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Abstract 

We study the analysis of heat transfer on MHD peristaltic flow with porous medium 

through coaxial tapered asymmetric channel with radiation effect under the assumptions 

of long wavelength approximation with low Reynolds number. The expressions of the 

axial velocity, pressure gradient, volume flow rate, average volume flow rate, pressure 

rise, temperature and hear transfer coefficient at y = h1and y = h2  are all obtained and 

the temperature and hear transfer coefficient at y = h1and y = h2  are discussed through 

the graphs. It is noted that the temperature increases with increase in radiation 

parameter and Prandtl number, heat generation parameter, non-uniform parameter and 

phase angle φ. 
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1. Introduction 

Peristaltic pumping is a mechanism of the fluid transport in a flexible tube by a 

progressive wave of contraction or expansion from a region of lower pressure to higher 

pressure. This mechanism of fluid transport has received considerable attention in recent 

years in physiological sciences as well as in engineering. The physiological phenomena, 

like urine transport from kidney to bladder through the ureter, the movement of 

spermatozoa in the ducts afferents of the male reproductive tract and the ovum in the 

female fallopian tube, movement of chime in the gastrointestinal tract, transport of lymph 

in the lymphatic vessels and vasomotor of small blood vessels such as arterioles, the 

locomotion of some warms, venules and capillaries involves the peristaltic motion. In 

addition peristaltic pumping occurs in many practical applications involving 

biomechanical systems. 

Biomechanical pumps are based on the same mechanism. Heat transfer involved many 

complicated processes in tissues such as heat conduction in tissues, metabolic heat 

generation and external interactions such as electromagnetic radiation emitted from cell 

phones, heat convection due to blood flow through pores of the tissues. These processes 

also involves mass transfer phenomenon. Heat and mass transfer are also important 

because oxygen and nutrients diffuse out of the blood vessels to the neighboring tissues. 

Magnetic field effects in the peristaltic transport are very important from the 

physiological point of view, such as the presence of hemoglobin molecule makes the 

blood a bio-magnetic fluid. Magnetic Resonance Imaging (MRI), magnetic devices and 

magnetic particles used as drug carriers have some applications of magnetic field in 

physiology. 
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The peristaltic transport in mathematical point of view was first investigation reported 

by Latham [1]. The initial mathematical model of peristalsis obtained by train of 

sinusoidal waves in an infinitely long symmetric channel or tube has been investigated by 

Shapiro et al. [2] and Jaffrin and Shapiro [3] explained the basic principles of peristaltic 

pumping in a two dimensional channel and brought out clearly the significance of the 

various parameters governing the flow. A review of most of the theoretical and 

experimental investigations has been presented in Srivastava et al [4, 5]. Important 

contributions beyond this, and of recent years, include the studies of Srivastava and 

Srivastava [6], Mekheimer et al. [7], Misra and Pandey [8], Hayat et al. [9, 10, and 11], 

Medhavi et al [12], Ravikumar et al. [13-15]. 

The study of heat transfer analysis is another important area in connection with 

peristaltic motion, which has industrial applications like sanitary fluid transport, blood 

pumps in heart lungs machine and transport of corrosive fluids where the contact of fluid 

with the machinery parts are prohibited. There are only a limited number of researchers 

have been discussed the effects of magnetic field on the peristaltic flow (Mekheimer [16], 

Hayat, et.al. [17], Hayat, et.al. [18], Ravikumar et al. [19-21]). Flow through a porous 

medium has been of considerable interest in recent years; number of researchers 

employing Darcy, s law. However, the interaction of peristalsis with heat transfer has not 

received much attention. The thermo dynamical aspects of blood may not be important 

when blood is inside the body but they become significant when it is drawn out of the 

body. Keeping in view the significance of heat transfer in blood flow, (Victor and Shah 

[22]) studied the thermo dynamical aspects of blood flowing in a tube treating blood as 

Casson fluid. Agarwal [23] analyzed the heat transfer to pulsatile flow of a conducting 

fluid through a porous channel in the presence of magnetic field. Peristaltic phenomenon 

has discussed in the presence of heat transfer has been investigated in refs ([24-27]). 

However, the influence of radiation on peristaltic flow of a viscous fluid in an 

asymmetric channel has received little interest. Radioactive convective flows are 

frequently encountered in many scientific and environmental processes, such as 

astrophysical flows, water evaporation from open reservoirs, heating and cooling of 

chambers, and solar power technology. Several researchers have investigated radioactive 

effects on heat transfer in nonporous and porous medium utilizing the Rosseland or other 

radioactive flux model, such as Hall et al. [28], Hakiem[29], Raptis [30], Bakier [31], 

Raptis and Perdikis [32], Sanyal and Adhikari [33], Rao [34], Prasad and Reddy [35]. 

