Comparisons of Various Generations of the B and D Synthetic Populations of *Nicotiana Rustica*

A. Taleei

Professor in the Department of Agronomy & Plant breeding, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, P.O. Box 31587-71787, Iran, E-mail:ataleei@ut.ac.ir

Abstract

Both selection and competition are expected to influence the composition of the advancing generations of the population. Further their effects are normally cumulative such that the latter generations are more influenced than the early ones (relative to S_0). Therefore selfed samples of S_1 , S_2 , and etc. generations of the population are not only expected to differ from the S_0 which is the base population but they may also differ from each other. The overall means of various generations within the B and D synthetic populations were compared to determine the pattern of differences that may exist between them.

Keywords: Selection, competition, generations, synthetic populations

Inroduction

Monitoring of the B and D synthetic populations has continued over the past twenty or so years. Boughey (1978) initiated these investigations by comparing the phenotypic distributions of the S_0 , S_1 (or S_2) and F_2 generations of each population. Roy (1983) Douglas (1982) and Al-Banna (1983) followed her by carrying out similar experiments with large samples of the S_4 and S_5 generations of the B and D populations.Roy (1983) also proposed a method for estimating the heterozygosity levels for metrical traits which he applied to the S₄ generation of D population. The same procedure was lateremployed by Bourne (1986) and by us to determine the heterozygosity levels I the S_6 and S_7 generations of the B population. These investigations revealed that some permanent changes have occurred in both populations. It was further shown that a large portion of these changes were due to the introduction of heterozygosity which was produced by the natural breeding system of Nicotiana rustica. Significant differences attributable to selection/competition were also detected in all the experiments but these results were not observed to be consistent throughout. On one or two occasions the effects of selection were in fact observed to oppose each other and this was interpreted to indicate that populations and approached some sort of equilibrium (Roy, 1983, Anssour, et al., 2009). An alternative albeit more plausible explanation of the above results, however, could be that the selection is not entirely directional and the optima are shifting between environments. Genotype environment interactions may also have reinforced the differences between various assessments and made the results differ vilely. Present study was therefore conducted to assess the true magnitude of changes that may have occurred in the advancing generations of either population and visualize any trends that may exist between them. The first assessments were carried out by taking large random samples of individual from various S_n generations and comparing the performances of their selfed progenies in a single macro environment. In the second set of experiments the distributive properties of the S_0 and the $F_{\infty} S_n$ generations were compared.

Materials and Methods

This investigation involved two experiments which were conducted to compare all available generations of each synthetic population. One hundred selfed families of each of the $S_1(F_2S_1)$, $S_2(F_2S_2)$ *etc.*, generations were assessed with the parental, F_1 , F_2 and S_0 generations. Seeds of these families were produced by raising 100 randomly chosen plants from each generation and selfing them. Individual plants of 82 B and 60 D lines were selfed. These samples were boosted to 100 families by adding inbreds derived from other independent inbreeding programs. The parental(P_1 , P_2), F_1 and F_2 generations of each ancestral cross ($V_1x V_5$ and $V_2 x V_{12}$) were also produced. The scored traits are as follows: H6 (plant height six weeks after sowing), H7, LL (leaf length), FT (flowering time), HFT (height at flowering time), and PH (plant height).

Results

Comparisons of F_2S_1 , F_2S_2 and F_2S_n means

One way analysis of variance was used to determine the significance of differences between the overall means of the selfed progenies of $S_1, S_2, ..., S_n$ generations. It took the following form:

Item	df	M.S.	V.R.
Between generations	n-1	MS_1	MS_1/MS_2
Within generations	n(n ₁ -1)	MS_2	

Here n and n_1 stand for number of generations and number of families/within generations, respectively.

The between generations sum of squares (for n-1 df) when significant were subjected to further partitioning to pinpoint the source(s) of variation amongst generations. Sum of squares due to each degree of freedom was obtained by applying the following orthogonal comparisons:

Source of variation				Ger	nerations			
	F_2S_1	F_2S_2	F_2S_3	F_2S_4	F_2S_5	F_2S_6	F_2S_7	$\dots F_2 S_n$
$F_2S_1vs. F_2S_2$	1	-1	0	0	0	0	0	0
$F_2S_1vs. (F_2S_1 + F_2S_2)$	1	1	-2	0	0	0	0	0
$F_2S_1vs. (F_2S_1 + F_2S_2 + F_2S_3)$	1	1	1	-3	0	0	0	0
$F_2S_1vs. (F_2S_1 + F_2S_2 + F_2S_3 + F_2S_4)$	1	1	1	1	-4	0	0	0
$F_2S_1vs. (F_2S_1 + F_2S_2 + + F_2S_5)$	1	1	1	1	1	-5	0	0
$F_2S_1vs. (F_2S_1 + F_2S_2 + + F_2S_6)$	1	1	1	1	1	1	-6	0
$F_2S_1vs. (F_2S_1 + F_2S_2 + + F_2S_{n-1})$	1	1	1	1	1	1	1	(n-1)

The actual SS were however computed as follows because total sizes often varied between generations.

SS
$$[S_n vs. (S_1 + S_2 + \dots + S_{n-1})] = \frac{(\sum_{j=1}^{n-1} GT_j)^2}{\sum_{j=1}^{n-1} N_j} + \frac{GT_n^2}{N_n} - \frac{(\sum_{j=1}^n GT_j)^2}{\sum_{j=1}^n N_j}$$

Here, GT_j and N_j stand for the grand total and the total number of individuals in the jth generation.

