
International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016), pp. 45-52 

http://dx.doi.org/10.14257/ijbsbt.2016.8.3.05 

 

 

ISSN: 2233-7849 IJBSBT 

Copyright ⓒ 2016 SERSC 

Compression Techniques Applied to DNA Data of Various Species 
 

 

Vilas Machhi
1
 and Maulika S Patel

2 

1 
Alumnus, G H Patel College of Engineering & Technology, 

2 
G H Patel College of 

Engineering & Technology 
1, 2 

Vallabh Vidyangar, Gujarat, India 

vilas_machhi@yahoo.com, maulika.sandip@gmail.com 

Abstract 

DNA sequences comprise of sequentially linked nucleotides, A, C, G and T. As a result 

of the genome projects, a significant amount of DNA sequences of various species are 

deposited in various databases. Human DNA contains about 3 billion base pairs. The 

number of genes within the DNA is 20,000 to 25,000. For storing DNA data of a single 

person, we require approximately 10 CD – ROMs. This amounts to huge data storage 

costs, subsequently making the use of these data such as analysis and retrieval quite 

challenging. DNA sequence analysis is useful in diverse areas such as forensics, medical 

research, pharmacy, agriculture etc. It is very necessary to address the storage issue of 

these exponentially growing data. In this paper we have implemented 4 different 

algorithms for DNA data compression: LZW (Lampel-ziv-Welch) algorithm, run length 

encoding algorithm, Arithmetic coding and Substitution method. The compression results 

on these algorithms are presented and compared on DNA sequence data of 10 different 

species. 

  

Keywords: DNA Data Retrieval, Lampel-ziv-Welch (LZW), Run length encoding, 

Arithmetic coding, Substitution Method 

 

1. Introduction 

Biology and computers have become close cousins which are mutually respecting, 

helping and influencing each other.  A common misconception is that bio-informatics is 

about creating and managing bio-data bases that is not true. Fine analytical and 

engineering skills are in great demand in this area. The renowned computer scientist and 

father of algorithms, Donald Knuth, has quoted that “Biology has 500 years of exciting 

problems to solve” [7]. He feels that biology is “so digital, and incredibly complicated, 

but incredibly useful” (Computer Literacy Interview with Donald Knuth by Dan 

Doernberg, December 1993) [1]. 

Compression of sequential data has been of interest for decades. There are many types 

of data which need to be compressed, for ease of storage and communication like texts, 

images, video, etc. In this paper we discuss compression techniques for genetic sequences. 

Molecular biology databases like EMBL, Genebank, and DDBJ are publicly available 

databases to store DNA and protein sequence. The size of the databases is increasing 

exponentially. DNA data bases amount to hundreds of GB making data compression in 

genomics a very important task [2]. 

Deoxyribonucleic Acid [8] is a genetic material of all cellular organisms and most 

viruses. DNA carries the information needed to direct protein synthesis and replication. 

Protein synthesis is the production of the proteins needed by the cell or virus for its 

activities and development. Replication is the process by which DNA copies itself for 

each descendant cell or virus, passing on the information needed for protein synthesis. In 

most cellular organisms, DNA is organized in chromosomes which are located in the 

nucleus of the cell. 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016) 

 

 

46                           Copyright ⓒ 2016 SERSC 

DNA sequence contains 4 nucleotides namely adenine (A), guanine (G), cytosine (C), 

and thymine (T). A human genome contains three billions characters over twenty three 

pair of chromosomes. Only about 10% of sequence contains genes. 

DNA [9] is the blueprint of biological life from its inception to its growth and till 

death. Its discovery has not only revolutionized science and medicine but it has affected 

all walks of life; whether they are social, legal, criminal or inheritance related. DNA‟s 

discovery has become important to the extent that it has even influenced a nation‟s 

security parameters / concerns, as scientists have gone all the way to developing 

biological weapons. Study of DNA is used in forensic science, agricultures and 

genealogy. 

In [3], compression techniques such as Gzip, Bzip, DNACompress, GeneCompress, 

Binary and Huffman encoding are used for DNA data compression. Table I shows the 

sizes of H3N2 sequences and compression ratios achieved with different compression 

methods. The first two rows contain the results of general compression tools. The third 

row contains the results of encoding text-based sequences to binary codes with 

position/base-pair tables. The last row contains the results using Huffman codes for 

compression. Since GenCompress cannot deal with large data sets and DNACompress 

compresses only single sequence files, due to which only 20 randomly selected H3N2 

sequences are compressed for comparison. So from their results Huffman algorithm gives 

better compression ratio. 

