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Abstract 

This paper studies the synchronization of SA and AV Node Oscillators using PSO 

optimized RBF-based controllers systems. High levels of control activities may excite 

unmodeled dynamics of a system. This matter changes the rules of controlling the system 

and achieving an acceptable control performance. In fact, the objective here is to reach a 

trade-off between tracking performance and parametric uncertainty. Two methods are 

proposed to synchronize the general forms of Van Der Pol (VDP) Model and their 

performance. These methods use the radial basis function (RBF)- based neural  

controllers for this purpose. The first method uses a standard RBF neural controller. 

Particle swarm optimization (PSO) algorithm is used to derive and optimize the 

parameters of the RBF controller. In the second method, with the aim of increasing the 

robustness of the RBF controller, an error integral term is added to the equations of RBF 

neural network. For this method, the coefficients of the error integral component and the 

parameters of RBF neural network are also derived and optimized via PSO algorithm. 

For better comparison, simulation results show the effectiveness and superiority of the 

proposed methods in both performances in comparison with SMC controller. 
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1. Introduction 

The present paper examines synchronizations for Van der Pol oscillatory systems. 

Synchronization problem has found many applications in laser, chemical reactors, secure 

communications, and biology. This paper deals with one such application in cardiac 

synchronization. This is particularly important as cardiovascular diseases are among the 

major causes of death worldwide. Disruption in the electrical function of the heart is a 

type of such diseases generally referred to as “cardiac arrhythmia”. Thus, electrical 

conduction system of the heart can be modeled and used in preventing serious heart 

diseases. One practical way to investigate how a member of an organism works is to 

develop a model which accurately reflects the function of this part. Such a model may 

serve as a hypothesis for some physiological observations. For simulating how 

stimulation propagates over the heart tissue, it seems necessary to develop an accurate 

model of cells action potential. For this purpose, Van der Pol model was used in the 
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present study to examine synchronization of heart oscillators. The main goal of this study 

is to synchronize atrio-ventricular (AV) oscillator with sino-atrial oscillator based on a 

particular model and by using different methods.  

How pacemakers, including SA node and AV node, can be resynchronized in cases 

where one is out of synch with the other (this is a major cause of arrhythmia) will also be 

discussed.  

 

2. An Overview of Cardiovascular Physiology  

The heart will not be able to pump unless it receives an electrical excitation which 

originates from pumping. Generation and transmission of electrical impulses depend on 

automaticity, excitability, conductivity, and contractibility of cardiac cells. Transmission 

of cardiac impulses creates depolarization-repolarization cycles in cardiac cells. When at 

rest, the cardiac cells are polarized, i.e. they show no sign of electrical activity. The cell 

membranes separate different concentrations of such ions as K
+
 and Na

+
 and create larger 

negative charges inside the cell. The phenomenon is known as resting membrane 

potential. As soon as an electrical excitation arrives, the ions are transported at either side 

of the cell membrane leading to action potential or depolarization. Once a cell is 

completely depolarized, it tries to return to its initial conditions or resting state. This 

process is referred to as repolarization. The electrical charges are reversed and returned to 

the normal state. A typical depolarization-repolarization cycle consists of five phases (0 to 

4) (Figure 1 presents action potential curve and variations in voltage in these five phases):  

Phase 0: A cell receives an impulse from its adjacent cell and becomes depolarized.  

Phase 1: An initial immediate repolarization takes place.  

Phase 2: This slow repolarization step is also known as Plateau phase. In Phase 1, Phase 

2, and early in Phase 3, cardiac cells are at total inexcitability state. In this phase, not 

every stimulus with any intensity can result in cellular response.  

Phase 3: This phase is known as rapid repolarization. At this time, the cell returns to its 

initial state. At the last one-third of this phase, when the cell enters the relative 

excitability state, very strong excitations can depolarize it.  

