
International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016), pp. 239-248

http://dx.doi.org/10.14257/ijbsbt.2016.8.3.24

ISSN: 2233-7849 IJBSBT

Copyright ⓒ 2016 SERSC

Agent Based Yoga Recommendation System for Better Health

Abhishek Mathur
1
, Siva Shanmugam.G

2
 and N. Ch. S. N. Iyengar

3

School of Computing Science and Engineering,

 VIT University, Vellore – 632014, Tamil Nadu, India

abhishek.mathur2013@vit.ac.in
1
,sivashanmugam.g@vit.ac.in

2
,

nchsniyr@vit.ac.in
3

Abstract

This work is an effort to implement an agent based system that can recommend

the authentic yoga asana to be done by an user (patient) taking into due

consideration of chronic health problems, the current symptoms, age factor and

diet. Although there are many websites on yoga today and a lot of information is

available over the internet but this system would first analyze the problems of his

user and then give its advice which will be precise, accurate and authentic. The

agent will also tell the user to take appropriate precautions based on her age and

diet if applicable.

Keywords: yoga, asana, agent technology, mobile agents, JADE, FIPA.

1. Introduction

In the present scenario where internet is filled with huge amount of resources on doing

exercises , meditation and other therapies this work comes as a customizing tool for the

user which enables her to get direct answers from the artificial agent instead of searching

online and talking to different people and hence being misguided many a times. It is

important to realize that yoga like other exercises gives benefits when done in a proper

way and might cause harm or even injuries when done incorrectly. Hence it is important

that our agent has adequate knowledgebase so that it can give warnings and suggestions to

avoid any kind of physical stress or injury. Coming to the implementation part of this

project following is a comparative study of different technologies that can be used to

make such an intelligent application [1].

Table 1. A Comparative Analysis of Agent Development Technologies

Platform

Features

Aglets JADE Voyager TACOMA Grasshopper SPRINGS

Organizatio

n

IBM

Tokyo

Research

Telecom

Italia Lab

Object

Space

Tromoso&

Cornel

University

IKV++

Distributed

Information

Systems

Group

Model Events Behaviors Procedur

al

Procedural Procedural Procedural

Compliancy

to agent

Standard

MASIF FIPA --- --- FIPA ---

Programmin

g languages

JAVA JAVA JAVA C,Perl,

Unix,Tcl

scripting

language

JAVA JAVA

Elements Contexts

-Agents

Containers

-Main

-Servers

-Agents

-DATA

-CODE

-Places

-Regions

-Places

-Regions

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

240 Copyright ⓒ 2016 SERSC

(aglets)

-Tahiti

container

-Platforms

Agents

 -HOST

-meet

-Agents

(RNSs)

-Agents

Communicat

ion

Technique

Synchron

ous

Asynchro

nous

Asynchron

ous

All

methods

Asynchron

ous

Synchronous Synchronou

s,

Asynchrono

us

Messages Yes Yes(FIPA) No Yes Yes(FIPA)

Yes

Mobility Aglet

transfer,

Inbuilt

agent,

Java

object,

Transfer

Dynamic.

- - - - -

Service Protocol Mobility

service

series Control

Protocol

Proxies

proxies

(location

wise)

Available

for

download

IBM

Public

license

LGPL Not

free(eval

uative

version)

 Not anymore Yes

(binaries)

GUI Based

tools

Some Yes No some Yes No

Security Limited Strong Limited

secured

channel

User

firewall

agent

Limited Limited

2. Related Work

Agent based healthcare applications and telemedicine applications have been a great

area of research and a lot of progress has been made in this field. A fully functional

ABHCS has been designed in [1] using JADE that improvises the traditional way of

delivery of medical service. This application connects doctors to patients via a set of

agents that work in a synchronized manner in a multi-agent environment. The agent might

recommend the drug and tests to the patients based on her symptoms and severity of

disease.

