom-design form of Daubechies orthonormal wavelet transform by manipulating 

the window size of filter followed by entertaining certain critical polynomial aspects in an 

oversampled framework. The sensing time of DDWT is twice as that of the conventional 

DWT due to the more number of samples at each step. This algorithm was further 

customized as 1-D, 2-D up to Double Density complex [[14]]. The input signals are in the 

space-time domain and reflects discrete properties because of oversample analysis and 

respective synthesize filterbank (Figure 2).  

 

 

Figure 2. Analysis-Bank Filter Frequency Responses 

Figure 2 depicts the frequency response of filters          for analysis-bank filters of 

the defined size 7, 7, 5 respectively. The first is a low pass and remaining two are high 

pass filters in nature in the constraints of the congruent response of frequency magnitude. 

Iteration is employed for generation of oversampled filter bank to measure the   the 

response of both synthesis filter banks. An application of DD-DWT was illustrated by 
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Selesnick et al. [[13]] that analyses the unity scaling function ∅ and multi-resolution along 

with       wavelets (see figure 2). A “half-delay” property   ( )    (  
 

 
) can be 

satisfied by application of wavelets. 

The double density DWT is applying the oversampled filter bank on a low-pass 

subband signal  ( ). In this paper the double density algorithm is used along with the 

filter banks for sampling purposes. 

Figure 2 represents the formation of DD-DWT along with FIR filters as an 

oversampled filter bank. The filters employed are the low and high pass          

respectively as discussed above. 

To develop the perfect reconstruction condition, standard multi-rate identities are used 

to write  ( ) in terms of  ( ) as in equation 5. 

  ( )  
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The filter bank employed to structure the double-density discrete wavelet transform 

resembles the wavelet frame with  ( ) as scaling function and   ( ) and   ( ) as 

wavelet functions. According to the documents of dyadic wavelet space 

    
    
   

{ (     )}    (7) 

     
    
   

{  ( 
    )}                 (8) 

Where,    is the single level decomposition and      is group of    presented 

mathematically by equation 7 and 8. 

The single wavelet   and scaling function   defines the structure of a dyadic wavelet. 

The wavelets and scaling function satisfy the dilation equations. 

∅( )  √ ∑   ( ) ∅(    )                                (9) 

   ( )  √ ∑   ( ) ∅(    )                   (10) 

  ( )   ( ) and   ( ) from above section illustrates about wavelets   ( )   ( ) and 

scaling function ∅( ) of equation 9 and 10. 

A filtering chain for DWT decomposition of Single Channel Source which generates 

wavelets through z-transform is shown in figure 3. Figure 3 details the single channel 

source signal decomposition which is already processed through ICA. 
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Figure 3. DWT Decomposition of Single Channel Source Signal Obtained 
from ICA 

Figure 3 represents the wavelet coefficients for the output of ICA components. Here, n 

components are considered as the figure is the generalized notation of wavelet step. The 

coefficients of the wavelet (for example:           ,     ) are further optimized for 

the error free signal. 

The wavelet coefficients for a single level (equation 7) and for multi-level (equation 8) are 

used to derive coefficients of ICA. The equation for multi-level decomposition will be as 

in equation 10: 

     
    
   

{  ( 
    )}                   (10) 

The coefficients are thus separate units of original signal and artifacts. To differentiate 

among them and discard the Gaussian components thresholding is applied. There are two 

common thresholding processes in this field. The first is hard-thresholding [[15]] 

presented mathematically by equation 11: 

   ̂  ( )  {
   ( )

 

    |   ( )|   

         
   (11) 

The other is soft thresholding [[16]-[17]] depicted by equation 12. 