Phase 4: This step is the resting state for action potential. By the end of the fourth phase, 

the cell is ready for next excitations. All these activities can be recorded on 

electrocardiogram (ECG). 

 

 

Figure 1. Action Potential Curve 

2.1. Electromechanical Conduction Mechanism of the Heart  

Immediately after depolarization and repolarization, electrical impulses propagate 

along a pathway known as conduction system (Figure 2). These impulses start traveling 

out of the SA node, through the atrium and Bachmann's bundle, and into the AV node. 

The impulses then travel through the bundle of His, left and right branches, and 

eventually into the Purkinje fibers. This conduction system is an electromechanical one. 

The electrical section orders the contraction of all cells, and the mechanical section 

http://en.wikipedia.org/wiki/Bachmann%27s_bundle
http://en.wikipedia.org/wiki/Purkinje_fibers
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(cardiac muscles) implements these orders. Some diseases are caused by failure in these 

mechanical functions while most diseases are the result of the malfunction of electrical 

system. Heart electrical conduction system can be thought of as a self-exciting 

pacemaker. This system is responsible for proper and synchronized contraction of cardiac 

muscles [2].  

 

 

Figure 2. Pacemakers and Impulses Routes 

3. Introduction to Synchronization 

The word “synchronous” has its origin in the Greek word which means “sharing the 

same time period”, and since its origin, the word has been used in everyday applications 

to denote agreement or dependency of the different processes in terms of time. 

Historically, synchronization analysis of dynamic systems has received considerable 

attention as a very important subject in physics. The phenomenon dates back to the 17
th
 

century when Hyugens patented two synchronized pendulum clocks with very weakly 

coupled oscillations.  

In synchronization of oscillatory systems, two identical systems oscillate, 

simultaneously. If one system is designated as master and another identical system is 

assigned as slave when a proper control input is applied to the slave, the dynamic 

behavior or the two systems will become identical after a period of time. The slave which 

often have to become synchronized with the master is usually referred to as the response 

system or should be received while the master is sometimes called the drive or sender. 

The figure below, for example, shows synchronization of state trajectories of two systems 

after a few seconds. 

 

 
Figure 3. Synchronization 
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As mentioned earlier, the objective here is to synchronize the slave with the master. 

For this purpose, a nonlinear control system must be designed to receive the control 

signals from the master and to control the slave.  

 

 

Figure 4. A Schematic of Master-slave Combination 

Figure four presents a schematic of a master-slave system. Here, the slave behavior is 

clearly controlled by the master. In addition, the slave may have conditions different from 

those of the master.  

 

3.1. Van Der Pol (VDP) Model  

The first attempts to explain oscillatory behavior of the heart cells was made in 1926 by 

Van der Pol [34]. Balthasar van der Pol was a German physicist and an electronic 

engineer. He discovered stable oscillations, which are called limit cycle. Van der Pol was 

the first person to examine relaxation oscillations by studying an electrical circuit which 

had self-entertained oscillations with the amplitude independent of initial conditions. The 

schematic of this circuit is shown in Figure 5. 

 

 

Figure 5. Van der Pol’s Circuit 

The equations of the voltages and currents in this circuit are 
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By substitution x, t, and c from (2) into the current-voltage equations in (1), the 

following differential equation, known as Van der Pol’s equation, is obtained:  

 

 

 

 

This circuit serves as an essential model for self-entertained oscillations in physics, 

electronic engineering, biology, neurology and many other sciences. Since c is the control 

parameter in this equation, different periodic responses can be initiated by changing the 

value of c with large values of c resulting in relaxation oscillations. 
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For some important properties, Van der Pol nonlinear equations are used to model the 

oscillations in the heart. First, Van der Pol oscillator adjusts its natural frequency to the 

input signal frequency without changing the oscillation amplitude. This is critically 

important as the low-frequency slave oscillator has to adjust itself to the dominant high-

frequency pacemaker of the heart.  

