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Abstract 

Predicting protein 3D structures from the amino acid sequence is still a hard and 

unsolved task after five decades of efforts. High-resolution models can be built only if the 

target protein has a known homologue. If not, it must be built from scratch which yields in 

most cases to protein models of low-resolution, i.e. far from their native structure. In this 

paper, we present a new refinement method of 3D protein predicted models. The new 

method relies on the motion that the atoms in a protein take randomly in the 3D space 

leading to folding. Experimental results using the CASP benchmark show the assessment 

and the quality of the new method in comparison with the traditional methods that depend 

on molecular dynamics simulation.We prove that 55 % of cases were successfully 

enhanced by the new method. 
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1. Introduction  

Protein structure prediction is the prediction of the tertiary structure of a protein from 

its primary structure, which is the amino acid sequence. Solving such a problem is of 

great importance in the field of bioinformatics and especially in drug design. 

The number of available protein sequences is increasing exponentially, about 5.3 

million protein sequences were deposited in the UniProtKB database [1], with the great 

success of the genome sequence projects. However, due to the technical difficulties, the 

number of available protein structures is very far behind, the number of protein structures 

in the Protein Data Bank (PDB) [2] is only about 44,000, less than 1% of the 

proteinsequences. So, developingefficient computer-based algorithm to predicting 3D 

structures from sequences is the best way to fill up this gap. 

We can divide the methods of protein structure prediction into two categories: 

template-based modeling methods (if similar proteins have been solved before) and free 

modeling methods (built from scratch). Low-resolution protein models often occur by free 

modeling methods (in other name: ab initio modeling). Here, we can see the need of 

developing a refinement method that enhances the protein structure models and brings 

them close to the native structure. 

Previous developments in the area of refining 3D protein structure predicted models 

were based on the Molecular Dynamics (MD) Simulation. The molecular dynamics (MD) 

simulation is a technique by which one generates the atomic trajectories of a system of N 

particles by numerical integration of Newton’s equation of motion, for a specific 

interatomic potential, with certain initial condition (IC) and boundary condition (BC). In 

structural biology, the MD method is frequently applied for ligand docking, simulations 
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of homology modeling and ab initio prediction of protein structure by simulating folding 

of the polypeptide chain from random coil.  

Raval, et al., [3] used Molecular Dynamics as a technique for homology model 

refinement using all-atom simulations, each at least 100 μs long and a physics-based force 

field shown to successfully fold  fast-folding proteins. Dimaio, et al., [4] developed an 

approach in which density maps generated from molecular replacement solutions for each 

set of starting protein structure models are used to guide energy optimization 

(minimization) by structure rebuilding, combinatorial sidechain packing, and torsion 

space minimization. New maps were generated using phase information from the energy-

optimized models most consistent with the diffraction data. Zhang, et al., [5] used MD 

simulations to refine protein structural models and checked in particular the possibility of 

reshaping the middle-range funnel of physics-based energy landscapes. They developed a 

Fragment-Guided Molecular Dynamics (FG-MD) algorithm, which combines the 

physical-based force field AMBER99 with knowledge-based H-bonding and repulsive 

potentials. Heo, et al., [6] developed GalaxyRefine which first rebuilds all side-chain 

conformations and repeatedly relaxes the structure by short molecular dynamics 

simulations after side-chain repacking perturbations.  

Bhattacharya and Cheng [7] proposed a two-step refinement protocol, called 3Drefine. 

The first step is based on optimization of hydrogen bonding (HB) network and the second 

step applies atomic-level energy minimization on the optimized model using a composite 

physics and knowledge-based force fields. Topf, et al., [14] developed a new method for 

characterizing the structure of assemblycomponents by iterative comparative protein 

structure modeling andfitting into cryo-electron microscopy (cryoEM) density maps. 

They used a comparative model of a given component by consideringmany alignments 

between the target sequence and a relatedtemplate structure while optimizing the fit of a 

model into thecorresponding density map. Schroder, et al., [15] developed a geometry-

based algorithm that samples conformational space under constraints imposed by low-

resolution density maps obtained from electron microscopy or X-ray crystallography 

experiments. A deformable elastic network (DEN) is used to restrain the sampling to prior 

knowledge of an approximate structure. 