In [2] a MADIP system has been proposed and implemented using mobile agents that

can work as another framework on top of JADE. It connects one doctor to many patients

and comprises of user agents, physician agents and diagnostic agents. The application is

distributed over several containers and thus acts as a mobile service. AgentBuilder [3] is a

tool for building Java agent systems based on two components: the Toolkit and the Run-

Time System. The Toolkit includes tools for managing the agent software development

process, analyzing the domain of agent operations, defining, implementing and testing

agent software. The Run-Time System provides an agent engine, that is, an interpreter,

used as execution environment of agent software. Agents usually communicate through

KQML messages; however, the developer has the possibility to define new

communication commands to cope with her/his particular needs. dMARS [4] is an agent-

oriented development and implementation environment for building distributed system

based on the BDI agent model offering support for system configuration, design,

maintenance and reengineering. Such a development environment has been successfully

used to realize application in the fields of air traffic control and of telecommunication and

business process management.

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

Copyright ⓒ 2016 SERSC 241

3. Architecture and their Agent Functions.

This project has been coded on Netbeans IDE and oracle JDBC driver using java

programming language and JADE. Primary agent is the agent class responsible for

overall query filtering and input output operations; logic engine agent performs the

mapping of symptoms and data entries which is the heart of the application. As the

application uses ORJDBC to resolve the address of the database dynamically we

don't have to worry if the database is located on a different host machine or different

network or a cloud. All agents resolve the database address at runtime as and when

needed. Now coming to the flow of the application, in the first window of the

application the user is prompted to enter her name , age , chronic health problems

that can be used by the agent during filtering the of recommendations and details of

diet taken. In the second step the agent asks the current symptoms for which the user

has turned up to us three iterations on the result set. First selecting the rows of result

set that match with current symptoms. Second, select those asanas that are

recommended at the given age of the patient and in the final i teration select those

Figure 3. Architecture Diagram

that can be done by people having the given chronic health condition. Lastly

generate the diet recommendations corresponding to each asana. We now have the

final yoga asana recommendations with the primary agent. It will then fetch the

pictures and videos of all the asanas from the database and output it to the user. The

individual functionalities of each agent is described as under, all of these agents

(java classes) have a GUI window such as a jFrame associated with them. All

communication to the user is done using the swing GUI window.

Output Data

Agent

Symptom

Agent

Symptoms

Logic Engine

Agent

Personal

Information

Agent

Personal data

Main mapping of symptoms,

conditions and environment

variables

Multi-agent

platform

GUI

User

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

242 Copyright ⓒ 2016 SERSC

Table 2. Representation of Overall Communication Process

Personal Input

Agent

(P_Agent)

1. Take the input from its GUI

2. Authenticate the user

3. Connect to its local database.

4. Set the flags and global variables accordingly.

5.Update the its local database with the values given by the user

6. Make these flags and variables available to the logic engine agent when

prompted

7. Wait for the user to terminate the application otherwise restart.
Symptoms

Agent

(S_Agent)

1. Initialize its GUI

2. Give a list of possible symptoms to the user

3. Listen to the input of the user

4. Store these input symbols along with the chronic symptoms entered

during personal

Input in its database.

5.Give details to logic agent when asked.
Logic Engine

Agent
1. Access the databases of P_Agent and S_Agent.

2. Generate a SQL query based on the chronic symptoms and the current

symptoms that returns a larger set of data that needs to be filtered.

3. Apply the logic function containing the matrix of nested if-else conditions

on this larger data set present in the result set class.

4. Filter out the data that has to be avoided by persons having the given

disease.

5. Filter out the data that is not recommended at the given age.

6. Generate the diet advice based on the obtained data till step 5.

7. Sort the asanas that can be done before food and those that can be done

after taking meal.

8. Generate advise based on special conditions (like pregnant ladies, persons

with trauma etc).

9. Update the result set and send it to the output agent for sequential data

retrieval.

10. Wait for error handling or program termination

 11. Save the data in case of closure of JVM suddenly.
Output Agent 1. Initialize its GUI.

2. Receive the result set from the logic engine agent

3. Output the data to the user

4. Close the GUI on exit.

4. Implementation

The implementation part carries with two steps. First P_Agent should be created and

second S_Agent should be created. The algorithms for both the agent is shown below with

their GUI representations.