Therefore, Van der Pol model was used in this project to model the oscillators at SA 

and AV nodes. Each oscillator at SA node and AV node is modeled using Van der Pol 

differential equations. The interaction between the oscillators of the heart is modeled by 

the following Van der Pol equations. The coupling between these interacting oscillators is 

modeled as follows: 
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The first equation which models SA oscillations is the drive in the present 

synchronization problem while the second equation for modeling AV oscillations 

represents the response system.  

 

4. Generating Action Potential by the Model 

Heart rhythm is determined by a series of electric impulses (action potential) which 

travel throughout the heart. The figures below show action potentials for SA and AV cells 

obtained through. 

 

 

Figure 6. Simulating Van der Pol Model in MATLAB 

 

Figure 7. Action Potential Waveforms 

These figures demonstrate the validity of the Van der Pol model used here in terms of 

how these waveforms match the actual forms generated in the heart.  
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5. Designing Sliding Mode Controller 

Sliding mode control provides a robust controller for nonlinear dynamic systems 

although it involves a discrete-time control factor which may lead to chattering in a 

neighborhood of the sliding surface. One common solution to reduce chattering is to 

introduce a boundary layer in the vicinity of the sliding surface [11]. This can improve 

closed-loop stability and resolve chattering, but a finite steady-state error will exist as a 

result of finite steady-state error gain in the control algorithm.  

The proposed controller provides a desirable transient state as well as a robust 

performance. In addition, it combines PI control and SMC to prevent chattering. It will be 

demonstrated that the closed-loop system is globally stable in the sense of Lyapunov 

(I.S.L.), and that the output of the system can asymptotically track the reference input by 

modeling uncertainties and disturbances. 

 

6. Problem Definition 

A typical nonlinear SISO system of order n can be shown as  

xy

tautxgtxfx
n



 )(),(),(
)(

                                                                                         (5) 

where f and g are unknown nonlinear functions, and 
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n
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)1(
 is the state vector of the system, assumed to be 

measurable. Ru  and Ry   
represent the system input and output, respectively and d(t) is 

an unknown outer disturbance. It is assumed that d(t) is bounded by the upper bound D; 

i.e. d(t) ≤ D. For the system (5) to be controllable, we must have 𝑔(𝑥, 𝑡) ≠ 0. Therefore, 

we assume that 𝑔(𝑥, 𝑡) > 0. The control problem is to find the state x for tracking the 

desirable state xd in the presence of uncertainties and outer disturbances with the 

following tracking error: 

𝑒 = 𝑥 − 𝑥𝑑  [𝑒, �̇�, … , 𝑒(𝑛−1)]
𝑇

∈

𝑅𝑛                                                                                                                                                                 
(6) 

The sliding surface for the state error can be determined as 

𝑠(𝑒) = 𝑐1𝑒 + 𝑐2�̇� + ⋯ + 𝑐𝑛−1𝑒(𝑛−2) + 𝑒(𝑛−1) = 𝑐𝑇𝑒                                                           (7) 

 

    where c = [c1, c2, … , cn−1, 1]T represents the coefficients of the Hurwitz polynomial 

ℎ(𝜆) = 𝜆𝑛−1 + 𝑐𝑛−1𝜆𝑛−2 + ⋯ + 𝑐1 . All roots lie in the left-hand plane; and λ is the 

Laplace operator. If the initial condition e(0)=0 holds, in the tracking problem 𝑥 = 𝑥𝑑, an 

error vector on the state space may be defined on the sliding surface s(e)=0 for all t>0. A 

sufficient condition for this is to choose a control strategy as 

 
1
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The state of the controlled system always moves toward the sliding surface. The sign 

of the control signal must switch based on the state trajectory and the sliding surface. 