Table 1. Comparison of Compression Results on h3n2 Virus (Primitive Size 
1,995,960 bytes) [3] 

Algorithm Size Compression ratio 

Gzip 101,494 94.92% 

Bzip 54,314 97.28% 

DNACompress 474,139 76.26% 

GeneCompress 25,837 98.70% 

Binary 73,901 96.30% 

Huffman 52,927 97.35% 

   

2. Method 

DNA sequence contains a large number of approximate repeats. In literature, 

researcher used Gzip, Bzip, DNACompress, GeneCompress, Binary and Huffman for 

compression. We used LZW, Run length encoding, Arithmetic coding & substitution 

method for DNA data compression and these methods & results are discussed below. 

A. LZW Algorithm [4][10] 

LZW is a "dictionary"-based compression algorithm. It encodes data based on 

dictionary instead of tabulating character counts and building tree like Huffman encoding. 

For encoding a substring a single code number corresponding to that substring's index in 

the dictionary needs to be written to the output file. It gives good result on files with 

repeated substrings like text files. It was widely used in Unix file compression utility 

“compress”, and in the GIF image format. In LZW, dictionary has 256 characters (in case 

of 8 bits) and that is used as “standard” character set. It then reads 8 bits data at a time 

(e.g.‟t‟, 'r', etc.) and encodes that data as the number which represents its index in the 

dictionary. It adds new substring in the dictionary when it comes across new substring 

(say „tr‟). When it comes across a substring which is already seen, it just reads new 

character and concatenates it with the current string to get a new substring. When the next 

time LZW revisits a substring, it will be encoded using a single number. Maximum 

numbers of entries (say, 4096) are defined for the dictionary, so that the process doesn't 

run away with memory. So, the codes which are taking place of the substrings are 12 bits 

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Compress
https://en.wikipedia.org/wiki/GIF


International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016), pp.45-44 

http://dx.doi.org/10.14257/ijbsbt.2016.8.3.05 

 

 

Copyright ⓒ 2016 SERSC                           47 

long (2
12

 = 4096). It is necessary for the codes to be longer in bits than the characters (12 

vs. 8 bits). 

Codes 0-255 in the dictionary are always used to represent single bytes from the 

input file. When encoding begins the dictionary contains only the first 256 entries and 

remaining table is blanks. To represent sequence of bytes codes 256 through 4096 is used 

by which compression is achieved.  During encoding, LZW identifies repeated sequences 

in the data, and adds them to the dictionary. Time Complexity:-O(n) expected time, where 

n is the length of the text that is being compressed. 

 

LZW Encoding Algorithm
 
[10, 6] 

  1     Initialize table with single character strings 

  2     P = first input character 

  3     WHILE not end of input stream 

  4          C = next input character 

  5          IF P + C is in the string table 

  6            P = P + C 

  7          ELSE 

  8            output the code for P 

  9    add P + C to the string table 

  10           P = C 

  11         END WHILE 

  12    output code for P  

 

B. Run length Encoding Algorithm
 
[11] 

Run length encoding works by reducing the physical size of a repeating string which is 

called a run. Run is typically encoded into two bytes in which the first byte represents the 

number of characters in the run, which is called the run count and the second byte is the 

value of the character in the run which is called run value and the range of it is in the 0 to 

255. Encoded run may contain 1 to 128 or 256 characters. The run count usually contains 

the number of characters minus one. Uncompressed string of length 10 would normally 

require 10 bytes of storage. For example we have sequence of H3N2 virus DNA data: 

TTCCCCCCCT 

The same string would require only six bytes using RLE encoding: 

2T7C1T 

RLE is used in Windows 3.x, used to compress the Windows 3.x startup screen. It is 

well suited to palette-based bitmapped images such as computer icons. Run-length 

encoding is also used in fax machines (combined with other techniques into Modified 

Huffman coding).  

 

C. Arithmetic Coding [5] 

Arithmetic coding is a method for lossless data compression. A string of characters 

such as the words „hello there‟ is represented using a fixed number of bits per character, 

as in the ASCII code. Arithmetic coding is variable-length entropy encoding which 

converts a string into another form that represents frequently used characters in the string. 