4.1. Algorithm for Personal input Agent (P_Agent)

Input: personal data variables representing (name, age, gender, diet and chronic

health details)

Output: data variables to logic Agent(L_Agent)

Start

1. Create a class extending jade.boot by including jade jar files in the project.

2. Make a jFrame that acts a GUI for this class

3. Write the setup () method to initialize behaviors of agent.

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

Copyright ⓒ 2016 SERSC 243

4. do following as a simple one-shot behavior:

 Connect to database by resolving the address using your JDBC driver

 Take the input in GUI from user

 Put data in local data structures or variable sets

 When finished==true; break

5. Call the takedown () method that will free the allocated memory.

End

Figure 4.1. JADE Remote Agent Management

4.2. Algorithm for symptom Agent (S_Agent)

Input: symptoms variables fromjList

Output: data variables to logic Agent (L_Agent)

Start

1. Perform steps one to three as in P_Agent

2. In a simple behaviour do the following:

 Connect to database

 Display all the symptoms as a jList

 Allow multiple list selections

 Store user selection in local database

3. Wait in while (1) loop till instructed by logic engine agent (L_Agent)

End

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

244 Copyright ⓒ 2016 SERSC

Figure 4.1(a). GUI of P_Agent

Figure 4.2. jList Framework

4.3. Algorithm for Logic Engine Agent(L_Agent)

 Input: data variables from P_Agent and L_Agent

 Output: dynamic SQL query in the form of prepared statements, unfiltered result set.

 Start

 1. Create a result set object (import java.sql.ResultSet)

 2. Create a Prepared Statement object which is a directly executable SQL query.

 3. Connect to databases of P_Agent and S_Agent and perform join operation based on

 disease column.

 4. Call the logic () function to find the query variables from the matrix of nested if-else

 conditions.

 5. After applying if conditions on all environment variables,

 Select the larger dataset that will be filtered

 6. Filter the ResultSet based on chronic diseases, then age and finally generates the diet

 advice

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

Copyright ⓒ 2016 SERSC 245

 7. Pass the ResultSet hence obtained to output GUI through output agent using the

 constructor of that class containing its behaviors.

 End

4.4. Algorithm for Output Agent

 Input: complete result set from L_Agent.

 Output: General advice, steps of yoga asana, name of asana, diet advise, step-by-step

 photos of each asana.

Start

1. Take result set object from logic engine

2. Retrieve and display all the selected records in corresponding JTextAreas.

3. Set finished == true on clicking finish button.

End

Figure 4.3. Output Advise for different Asanas

5. Performance Analysis

The agent system was tested by the help of yoga instructors who are doing yoga

with Bhartiya Yoga Sansthan for the last 8-10 years. The feedback received from

them was that this system efficiently recommends yoga asanas based on many

factors and can be helpful for beginners in getting started. But yoga is not just about

doing asanas, it is rather a way of life. It has eight components known as

AshtangYogas- Yam, Niyam, Asana, Pranayama, Pratyahar, Dharna, Dhyan and

Samadhi. Each of these together makes a person a complete yoga practitioner.

Doing just the physical exercises would give temporary benefits. This system cannot

guide the user through all these stages because it requires years of experience,

devotion and practice. Yoga is a complete science inherited from our ancestors and

this work is only an effort to get people started.

6. Conclusion

This work is an implementation model of Agent Technology and an effort to

impart intelligence in the way people see yoga, think about yoga and the

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

246 Copyright ⓒ 2016 SERSC

authenticity in doing it. The agent has been written taking authentic research works

into reference so that the recommendations are in sync with traditional Indian yoga

asanas. All efforts have been made to make sure that all traditional and cultural

values associated with yoga are preserved. In further research works these agents

may be used in different environments like android or IOS. They may even be

deployed on a container placed on a central cloud network and work for distributed

systems. Performance analysis has been done by taking feedback from users who

have sufficient knowledge in this regard along with experience in doing yoga.

References

[1] H. R. J. Subalakshmi and N. Ch. S. N. Iyengar, “Enhancing a Traditional Health Care System of an

Organization for Better Service with Agent Technology by Ensuring Confidentiality of Patients’

Medical Information”, Cybernetics and Information Technologies, vol. 13, no 3.