Consider the nonlinear control problem shown in (5). If 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are known, 

the SMC input u* satisfies the sliding condition (8). 
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where  

𝑠𝑛𝑔(𝑠) = {

1           𝑓𝑜𝑟      𝑠 > 0
0           𝑓𝑜𝑟      𝑠 = 0
−1       𝑓𝑜𝑟       𝑠 < 0

                                                                                     (10) 

A Lyapunov candidate function is defined as:  

𝑉1 =
1

2
s2(e)                                                                                                                                 (11) 

By differentiating (11) with respect to time, �̇�for the system trajectory is obtained:  

�̇� = 𝑠. �̇� = 𝑠. (𝑐1�̇� + 𝑐2�̈� + ⋯ + 𝑐𝑛−1𝑒(𝑛−1) + 𝑥(𝑛) + 𝑥𝑑
(𝑛)

)                                          (12) 
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(𝑛)
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Therefore, the SMC input u
*
 satisfies the sliding condition (8). Clearly, to satisfy this 

condition, an impulsive control condition must be added in the form of 𝑢∗ = 𝑢𝑒𝑞 − 𝑢𝑠𝑤 

where  

𝑢𝑒𝑞 = 𝑔(𝑥, 𝑡)
−1

[− ∑ 𝑐𝑖𝑒(𝑖) − 𝑓(𝑥, 𝑡) + 𝑥𝑑
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𝑖=1 ]                                                             (13) 

𝑢𝑠𝑤 = −𝑔(𝑥, 𝑡)
−1

. 𝜂𝑠𝑛𝑔(𝑠)                                                                                                    (14) 

But since f and g are still unknown, it is difficult to apply the control law (9) to an 

unknown nonlinear system. Moreover, the switching type condition usw will create 

chattering.   

 

7. Synchronization Using SMC 

Using the SMC technique, the problem of the controller design is divided into two 

independent steps:  

Step 1: Selecting a sliding surface for desirable sliding movement 

Step 2: Designing a controller to move any trajectory within the state space toward the 

sliding surface, where a non-continuous controller can be used to maintain the ultimate 

state on this surface. A special characteristic of this control mechanism is that while it is 

in the sliding mode, the system is robust with respect to parameter uncertainty and outer 

disturbances. 

For this purpose, first a sliding surface must be selected; i.e. a time-varying surface s(t) is 

defined as  
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where ej is the state error and ρ is relative degree, and the positive constants k are chosen 

so that the following polynomial becomes a Hurwitz polynomial:  
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This condition ensures that the movements will be limited to the surface s=0 and, 

therefore, the tracking errors e=x-xd (where xd represents the desirable states) will 

converge to zero. Sliding mode or sliding state refers to the behavior of the system on the 

sliding surface. 

A feedback control law u is selected in a way that satisfies the sliding condition. 

However, in order to account for uncertainties in modeling and disturbances, the control 
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law must be non-continuous on s(t). Since the switching control law may not be 

implemented perfectly (for example, the switching does not occur instantly, and s is not 

known with infinite accuracy), this results in chattering which is not desirable in practical 

applications because it increases control activities and may also excite high-frequency 

dynamics (e.g. unmodeled structural modes, neglected delays, etc) which have not been 

considered during modeling.  

It is shown the sliding mode dynamics as 0s . 

By solving the equation above, an expression, known as equivalent control ueq, is found 

for u. It can be thought of as a continuous control law which satisfies 0s if the dynamics 

are known.  

As noted in the previous sections, the equations for SA and AV are in the following 

forms:  
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Thus, equivalent control is obtained. The above value for u cannot be calculated since 

c2 is unknown. Suppose that 222
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In order to hold the sliding condition, despite the uncertainties in the system dynamics, 

a discontinuous term is added to 
eqû on the surface s=0:  
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where sgn is the sign function, and k is defined as follows in a way that the sliding 

conditions are met and sliding mode movement occurs.  
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As seen here, discontinuity of k on the surface s=0 increases with the parameter 

uncertainty. By choosing a proper value for k, it is possible to reduce chattering as well as 

the time needed for attaining sliding mode [51]. This ensures that s will converge to zero 

within a finite time and will remain at this value for all subsequent times, and therefore, 

the errors e1 and e2 will asymptotically approach zero. However, this technique my lead to 

excitation of unmodeled high-frequency dynamics or improper switching within the 

system, thereby deteriorating the system performance or even causing instability. 