Limitations of the MD method are related mostly to underlying molecular 

mechanics force fields. A single run of MD simulation optimizes potential energy, rather 

than free energy of the protein. Another limitation is its ignorance to the “randomization” 

of the trajectory taken by the atomic moves and interactions leading to folding. 

In our work, we will replace the usage of the molecular dynamics method by the notion 

of Brownian motion (BM). Brownian motion is the random motion of particles suspended 

in a fluid resulting from their collision with the atoms or molecules in the gas or liquid. In 

physics, random walks are used as simple models of physical Brownian motion 

and diffusion such as the random moves of molecules in liquids and gases. In this paper, 

we develop a computer-based program that mimics the movements of the atoms in a 

molecule randomly in the 3D space in order to make the protein folding in its free 

minimum energy. 

In this paper, we have proposed a method to refine computationally predicted protein 

models in order to bring them closer to the native state. The method is based on 

minimization of multi-body Van der Waals interaction potential by random walk. The 

paper is organized as follows: section 1 presents the introduction including some of the 

related works. Section 2 summarizes a background on the random walk in 3D and the 

energy function used in our work. Section 3 introduces the refinement method used for 

producing ab initio protein predicted models of higher resolution. Section 4 shows the 

experimental results. Section 6 concludes and discusses the new method and its results. 

Finally a list of references is given. 
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2. Background 
 

2.1 Random Walk  

Given an undirected, connected graph G(V,E) with vertices: |V| = n, and edges: |E| = m 

a random “step” in G is a move from some node u to a randomly selected neighbor v. A 

random walk is a sequence of these random steps starting from some initial node [12].  

In our work, we will consider the atoms in the molecules of the protein as being the 

vertices and the edges are the paths that take the atoms leading to folding. There is no a 

real graph. This is just a grid search on protein coordinates. Only one atom is moved at a 

time, it is always moved in a coordinate direction not a random vector and it is always 

moved a fixed distance. The randomization here is about the direction of the step that the 

atom takes in the 3D space. 

 

2.2 Energy Function 

“The law of thermodynamics states that the natural or folded state of proteins is a 

global free energy minimum” [11]. Now the objective is to search the predicted model 

among a set of legal models that minimizes the energy. Van der Waals (vdW) interactions 

play a critical role in determining thestructure, stability, and function for a wide variety of 

systems.  

Most of 3D protein structure refinement techniques [5, 7] depend on the Hydrogen 

bonding and ignore totally the van der Waal’s forces. However, van der Waal's forces are 

important for a protein achieving its final shape. Although they are individually very 

weak, the sum of these interactions contributes substantial energy to the final 

three‐dimensional shape of the protein [13]. 

In [8], DiStasio, et al., introduce an efficientmethod that describes in an accurate 

manner the nonadditive many-bodyvdW energy contributions arising from interactions 

that cannot bemodeled by an effective pairwise approach. 

According to [8], ThevdW-MB interaction energy for the full many-body system is 

computed as 

pq

vdW

pqpqpq
rRrrW /)))/(exp(1()(


                                                 (1) 

Where rpq is the inter atomic distance between atoms p and q,   is a range-separation 

parameter, and 
vdW

q

vdW

p

vdW

pq
RRR  is the vdW correlation length in terms of the 

individual vdW radii, also defined as functional of the density. The best values of the 

parameter were found as 2.56 for the vdW-MB model. 

The radii used for atoms are as follows: carbon, 1.7 Å; oxygen, 1.52 Å; nitrogen, 1.55 

Å; Hydrogen, 1.2 Å; and sulfur, 1.8 Å. 

 

3. Materials and Methods 
 

3.1 Data Used 

The CASP (critical assessment of techniques for protein structure prediction) is a 

community-wide experiment for protein structure prediction taking place every two years 

since 1994. The experiment provides users of structure prediction servers with an 

opportunity to assess the quality of the various methods and servers entirely blindly. It 

also provides the research community with an assessment of the state of the art in this 

field. 

We extracted 20 protein sequences studied at the CASP 10 meetings from the public 

web page of the protein structure prediction center [9]. 
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3.2 Proposed Method 

In our work, we propose a new method for refinement of 3D protein predicted models 

based on 3D Random walk and Van der Waals energy minimization. 