[2] C. J. Su and C. Y. Wu, “JADE Implemented Mobile Multi Agent Based, Distributed Information

Platform for Pervasive Health Care Monitoring”, Applied Soft Computing, vol. 11, (2011), pp. 315-325.

[3] F. Bellifemine, A. Poggi and G. Rimassa, “Developing Multi-agent Systems with JADE”, Proceedings

of the 7th International Workshop on Intelligent Agents VII, Agent Theories Architectures and

Languages, Springer-Verlag London, UK, (2001), pp. 89-100.

[4] F. Bellifemine, A. Poggi, G. Rimassa and P. Turci, “An Object Oriented Framework to Realize

Agent Systems”, Proceedings of WOA 2000 workshop, Parma, Italy, (2000), pp. 52-57.

[5] C. Woodyard, “Exploring the therapeutic effects of yoga and its ability to increase quality of life”,

International Journal of Yoga, vol. 4, no. 2, (2011), pp. 49-54.

[6] A. Moreno, A. Valls, D. Isern and D. Sanchez, “Applying Agent Technology to Healthcare: The

GruSMA Experience”, Intelligent Agents in Healthcare, IEEE, (2006), pp. 63-67.

[7] S. S. P. Gupta, “A Multi-Agent System (MAS) Based Scheme for Health Care and Medical Diagnosis

System”, proceedings of International Conference on Intelligent Agent and Multi Agent Systems,

Chennai, (2009), pp. 1-3.

[8] F. Bellifemine, L. G Caire and D. Greenwood, “Developing Multi-Agent Systems with JADE”, John

Wiley Sons, Ltd., England, (2007).

[9] F. Bellifemine, A. Poggi and G. R Imassa, “JADE – A FIPA-Compliant Agent Framework”,

Proceedings of 4th Conference on the Practical Application of Intelligent Agents and Multi-Agent

Technology, (1999), pp. 97-108.

[10] S. Singh, T. Kyizom, K. P Singh, O.P Tandon and S.V Madhu, “Influence of Pranayamas and Yoga-

Asanas on serum insulin, blood glucose and Lipid Profile in type 2 diabetes”, Indian Journal of Clinical

Biochemistry, vol. 23, no. 4, (2008), pp. 365-36.

[11] B. M. Han, S. J. Song, K. M. Lee, K. S. Jang and D. R. Shin, “Multi-Agent System Based Efficient

Healthcare Service”, Proceedings of 8th International Conference on Advanced Communication

Technology, vol. 1, (2006), pp. 47-51.

[12] A. Woolery, H. Myers, B. Sternlieba and L. Zeltzer, “A Yoga Intervention for Young Adults with

elevated Symptoms of depression”, Alternative Therapies, vol. 10, no. 2, (2004).

Authors

Abhishek Mathur, he is currently pursuing B.Tech in Computer

Science and Engineering from VIT University, Vellore, Tamil Nadu,

and India. His areas of interest are Artificial Intelligence, Game

Development, Algorithm Designing, Database Systems and

Networking.

G. Siva Shanmugam, he is working as assistant professor at

School of Computer Engineering at VIT University, Vellore, TN,

India. His research interest includes Distributed systems, Web

Security, Sensor Networks, Mobile and Internet Computing. He has

had 6 years of teaching experience and currently doing his PhD

research on Green Cloud computing.

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

Copyright ⓒ 2016 SERSC 247

N. Ch. S. N. Iyengar, he is a senior professor at School of

Computing Sciences and Engineering at VIT University, Vellore, TN,

India. His research interests include Security in Networks,

Information, Cloud, Agent computing, e-services and Fluid

Dynamics (Porous Media). He had 30yrs of teaching and 20 yrs of

research experience with a good number of publications in reputed

International Journals & Conferences. He chaired many Intl. Conf.

and delivered Key note lectures, served as PC member Reviewer. He

is Editor in chief and also Editorial Board member for many Int’l

Journals.

International Journal of Bio-Science and Bio-Technology

Vol. 8, No.3 (2016)

248 Copyright ⓒ 2016 SERSC