Researchers, therefore, always tried to address this issue. For this purpose, different 

methods have been employed to reduce or eliminate this type of excitation. One common 

technique used to resolve this problem is to replace discontinuous control with a 

continuous approximation. In this way, the discontinuous function sgn(s) is replaced with 

its continuous approximation sat(s). This technique works well in resolving the problem 

but often at the expense of a non-zero steady-state error. Here, an appropriate method for 

synchronizing two oscillators with parameter uncertainty and even with different 

structures is proposed.  

 

7.1. Stability  

     To observe dynamic stability of error in the proposed controller, the Lyapunov 

candidate function V=s
2
/2 was chosen. The derivative of V is given by  
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Note that sgn(s) is always positive as long as k>0 and e≠0.  
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dxx  when t . This shows that the SMC has synchronized the two systems.  

 

7.2. Simulation Results  

To demonstrate the capabilities of the proposed method, in this section synchronization 

is carried out for two sample systems. The descriptive equations for the SA and AV 

oscillators are: 
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The initial conditions for the master and slave are (1,4) and (0.7, 2), respectively. 

Based on the physiological facts, a one-way coupling is considered here. The frequency is 

60 pulses per minute for the first oscillator and 40 pulses per minute for the second 

oscillator. It is assumed that c2 contains uncertainty and 222
ˆ ccc  where 

2
c

represents uncertainty. SA and AV oscillators, synchronized by the proposed method 

despite parameter uncertainty, are shown in Figure 8. 
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Figure 8. Synchronization Using SMC 

 

Figure 9. Synchronization Error: Diminished Over Time 

8. PSO Algorithm 

PSO is a population-based stochastic optimization technique which does not use the 

gradient of the problem being optimized, so it does not require being differentiable for the 

optimization problem as is necessary in classic optimization algorithms. Therefore, it can 

also be used in optimization problems that are partially irregular, time variable and noisy. 

In PSO algorithm, each bird, referred to as a “particle”, represents a possible solution for 

the problem. Each particle moves through the D-dimensional problem space by updating 

its velocities with the best solution found by itself (cognitive behavior) and the best 

solution found by any particle in its neighborhood (social behavior). Particles move in a 

multidimensional search space, and each particle has a velocity and a position as follows: 
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where i is the particle index; k is the discrete-time index; vi is the velocity of ith 
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(personal best); G is the best position found by swarm (global best), and γ1,2 are random 

numbers in the interval [0, 1] applied to i
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 particle. In our simulations, the following 

equation is used for velocity: 
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in which ϕ is inertia function and β1, β2 are acceleration constants. The flowchart of the 

standard PSO algorithm is depicted in Figure 10. 
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9. Proposed Synchronization Schemes 

As mentioned before, the synchronization scheme consists of two systems: the master 

and the slave (Figure 11). In this scheme, an RBF- or “RBF + error integral”-based 

controller is used to make the states of the slave system follow the states of the master 

system, in the presence of uncertainties and external disturbances. It should be noted that 

in Figure 11 h(·) can be any continuous function. In this section, two proposed methods of 

systems synchronization are described: (14) RBF-based nonlinear controller, (15) “RBF + 

error integral” model in which an integral term is added to RBF model to improve the 

robustness of the proposed controller. To optimize the parameters of these controllers, 

PSO as a continuous evolutionary algorithm is also used. The mathematical formulation: 

 

 

Figure 10. Flowchart of PSO Algorithm 

Proposed methods are stated in the following subsections: 

 

10. Control by RBF Model 

Consider the control system in (15), for this system the following RBF-based controller is 

proposed: 
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Where . is the Euclidean norm of a vector. To find the optimized parameters 
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, ccWW  and 

*
  , the PSO algorithm is used. 