In other entropy encoding techniques, the input message is separated into its component 

symbols and each symbol is replaced with a code word. While in arithmetic coding, it 

encodes the entire message into a single number n, where 0.0 ≤ n < 1.0. It is used in 

JPEG2000. 

Algorithm: 

1. Take the number of independent characters in the words to be encoded. Arrange 

these characters into a table with their corresponding frequency. 

https://en.wikipedia.org/wiki/Windows_3.x
https://en.wikipedia.org/wiki/Palette_(computing)
https://en.wikipedia.org/wiki/Computer_icons
https://en.wikipedia.org/wiki/Fax
https://en.wikipedia.org/wiki/Modified_Huffman_coding
https://en.wikipedia.org/wiki/Modified_Huffman_coding


International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016) 

 

 

48                           Copyright ⓒ 2016 SERSC 

2. Each of the characters will be assigned a range between 0 and 1 based on its 

frequency/ probability of occurrence.  

3. The algorithm for encoding is as below: 

set low to 0.0 

set high to 1.0 

while there are still input symbols do 

    get an input symbol 

code_range = high - low. 

          high = low + code_range *  high_range of the symbol being coded 

         low = low + code_range * low_range of the symbol being coded 

end of while 

output low 

 

D.  Substitution Method 

This is the simple statistical encoding method. In this method, we substitute a 

frequently repeating pattern with a code. The code is shorter than that pattern given for 

compression. It is used in compression of source program files. 

Algorithm: 

1. Decide all the possible combinations of A, C, G, T for the length of 3 alphabets 

(triplet). 

2. Assign 1 alphabet or symbol to the triplet 

3. Replace the triplet with that symbol or alphabet 

This will result in new compressed file.  

 

3. Results 

DNA data of different species likes Tomato,  Bacteria, Rabbit, Ecoli, H3N2 virus, 

Tobacco, Oryza Sativa (Asian rice) , Aspergillus niger (fungus) ,Saccharomyces 

cerevisiae (yeast) and Nemastoma Gelatinosum (algae) are collected from NCBI [10] 

(National Center for Biotechnology research) on which we have applied various 

algorithms which are implemented in C#. The results of these algorithms on different data 

sets are shown in the figures 1 to 5. In figures 1 to 5, the first bar shows actual size of 

DNA data and the rest of the bars show the compressed size of different algorithms. 

 

 

Figure 1. Comparison of Compression Ratio of Different Algorithms on 
Tomato & Bacteria 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016), pp.45-44 

http://dx.doi.org/10.14257/ijbsbt.2016.8.3.05 

 

 

Copyright ⓒ 2016 SERSC                           49 

 

Figure 2. Comparison of Compression Ratio of Different Algorithms on 
Ecoli & H3N2 Virus 

 

Figure 3: Comparison of Compression Ratio of Different Algorithms on 
Tobacco & Rabbit 

 

Figure 4. Comparison of Compression Ratio of Different Algorithms on 
Aspergillus Niger (Fungus) & Oryza Sativa (Asian rice) 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016) 

 

 

50                           Copyright ⓒ 2016 SERSC 

 

 

Figure 5. Comparison of Compression Ratio of Different Algorithms on 
Saccharomyces Cerevisiae (Yeast) & Nemastoma Gelatinosum (Algae) 

From the graphs it is concluded that for Bacteria, LZW algorithm provides better 

compression ratio and for other organisms, Arithmetic coding provides better 

compression ratio. Run length Encoding is not suitable for DNA data compression. Table 

II & III show compression ratio of different algorithms for different species. 

Table 2. Compression ratio results of Bacteria, Tomato, E-coli, H3N2 virus, 
Tobacco and Rabbit 

Algorithm Bacteria Tomato E-coli H3N2  Tobacco Rabbit 

LZW 73.1 72.15 44.12 45.69 63.51 40.87 

Runlength -47.16 -48.18 -36.35 -42.19 -36.49 -36.1 

Subsitution 64.78 63.44 64.56 65.99 63.67 65.15 

Arithmetic 74.33 74.58 72.69 73.28 76.3 72.61 

Table 3. Compression Ratio Results of Aspergillusniger (Fungus), 
OryzaSative (Asian Rice), Saccharomyces Cerevisiae (Yeast), 

Nemastomagelatinosum (Algae) 

Algorithm Aspergillusniger 

(fungus) 

 

OryzaSative 

(Asian rice) 

 

Saccharomyces 

cerevisiae 

(yeast) 