   ̂  ( )  {
   (   ( )) (|   ( )|   )

 

   |   ( )|   

         
   (12) 

The IMF(s) reconstructed from wavelet coefficients (eq. 12) have the comparatively lesser 

amount of artifacts compared with conventional ICA techniques and obtained using 

equation as 

  ̂  ∑    
 
        (13) 

Where,  ̂  is number of IMF(s) reconstructed, k is the level of decompositions and     are 

wavelet coefficients. The original signal is thus the sum of all the m number of IMF(s) 

reconstructed from EMD as by equation 14. 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.5 (2016) 

 

 

Copyright ⓒ 2016 SERSC                145 

   ∑  ̂ 
 
        (14) 

5. Proposed System Model 

To obtain better motion artifact removal from a single channel input signal, the 

following approach is used whose functional description of the prototype is depicted by 

the model as shown in Figure 4.  

 

 

Figure 4. Proposed Architecture for EEG Artifacts Removal in Single 
Channel Signal 

First [[7]] proposed the ICA and EEMD in combined form for separation of source and 

artifacts from the input signal in a given channel. Authors employed EEMD method to 

segment the input single channel signal in multi-channel signal and IMFs were generated. 

The output of EEMD was sourced to Fast ICA algorithm to modify the signals according 

to their respective sources S. The ICA separates the Independent components from input 

IMF(s). Finally, noisy components were removed to find an artifact-free signal. 

The author used the system to eradicate artifacts of muscle movement and eye blinks 

primarily from EEG signals as shown in figure 5. As figure 5 presents that randomness in 

the EEG signal is introduced due to muscle movement and eye blinks artifacts.  

 

 

Figure 5. Input Noisy EEG Signal with Muscle Artifacts (X axis is Time and 
y-axisis Amplitude (Microvolt)) 

In the application of human health diagnosis, motion artifacts play a vital role because 

long-term monitoring of the patients causes discomfort and hence motion in subjects 

introduces motion artifact in captured EEG signal. These artifacts have higher amplitude 

than EEG signal and having wider spectral distribution. Whereas Electrooculogram 
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(EOG) artifacts are easy to remove through adaptive filters and blind source separation. 

To improve the motion artifacts separation from EEG signal the proposed methodology 

employed the combination of EEMD, Fast ICA, and double density DWT. In this research 

paper, EEMD is applied to convert single channel input signal to multichannel signal and 

subsequently, Fast ICA is applied on IMFs from EEMD process to find independent 

components. Out of these components, a single component has Gaussian amplitude and 

random behavior. The KS test allocates „0‟ to this component to filter it as an artifact. At 

last as an improvement, the double density wavelet transform is applied on filtered and 

processed signal to remove the randomness of artifacts,  if any left in the signal and 

finally reconstructed to find a better artifact-free signal.  

 

6. Data Acquisition 

The data for experimentation is contributed by Kevin Sweeney at the National 

University of Ireland at Maynooth. The data are available on an online open source 

interface [[18]] and description of recordings is acquired from the same source only. The 

recorded samples are EEG samples contaminated by motion artifacts. Every recording is a 

single pair of similar psychological signals recorded in close proximity via transducers. 

Keeping the single transducer stationary, the second transducer is manipulated to create 

artifacts related to motion and of variable duration within each 2-minute interval of 

recording. To mimic the real time motion artifact effect on original EEG data the second 

transducer has moved randomly. The EEG signals sampling frequency was 2048 Hz. 

Comparison of the artifact-free EEG having a high correlation during motion-free 

intervals and lower correlation during artifact-contaminated intervals defines the 

efficiency of proposed work. The slightly increased time cost is quite acceptable given the 

improvement in artifact removal. This trade-off is especially beneficial in ambulatory 

systems in which clean information is important for diagnosis. All the simulations and 

implementations have been done in MATLAB (MathWorks) run under Microsoft 

Windows 8.1 x64 OS on the computer with Intel(R) core(TM) i-5-4200U, 2.30 GHz CPU, 

and 8.00 GB RAM. The synthetic EEG data band pass filtered at 0.5-50 Hz and notch 

filtered at 50 Hz. 