 

11. “RBF + Error Integral” Model 

As mentioned before, there may be modeling uncertainties and external disturbances in 

the control problem. Therefore, the controller should be robust enough such that it can 

cope with these uncertainties. Now, as a modification of the method proposed, the integral 

components are added to the basis function vector to increase the robustness of the 

system. Therefore, the following controller is proposed: 
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Figure 11. Block Diagram of Synchronization Scheme 

12. Simulation and Experimental Results 

Figure 3 illustrates the block diagram of system. As mentioned before, the system 

consists of a master and a slave. Considering (.)h  to be any continuous function, in 

system masking scheme, the message signal m(t) is added to the output of the master 

system, h(xm). The controller is designed such that the master and the slave systems are 

synchronized. Thus by subtracting the output of the slave system, h(xs), from the resulted 

signal, the message signal can be thoroughly recovered. It should be noted that the 
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controller should be designed such that it can cope with uncertainties and external 

disturbances. 

 

 

Figure 12. Block Diagram of System Masking Scheme 

The descriptive equations for the SA and AV oscillators are: 
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The initial conditions for the master and slave are (1,4) and (0.7, 2), respectively. 

Based on the physiological facts, a one-way coupling is considered here. The frequency is 

60 pulses per minute for the first oscillator, and 40 pulses per minute for the second 

oscillator. It is assumed that c2 contains uncertainty and 222
ˆ ccc  where 

2
c

represents uncertainty.  

SA and AV oscillators, synchronized by the proposed method despite parameter 

uncertainty, are shown in Figure 14. 

 

 

Figure 13. Synchronization Error: Diminished Over Time 

Eventually, as seen in Figure (14), the system output converges to the desirable output.  
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Figure 14. Synchronization Using PSO Optimized RBF-based Controllers 

As seen in this figure, the SA and AV oscillators have become synchronized once a 

time period is passed. 

 

 

Figure 15. Synchronization Error 

The figure above presents the synchronization error. This error vanishes over time 

indicating that the two oscillators have become synchronized.  

 

13. Two-way Coupling 

If two-way coupling is used for the two oscillators - which in physiological sense means 

that AV oscillator impacts SA oscillator as well, sometimes in a relatively weak manner – the 

equations become: 
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First, a value for R1 which was about the one tenth of R2 is selected. The computation 

results indicated that two-way coupling has no effect on synchronization time. The value 

of R1 was then increased, but no impact was observed on synchronization time. This is in 

line with physiology of heart as AV oscillator has negligible effect on SA oscillator.  

 

14. Conclusions  

This paper examined the synchronization of SA and AV Node Oscillators using PSO 

optimized RBF-based controllers systems. It was observed that high levels of control 
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activities excited unmodeled dynamics of a system. Thus, changes in the rules of 

controlling the system occurred and an acceptable control performance was achieved. A 

trade-off between tracking performance and parametric uncertainty was also obtained. A 

standard RBF neural controller and particle swarm optimization (PSO) algorithm resulted 

in optimization of the parameters of the RBF controller. Robustness of the RBF controller 

was increased. The parameters of RBF neural network were also derived, and were 

optimized via PSO algorithm. Simulation results show the effectiveness and superiority of 

the proposed methods in both performances in comparison with SMC controller. 

 The table below shows the results of the two methods. As seen on the table, PSO 

optimized RBF-based controllers outperforms in terms of synchronization time and 

variance of error.  

Table 1. Results of Two Methods: PSO Optimized RBF-based controllers 
outperforms  

Control 

Effort 

(min)  

Control 

Effort(max) 

Error 

Variance  

Synchronization  

Time(sec)  

SA and AV Node 

Oscillators  

149- 149+ 0.001152 0.2 PSO optimized 

RBF-based Controllers 

31- 7.2+ 0.0032 3.7 SMC Control 
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