 

Nemastomagelatinosum 

(algae) 

 

LZW 70.77 71.03 60.77 46.14 

Runlength -45.16 -40 -39.06 -31.65 

Subsitution 63.23 62.58 71.72 63.46 

Arithmetic 74.58 97.45 78.62 88.66 

 

4. Conclusion 
The DNA data is used in forensics and research of medicine and for genealogy. In 

future there is a great demand of storing the DNA sequences. DNA database size will 

continue to increase with the increased sequencing efforts all over the world. This 

demands the need for efficient data storage methods. We have reviewed and implemented 

five methods namely Run-Length encoding, LZW, Huffman, Arithmetic Encoding and 

Substitution Method for data compression. The results on 10 different DNA datasets are 

presented. From the compression ratio, we can say that Runlength algorithm is not 

suitable for DNA data compression. Arithmetic coding is better for DNA data 

compression because it has good compression ratio. 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016), pp.45-44 

http://dx.doi.org/10.14257/ijbsbt.2016.8.3.05 

 

 

Copyright ⓒ 2016 SERSC                           51 

5. Future Work 

With few of the governments having started giving incentives for depositing one‟s 

DNA, it is very much possible to have a larger repository of individual human DNA data. 

In future, compression of these types of target genomes could be carried out using a 

reference genome for better compression results. 

 

References 

[1] A. S. Nair, “Computational Biology & Bioinformatics: A Gentle Overview”, (2007). 

[2] S. Grumbach and F. Tahi, “A new Challenge for Compression Algorithms: Genetic Sequences”, 

Information Processing & Management, vol.  30, no. 6, (1994), pp. 875-886. 

[3] L. S. Heath, A. P. Hou, H. Xia and L. Zhan, “A Genome Compression Algorithm Supporting 

Manipulation”, http://www.lifesciencessociety.org/CSB2010/toc/PDF/38.2010.pdf 

[4] C. Sumija, A. Thillipan, M. M. Thomas, S. Rajesh, “Privacy Protection of Medical Data using 

Histogram Shifting based Reversible Data Hiding”, International Journal of Advance Research in 

Computer Science and Management Studies, vol. 2 , iss. 4, (2014). 

[5] R. N. M. S. Sindhu and G. R. Krishna, “An Efficient Adaptive Binary Arithmetic Coder and Its 

Application in Video Coding”, International Journal of Innovative Research in Computer and 

Communication Engineering, vol. 2, iss. 8, (2014). 

[6] K. Sayood, “Introduction to Data Compression”, Fourth Edition.  

[7] C. Setubal and J. Meidanis, “Introduction to Computational Molecular Biology”, Cengage Learning, 

(1997). 

[8] http://mediways.com 

[9] www.whatisdna.net 

[10] http://kramli.staff.ui.ac.id/files/2012/03/Lecture-3-Data-Compression.pdf. 

[11] http://www.fileformat.info/mirror/egff/ch09_03.htm 

[12] http://www.ncbi.nlm.nih.gov/ 

 

Authors 
 

Vilas Machhi, she received the Bachelor‟s degree in Computer 

Engineering from G. H. Patel College of Engineering & Technology, 

Vallabh Vidyanagar, Gujarat, India in 2013. She is currently pursuing 

her Master‟s degree in Computer Engineering from B.V.M. 

Engineering College Vallabh Vidyanagar, Gujarat, India. 

 

- 

Maulika S. Patel, she received her Bachelor and Master degrees 

in Computer Engineering in 1997 and 2004 respectively. She 

acquired her doctorate degree from Dharmsinh Desai University, 

Nadiad, India in the year 2015. Her current research interests include 

Computational Biology, Artificial Intelligence and Big Data. She is 

working as Associate Professor & Head of the Department in 

Computer Engineering at G H Patel College of Engineering & 

Technology, Vallabh Vidyanagar, India. 

 

  

http://www.lifesciencessociety.org/CSB2010/toc/PDF/38.2010.pdf
http://mediways.com/
http://www.whatisdna.net/
http://kramli.staff.ui.ac.id/files/2012/03/Lecture-3-Data-Compression.pdf
http://www.fileformat.info/mirror/egff/ch09_03.htm
http://www.ncbi.nlm.nih.gov/


International Journal of Bio-Science and Bio-Technology 

Vol.8, No.3 (2016) 

 

 

52                           Copyright ⓒ 2016 SERSC 

 