 

7. Performance Evaluation Parameters 
 

7.1. Signal to Noise Ratio (SNR) 

The SNR is a measure of low magnitude waves stimulated by some sinusoid approach. 

The input wave in space-time domain is studied via periodogram optimized with Kaiser 

Window to attenuate large side lobes. The algorithm looks for the non-zero spectral 

component to result in fundamental frequency. The central moment of each subject is 

computed for all adjacent bins in a decreasing order (i.e. from maximum to minimum). 

These frequencies are detectable in second bin and further frequencies are the replica of 

these steps. The power of a signal is selected as the larger harmonic in case if the signal 

shows the monotonically decreasing behavior compared with the neighboring signal. The 

function is the ratio of noise intensity in the noise contaminated region derived via median 

power. To calculate the performance, the DC component is rejected and noise at every 

step could be either ordinate of a point or estimated level. This noise is eliminated for an 

artifact-free signal.  

 

7.2. POWER spectral Density (PSD) 

The supplemented readings of Electroencephalography signals are sourced by Gaussian 

noise. The obtained variation in signals with reference to theoretical model leads to 

restricted access in the accuracy of the power spectrum of signals as in equation 15. 
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    ̅̅̅̅ ( )     ( )    ( )     (15) 

Where, 

     Reference Power Spectrum of Artifact free signal 

   ̅̅̅̅   Power Spectrum of ICA modified Signal 

   Distortion Spectrum by side effects of methods (Should be 0 ideally) 

     ( )      
    ( )    (16) 

Here, 

    Denotes weight from Matrix M 

    Component of brain signals in ICA 

Equation 16 represents the minimization of ICA-EEG based on spectral function (   ) 

with factors    
 . As there exists a direct relationship among decrease in  and    

 , front 

end experience high distorted signals of the spectrum. DDWICA along with reduction of 

residual EEG signals in artifact components simultaneously minimize     on a serious 

note that leads to the improved approximated value of pure EEG power spectrum. 

 

8. Results and Discussion 

EEG signal with motion artifacts are acquired from [[18]]. Signals having motion 

artifacts have a low SNR due to the harmonics created by random frequency artifacts as 

shown in figure6. As the motion artifacts have been introduced, the original EEG signal 

will have high amplitude randomness due to artifacts.  

 

 

Figure 6. EEG Signal with Artifacts (X axis is Time and y-Axisis Amplitude 
(Microvolt)) 

The signal is decomposed to IMFs using EEMD to convert single channel input signal 

into multichannel signal, so as to provide a monotonic component of the signal as a 

separate source for ICA decomposition. After EEMD decomposition, IMFs are shown in 

figure 7. X axis is the time and y-axisis the amplitude (microvolt). 
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Figure 7. EEMD Extracted IMFs from EEG Signal (X axis is Time and y-
Axisis Amplitude (Microvolt)) 

A blind source separation with Fast ICA is performed over these IMFS so that all the 

signals from different sources, following different distribution will be separated as shown 

below in figure 8. Blind source separation will decompose the signal according to various 

EEG electrode resources. This will facilitate the easy identification and separation of 

artifact source.  
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Figure 8. ICA Extracted Independent Components from IMFs (X Axis is Time 
and y-Axisis Amplitude (Microvolt)) 

KS test is performed after Fast ICA operation, and analyzed IC4 having a random 

distribution, thus it has the noise component. Hence, this independent component (IC4) 

has been reduced to zero and reconstructing IMFs with weighting matrix W. This process 

removed a big part of the noise from the signal as the SNR for EEG signal increased. 

Finally three levels Double Density Wavelet Transform with soft thresholding is applied 

on reconstructed IMFs to remove artifact traces left in the signal. Filtered IMFs are 

reconstructed to achieve error-free signal as shown in figure 9. The results after artifact 

removal show the smoothened effect with original information of EEG signal preserved. 