 

2. Formulation of the Problem 

 We discussed the analysis of heat transfer on MHD peristaltic flow with porous 

medium through coaxial tapered asymmetric channel with radiation Asymmetry in the 

flow is due to the propagation of peristaltic waves of different amplitudes and phase on 

the channel walls. The flow is generated by sinusoidal wave trains propagating with 

constant speed c along the tapered asymmetric channel walls. 
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Where b is the half-width of the channel, d is   the wave amplitude, 𝑐 is the phase speed 

of the wave and m 
 
(  1m  is the non-uniform parameter, 𝜆 is the wavelength, t is the 

time and X is the direction of wave propagation. The phase difference   varies in the 

range 0 ≤   ≤ π,   = 0 corresponds to symmetric channel with waves out of phase and 
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further b, d and   satisfy the following conditions for the divergent channel at the inlet  

bd )
2

(cos


 

It is assumed that the left wall of the channel is maintained at temperature T0, while the 

right wall has temperature T1. 

The equations governing the motion for the present problem are 
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u and v are the velocity components in the corresponding coordinates, p is the fluid 

pressure, is the density of the fluid,  is the coefficient of the viscosity,  k1 is the 

permeability of the porous medium and k is the thermal conductivity, Cp is the specific 

heat at constant pressure, Q0 is the constant heat addition/absorption and T is the 

temperature of the fluid. 

Following Cogley et al. [36], it is assumed that the fluid is optically thin with a 

relatively low density and the radioactive heat flux is given by 
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here   is the mean radiation absorption coefficient.

 Introducing a wave frame (x, y) moving with velocity c away from the fixed frame (X, 

Y), the transformations 

x = X-ct, y = Y, u = U-c, v = V and p(x) = P(X, t)                                                             (8) 

Where u, v are the velocities in the x and y directions in the wave frame and p is the 

pressure in wave frame. 

Introducing the following non-dimensional quantities: 
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 where 
b

d
 is the non-dimensional amplitude of channel ,




b
 is the wave number,

b
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 is the non - uniform parameter , Re is the Reynolds number, M is the Hartman 

number ,
2

b

k
K  Permeability parameter , Pr is the Prandtl number , β is the heat 

generation parameter and 
2

N  is the radiation parameter. 
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3. Solution of the Problem 

    In view of the above transformations (8) and non-dimensional variables (9), equations 

(3-6) are reduced to the following non-dimensional form after dropping the bars, 
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Where 











Da
MA

12  

Applying long wave length approximation and neglecting the wave number along with 

low-Reynolds numbers. Equations (10-12) become 
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The corresponding boundary conditions in dimensionless form are given by 

u = -1, θ = 0 at        txxkhy 2sin1
11

                                              (16) 

u = -1, θ = 1 at      txxkhy   2sin1
12

                                                      (17) 

The closed form solutions for Equations (13 -15) with boundary conditions (16) and (17) 

are 
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The coefficients of the heat transfer Zh1 and Zh2 at the walls y = h1 and y = h2 

respectively, are given by
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The solutions of (20) and (21) be 
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The volumetric flow rate in the wave frame is defined by 
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The pressure gradient obtained from equation (24) can be expressed as   
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The instantaneous flux Q (x, t) in the laboratory frame is 
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The average volume flow c) of the peristaltic wave is 

defined as  

 

T

dqdtQ
T

Q

0

1
1                                                                                                (27) 

From the equations (25) and (27), the pressure gradient can be expressed as  
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4. Numerical Results and Discussion  

The effects of Prandtl number (Pr), heat generation parameter (β), Non - uniform 

parameter (k1), Radiation parameter (N) and Phase angle ( ) on temperature profiles and 

heat transfer coefficients (at y = h1 and y = h2) are presented and discussed in this section. 

The influence of the radiation parameter N (N = 0.5, 0.7, 0.9) on temperature (θ) is 

depicted in Figure 1 with fixed values of Pr = 1, β = 2, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2,   

= π/6. It is notice that the temperature increases with an increase in radiation parameter. 