The steps of the new method can be summarized as follows: 

Step1: Input 

Predict the initial 3D protein structure models from its amino acid sequence (read in 

its FASTA format) using one of the abintio methods which produces low resolution 

protein structure models. Here, we choose the HyperChem release 8.0 as the ab 

initio method used. 

Step2: Initialize the energy 

Calculate the initial total energy of the input protein structure using equation (1) 

and consider this energy value as being the least accepted energy for the protein to 

be folded. 

Step3:Solve the problem 

Do the atomic 3D random walk as follows:  

- For all atoms in the protein 

- Randomly select a vector from 6 coordinate vectors:{(+1,0,0),(-

1,0,0),(0,+1,0),(0,-1,0),(0,0,+1),(0,0,-1)} 

- Add the vector onto the coordinates of the atom 

- Calculate the new energy of the protein according to the energy function 

equation (1) 

- If energy improves, accept the new configuration, otherwise discard the 

configuration and try again until reaching the maximum number of walks 

defined by the user. 

Step4:Output 

The output predicted model is the model that has the lowest energy among all walks 

Clearly, the new method has two main advantages: first, the number of walks is user-

defined which means that the user can stop the refinement procedure at the level of 

accuracy he defines and second, the model saves its initial state (walk no. 0) if there is no 

improvement in accuracy during the running of the method. 
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Figure 1. A Flowchart of the Suggested Method 

4. Experimental Results 

In this Section, we will present the result of applying our new procedure for protein 

structure prediction using ab initio modeling. We suggest a new refinement method for 

producing models of higher resolution. Implementation was done in Matlab version 7.10. 

We choose the step size in the random walk to be 1Å and the number of walks used in 

experiments was 20 walks. This choice of the step size and the small number of walks can 

be justified by the saying that even we do very slight movements of the atoms in random 

directions, the refined 3D protein structure become closer to its native structure. This 

proves the efficiency of the suggested method. 

We assess the quality of the predicted models with refinement using ProQServer[10], 

which is a neural network-based method to predict the quality of a protein model that 

extracts structural features, such as frequency of atom–atom contacts, and predicts the 

quality of a model, as measured either by LGscore or MaxSub.  

We compare our results with the results of the refinement method GalaxyRefine[6]. 

We choose this method of refinement as it is an example of refinement methods that rely 

on the molecular dynamics simulation and depend on only Hydrogen bonding with total 

ignorance of the effect of the van der Waals forces in the protein folding process. 

Figure 2 shows the 3D predicted protein models for the first three protein sequences 

data using HyperChem 8.0 without refinement (in column a), HyperChem 8.0 with 

refinement using GalaxyRefine (in column b) and HyperChem 8.0 with refinement using 

our method described in section 3 (in column c). The GalaxyRefine web server produces 



International Journal of Bio-Science and Bio-Technology 

Vol.8, No.1 (2016) 

 

 

268   Copyright ⓒ 2016 SERSCS 

five refined predicted models. We choose, for comparison, the model with the lowest 

RMSD (Root Mean Square Deviation) as being the best model. 

 

   

   

   
(a) (b) (c) 

Table 1 shows the LG_score of the initial model produced by HyperChem 8.0(HC8), 

compared to the LG_score produced by HC8 followed by GalaxyRefine (HC8-GR) and to 

that produced by HC8 followed by our suggested method (HC8-RW). In the table, we 

present also the number of walks done for the initial model to reach its free minimum 

energy among all walks. Maximum number of walks is 20 walks and of course the walk 0 

represents the initial model. 