To evaluate the performance of proposed algorithm SNR is calculated after filtering and 

compared with existing algorithm as in table 1. SNR of the EEG signal with proposed 

artifact removal algorithm has been improved. The signal quality after artifact removal 

can also be evaluated by comparing the power spectral density of signal before and after 

artifact removal. 
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Figure 9. EEG with Removed Artifacts (X axis is Time and y-Axisis 
Amplitude (Microvolt)) 

 

Figure 10. PSD Comparison of Noisy and Denoised EEG Signals 

Figure 10 shows the Power Spectral Density for EEG with artifacts (blue) and without 

artifacts (Red), as observed from figure power of high-frequency components has been 

lowered, as in EEG signal frequency components above a particular level is considered as 

noise. When these high-frequency components were removed then the power of that 

frequency region will be reduced, which gives a rise in SNR of 2.4389 dB. 
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Figure 11. Noisy and Denoised Signals (X axis is Time and y-Axisis 
Amplitude (Microvolt)) 

Figure 11 shows the plot comparison of the signal before and after artifact removal and 

shows that after artifact removal, the signal smoothened and peaks due to motion artifacts 

have been removed to a great extent. 

Table 1shows the SNR comparison for 7 EEG signals by two methods. One method is 

to remove artifacts by a combination of EEMD and ICA and another proposed approach 

is remove artifacts with a combination of EEMD and Fast ICA followed by KS test and 

double density wavelet transform. 

Table 1. Comparative table between ICA and Proposed Double Density DWT 
of SNR for 7 EEG signals 

EEG Signals EEMD-ICA-DD_DWT (dB) EEMD-ICA(dB) 

EEG 1 3.3008 2.869 

EEG 2 4.0558 0.20838 

EEG 3 5.6965 2.9495 

EEG 4 3.0611 2.1422 

EEG 5 2.4398 0.59004 

EEG 6 2.9307 0.51126 

EEG 7 1.3885 2.2284 

  

Table 1 suggests that proposed approach shows improvement in SNR over existing 

approach to remove motion artifacts from EEG signal. One important point is that as 

motion artifacts are random in behavior. Therefore, the performances of algorithm do not 

follow any specific trend with respect to evaluation parameter. This is the reason for EEG 

dataset 7 the proposed algorithm unable to show an improved performance with respect to 

existing artifact method. One more possible reason is as the synthetic artifacts have been 

randomly created which can limit the outcomes of artifact removal methods occasionally.  

 

9. Conclusion 

An improved technique for motion artifact removal in EEG signal has been proposed. 

Moreover, results have been compared and proved better than results of method proposed 

in [[7]]. EEG Signals have specified a range of frequency with different amplitude for 

particular points of the EEG acquisition system, but when artifacts are introduced, the 

range of frequency becomes higher with random high-frequency components shows 
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significant power in the power spectrum. Removing these artifacts directly with filters 

may lose the necessary information because of amplitude variation, so EEMD is applied 

first to decompose the signal into IMFs for converting single time samples signal to 

multiple sources with different frequencies. Each IMF has a small frequency range, but if 

the signal has artifacts than IMFs will be having a low amplitude of high-frequency 

components. To separate this Fast ICA is performed over these IMFs to get independent 

components of the signal so that the component of artifacts will be treated as one IC with 

a random distribution, which can easily be eliminated with the check of Gaussianity with 

KS test and IMFs can be reconstructed from the rest ICs with inverse ICA. To get better 

and smooth performance, before reconstructing the signal from IMFs, three Levels 

Double Density DWT with soft thresholding method over each IMF have been applied to 

remove the high-frequency energy components form signal. Finally reconstructed the 

signal and compared with existing results pronounce the eligibility of the proposed 

algorithm to stand on top of currently deployed algorithms on account of significant 

improvement in results. 

 

Future research: In future research based on optimal wavelets with an optimal number 

of levels can be applied to remove motion artifacts from EEG big data efficiently. Further 

work may be done to optimize our method for real-time applications. 
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