Figure 2 represents the flow structure of the temperature (θ) for different values of Prandtl 

number Pr (Pr = 1, 1.5, 2) with β = 2, N= 0.5, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2,   = 

π/6.Indeed, the temperature increases with an increase in Prandtl number in entire tapered 

channel. The influence of heat generator β (β = 2, 4, 6) with fixed Pr =1, N= 0.5, k1= 0.1, 
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x = 0.6, t =0. 4, ε = 0.2,   = π/6 on temperature (θ) is shown in the Figure (3). This figure 

indicates that an increase in heat generation parameter, results in increase in the 

temperature of the fluid. Figure (4) shows that the effect of phase angle  (
6

,
2

,


  ) 

on temperature (θ) with fixed Pr =1, N= 0.5, β = 2, k1= 0.1, x =0.6, t =0. 4, ε = 0.2. It is 

observed that temperature is increases in the entire tapered channel with decreases the 

values of .  Figure 5 presents the flow structure of temperature (θ) for different values of 

non- uniform parameter k1 (k1 =0.1, 0.2, 0.3) with Pr =1, N= 0.5, β = 2, x = 0.6, t =0. 4, ε 

= 0.2,   = π/6.This figure indicates that an increase in k1, the results gradually increases 

in the temperature of the fluid. Hence we conclude that the temperature increases with an 

increase in radiation parameter, Prandtl number, heat generation parameter, non-uniform 

parameter and phase angle and also the temperature profile is found almost parabolic, 

significance variations in temperature lies near the center of the channel which is due to 

the viscous dissipation. 

 

 

Figure 1. Effect of N on Temperature (θ) with Fixed Pr = 1, β = 2, k1= 0.1,  

x = 0.6, t =0. 4, ε = 0.2,   = π/6 

 

Figure 2. Effect of Pr on Temperature (θ) with Fixed β = 2, N= 0.5, k1= 0.1,  

x = 0.6, t =0. 4, ε = 0.2, 
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Figure 3.  Effect of β on Temperature (θ) with Fixed Pr =1, N= 0.5, k1= 0.1, 

x = 0.6, t =0. 4, ε = 0.2, 


 = π/6. 

 

Figure 4. Effect of 


 on Temperature (θ) with Fixed Pr =1, N= 0.5, β = 2,                      

k1= 0.1,  x = 0.6, t =0. 4, ε = 0.2 

0

1

2

3

4

5

6

7

-1.25 -0.75 -0.25 0.25 0.75 1.25

T
em

p
er

at
u
re

 (
θ
) 

y 

β = 2 

β = 4 

β = 6 

0

0.5

1

1.5

2

2.5

3

-1.25 -0.75 -0.25 0.25 0.75 1.25

T
em

p
er

at
u
re

 (
θ
) 

y 

φ =π 

φ =π/2 

φ =π/6 



International Journal of Bio-Science and Bio-Technology  

Vol.8, No.2 (2016) 

 

 

402   Copyright ⓒ 2016 SERSC 

 

Figure 5. Effect of k1 on Temperature (θ) with Fixed Pr =1, N= 0.5, β = 2, x = 0.6, t 

=0. 4, ε = 0.2, 


 = π/6. 

Figure 6 presents the flow structure of heat transfer coefficient at the wall y = h1 for 

different values of N (N = 0.5, 0.7, 0.9) with β = 2, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 

0.2,   = π/6.We notice that heat transfer coefficient decreases in the channel x ε [0, 0.6] 

and increases in the channel x ε [0.6, 1] with increasing the values of radiation parameter 

(N). Influence of Prandtl number Pr (Pr 1, 1.5, 2) on heat transfer coefficient at the wall y 

= h1 with fixed N= 0.5, β = 2, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2,   = π/6. It is shown that 

heat transfer coefficient profile decreases in x ε [0.1, 0.6] and increases in the range x ε [0, 

0.1]   [0.6, 1] with increasing the values of Pr. Figure 8 shows that the heat transfer 

coefficient profile for different values of heat generation parameter β (β = 2, 4, 6) with N= 

0.5, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2,   = π/6. Indeed, heat transfer coefficient 

decreases in x ε [0.1, 0.6] and increases in the range x ε [0, 0.1]   [0.6, 1] with 

increasing the values of β. Figure 9 reveals the influence of non-uniform parameter k1 (k1 = 

0.1, 0.2, 0.3) on heat transfer coefficient with fixed N= 0.5, Pr = 1, β = 2, x = 0.6, t =0. 4, 

ε = 0.2,   = π/6. It is interested to note that the heat transfer coefficient decreases in 

entire tapered channel at the wall y = h1 with an increase in non- uniform parameter.  