Figure 2. The 3D Predicted Model of the First Three Protein Sequences 
using (a) HyperChem Release 8.0 without Refinement, (b) Refinement using 

GalaxyRefine and (c) Our Suggested Refinement Method 
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Table 1. The LG_score of HC8, HC8-GR and HC8-RW 

LG_score 

Target No. HC8 HC8-GR HC8-RW No. of Walks 

1 -0.278 -0.378 -0.293 20 

2 -0.217 -0.143 -0.217 0 

3 -0.267 0.865 -0.209 5 

4 -0.159 -0.563 -0.159 0 

5 -0.073 -0.109 -0.066 20 

6 -0.34 -0.623 -0.357 3 

7 -0.293 -0.044 -0.396 19 

8 -0.14 -0.347 -0.188 20 

9 -0.27 -0.07 -0.231 18 

10 -0.222 -0.197 -0.28 7 

11 0.034 -0.414 -0.055 11 

12 -0.146 -0.434 -0.181 17 

13 0.009 1.371 0.036 17 

14 -0.094 0.67 -0.082 11 

15 -0.308 -0.682 -0.375 19 

16 -0.205 0.805 -0.185 11 

17 -0.303 0.32 -0.28 1 

18 -0.253 1.375 -0.313 16 

19 -0.142 -0.381 -0.132 17 

20 -0.191 -0.717 -0.165 17 

 
Table 2 shows the MaxSub of the initial model produced by HyperChem 8.0(HC8), 

compared to the MaxSub produced by HC8 followed by GalaxyRefine (HC8-GR) and to 

that produced by HC8 followed by our suggested method (HC8-RW).  

Table 2. The MaxSub of HC8, HC8-GR and HC8-RW 

MaxSub 

Target No. HC8 HC8-GR HC8-RW No. of Walks 

1 -0.069 -0.048 -0.069 20 

2 -0.077 -0.12 -0.077 0 

3 -0.073 -0.006 -0.063 5 

4 -0.057 -0.074 -0.057 0 

5 -0.051 -0.05 -0.048 20 

6 -0.08 -0.088 -0.083 3 

7 -0.071 -0.023 -0.085 19 

8 -0.063 -0.037 -0.065 20 

9 -0.056 -0.105 -0.051 18 

10 -0.047 0.024 -0.51 7 

11 -0.039 -0.052 -0.046 11 

12 -0.054 -0.077 -0.061 17 

13 -0.058 0.05 -0.057 17 

14 -0.048 -1.097 -0.047 11 

15 -0.047 -0.014 -0.6 19 

16 -0.091 -0.154 -0.082 11 

17 -0.067 -0.011 -0.065 1 

18 -0.056 0.01 -0.068 16 

19 -0.073 -0.053 -0.068 17 

20 -0.046 -0.056 -0.045 17 
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The shaded cells in Tables 1 and 2 represent the success that was achieved by our new 

method in terms of LG_score and MaxSub respectively. Notice that in Table 1, the 

number of sequences where the new method accomplished good performance was 11 

sequences over 20 i.e., 55% of the total cases. We consider the case where the optimum 

number of walks is 0 as a successful case and we argue that by the fact that the new 

method either enhance the model or at least preserve the initial good state of the model. 

Also notice that in Table 2, the number of sequences where the new method accomplished 

good performance was 12 sequences over 20 i.e. 60% of the total cases.  

We can conclude that almost 55% of cases were successfully enhanced by the new 

method. Also, we can see that in the rest of the cases the decrease in the model quality 

was very small in comparison with the Galaxy Refine method. Why? The answer is that 

we do not destruct the initial model and resolve it from the beginning as in the Galaxy 

Refine method… We just do very small steps in a random way and calculate the total 

energy of each model. The refined model is not so far from the initial one. 

 

5. Conclusions and Future Work 

In this paper, we presented a new method for refining 3D protein structure models. The 

new method is based on 3D random walk on a graph where nodes are the atoms and the 

edges are the inter-molecular distances between those atoms that form the residues of the 

protein sequence. At each walk, we calculated the total energy of the protein to be 

minimized. This method has enhanced the protein models in 55% of the cases done in the 

experiments. 

As a future work, we suggest the usage of the Markov chain algorithm instead of the 

random walk. Markov chain also, like random walk, identifies the random processes but 

add a transition probability matrix where we can define the steps of the atoms. The atoms 

in a protein can move in any direction but with preserving the protein structure topology, 

i.e., there are states where the atoms cannot move to and those states can have the 

probability 0 in the transition probability matrix. The use of a Markov chain presumes a 

discrete set of states. The main challenge in this work is to be able to discretize the protein 

state space. Such enhancement can decrease the cases to be examined in the traditional 

random walk and also may lead to more accurate results. 
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