 

 

Figure 6.  Effect of N on Heat Transfer Coefficient at the Wall y = h1 with Fixed β = 

2, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 

 

0

0.5

1

1.5

2

2.5

3

3.5

-1.25 -0.75 -0.25 0.25 0.75 1.25

T
em

p
et

at
u
re

 (
θ
) 

y 

K1= 0.1

K1= 0.2

K1= 0.3

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

H
ea

t 
tr

an
sf

er
 

co
ef

fi
ci

en
t 

(Z
 h

1
) 

x 

N = 0.5
N = 0.7
N = 0.9



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.2 (2016) 

 

 

Copyright ⓒ 2016 SERSC  403 

 

Figure 7. Effect of Pr on Heat Transfer Coefficient at the Wall y = h1 with Fixed  N= 

0.5, β = 2, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 

 

Figure 8.  Effect of β Heat Transfer Coefficient at the Wall y = h1 with Fixed  

N= 0.5, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 
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Figure 9. Effect of k1 on Heat Transfer Coefficient at the Wall y = h1 with Fixed N = 

0.5, Pr = 1, β = 2, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 

Effect of radiation parameter N (N = 0.5, 0.7, 0.9) on heat transfer coefficient at the 

wall y = h2 with  

β = 2, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2,   = π/6 as depicted in figure (10). This 

figure indicates that the heat transfer coefficient profile decreases in x ε [0.1, 0.7] and 

increases in the range x ε [0, 0.1]   [0.7, 1] with an increasing the values of N. 

Variations of the heat transfer coefficient at the wall y = h2 have been presented in figure 

(11) for various values of Prandtl number with fixed other parameters N= 0.5, β = 2, k1= 

0.1, x = 0.6, t =0. 4, ε = 0.2,   = π/6.It can be seen that the heat transfer coefficient 

profile decreases in x ε [0.1, 0.7] and increases in the range x ε [0, 0.1]   [0.7, 1] with an 

increasing the values of Pr. Figure 12, it may be notice that the heat transfer coefficient 

profile decreases in x ε [0.1, 0.7] and increases in the range x ε [0, 0.1]   [0.7, 1] with an 

increasing the values of β. The influence of non – uniform parameter k1 (k1 = 0.1, 0.2, 0.3) 

on heat transfer coefficient as shown in figure 13.It is interested to noticed that the heat 

transfer coefficient decreases in x ε [0, 0.8] and increases in the range x ε [0.8, 1]. 

 

 

Figure 10.  Effect of N on Heat Transfer Coefficient at the Wall y = h2 with Fixed β 

= 2, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 
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Figure 11.  Effect of Pr on Heat Transfer Coefficient at the Wall y = h2 with Fixed 

N= 0.5, β = 2, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6. 

 

Figure 12. Effect of β on Heat Transfer Coefficient at the Wall y = h2 with Fixed  N= 

0.5, Pr = 1, k1= 0.1, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6. 

-8

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1

H
ea

t 
tr

an
sf

er
 c

o
ef

fi
ci

en
t 

(Z
 h

2
) 

x 

Pr = 1

Pr = 1.5

Pr = 2

-10

-8

-6

-4

-2

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

H
ea

t 
tr

an
sf

er
 c

o
ef

fi
ci

en
t 

(Z
 h

2
) 

x 

β = 2 

β = 4 

β = 6 



International Journal of Bio-Science and Bio-Technology  

Vol.8, No.2 (2016) 

 

 

406   Copyright ⓒ 2016 SERSC 

 

Figure 13. Effect of k1on Heat Transfer Coefficient at the Wall y = h2 with Fixed  

N= 0.5, Pr = 1, β = 2, x = 0.6, t =0. 4, ε = 0.2, 


 = π/6 

5. Conclusions 

In this paper, we study the analysis of heat transfer on MHD peristaltic flow with 

porous medium through coaxial tapered asymmetric channel with radiation under the 

assumptions of long wavelength approximation with low Reynolds number.   

1. The temperature increases with increase in the values of radiation parameter (N), 

Prandtl number (Pr), heat generation parameter (β), non-porous parameter (k1) and 

phase angle ( ) . 

2. The heat transfer coefficient decreases in the channel x ε [0.1, 0.6] and increases in 

the channel x ε [0, 0.1]   [0.6, 1] with an increasing the values of N, Pr, β. 

3. The heat transfer coefficient decreases in entire tapered channel with an increase in 

non-porous parameter. 

4. The heat transfer coefficient profile decreases in x ε [0.1, 0.7] and increases in the 

range x ε [0, 0.1]   [0.7, 1] with an increasing the values of N, Pr, β. 

5. The heat transfer coefficient decreases in x ε [0, 0.8] and increases in the range x ε 

[0.8, 1] with an increase in non-uniform parameter. 
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