Each component was tested against the within families mean squares by F test. Results of comparing the overall means of the F_2S_1 , F_2S_2 etc progenies of B population are not given. The one way analysis of variance showed that the seven sets of families differed significantly from each other for all traits except H₆. Therefore, at least five traits seem to display differential influences of agents like selection and competition as well as of the breeding system. Partitioning of the between generations SS further revealed that most of the differences were contributed by the F_2S_5 , F_2S_6 and F_2S_7 means. They differed from each other and from F_2S_1 , F_2S_2 , F_2S_3 and F_2S_4 for LL, FT, HFT and FH while the latter did not from each other for any of these traits. All the significant differences in the H7 and some in FH, on the other hand, were contributed by the differential performance of $\overline{F_2S_3}$, while the rest of the generations had very similar means.

Table1. Analysis of Variance Comparing the Overall Means of the F ₂ S ₁ , F ₂ S ₂
etc., Generations of B Population and Partitioning of these Differences
According to Orthogonal Comparisons Described Above

Character	Item	df	MS	VR	Significance
H ₆	a ₂	6	311.59	1.71	n.s.
	a_1	691	182.15		
H ₇	a ₃	1	23.48	<1.00	n.s.
	a_4	1	3468.36	8.20	**
	a_5	1	1371.97	3.24	n.s.
	a ₆	1	1207.33	2.86	n.s.
	a ₇	1	0.01	<1.00	n.s.
	a ₈	1	542.64	1.28	n.s.
	a ₂	6	1102.30	2.61	*
	a_1	691	422.94		
LL	a ₃	1	73.36	<1.00	n.s.
	a_4	1	61.14	1.98	n.s.
	a ₅	1	2.21	<1.00	n.s.
	a ₆	1	355.39	11.31	***.
	a ₇	1	261.73	8.48	**.
	a ₈	1	2130.01	69.00	***
	a ₂	6	472.13	15.30	***
	a ₁	691	30.88		
FT	a ₃	1	18.07	<1.00	n.s.
	a_4	1	79.19	<1.00	n.s.
	a ₅	1	993.72	3.60	n.s.
	a ₆	1	355.39	19.75	***.
	a ₇	1	5454.87	6.78	**.
	a_8	1	1873.90	23.63	***
	a ₂	6	2491.32	19.02	***
	a ₁	691	276.25		
HFT	a ₃	1	266.06	<1.00	n.s.
	a_4	1	2419.61	1.74	n.s.
	a ₅	1	874.16	<1.00	n.s.

International Journal of Bio-Science and Bio-Technology Vol.8, No.1 (2016)

	a ₆	1	26531.12	19.02	***.
	a ₇	1	15340.87	11.06	***
	a_8	1	65520.00	47.22	***
	a_2	6	18491.97	13.33	***
	a_1	691	1387.66		
FH	a ₃	1	0.39	<1.00	n.s.
	a_4	1	7067.91	5.57	*
	a_5	1	180.94	<1.00	n.s.
	a_6	1	16920.59	13.58	***.
	a ₇	1	12541.74	10.06	**.
	a_8	1	105602.00	84.72	***
	a_2	6	23718.93	19.03	***
	a_1	691	1246.66		

Here:

 $\begin{array}{l} a_2 = \text{between generations} \\ a_1 = \text{between families/generations} \\ a_3 = F_2 S_2 vs. \ F_2 S_1 \\ a_4 = F_2 S_3 vs. \ (F_2 S_1 + F_2 S_2) \\ a_5 = F_2 S_4 vs. \ (F_2 S_1 + F_2 S_2 + F_2 S_3) \\ a_6 = F_2 S_5 vs. \ (F_2 S_1 + F_2 S_2 + F_2 S_3 + F_2 S_4) \\ a_7 = F_2 S_6 vs. \ (F_2 S_1 + F_2 S_2 + \ldots + F_2 S_5) \\ a_8 = F_2 S_7 vs. \ (F_2 S_1 + F_2 S_2 + \ldots + F_2 S_6) \end{array}$

The same analyses were performed on the overall means of the various generations of D population (results not shown). Once again the mean performances of the six sets of families are observed to differ significantly for H₆, H₇, and FT. Therefore at least three characters seem to be differentially affected by the agents of change. Further, F_2S_5 and F_2S_6 are the major sources of these differences and only in one case have the other generations (e.g. S_1 and S_2) shown marginally significant differences for FT.

Comparison between S_0 and $(F_2S_1$ to $F_2S_n)$ Generations

Average performances of all the selfed families derived from the n generations of population ($\overline{F_2S}$) was also compared with the mean of the base population (S₀) to determine if a consistent shift has taken place in the synthetic population. Standard "t" test was used to determine the significance of these differences. The results are presented in table 2 for the B population, however for the D population were not shown.

Table 2. Comparison between S₀ Mean and the Overall Mean of All the F2Sn Generations of the B Population

character	$\overline{S_0}$	$V_{\overline{S_0}}$	$\overline{F_2S}$	$V_{\overline{F_2S}}$	С	Significance
H ₆	23.53	0.4772	23.55	0.0522	0.027	n.s.
H_7	42.03	1.0024	42.71	03163	0.592	n.s.
LL	17.99	0.0737	19.44	0.1355	3.170	**
FT	29.38	0.6488	31.51	0.7149	1.824	n.s.
HFT	61.32	2.4845	67.65	5.3062	2.268	*
FH	114.12	2.5095	121.09	6.8060	2.284	*

In B population, the $\overline{F_2S}$ is observed to be significantly larger than S₀ mean for LL, HFT and FH. Difference in the D population, However, are in the opposite direction and $\overline{F_2S}$ is in fact significantly similar than S0 mean (results for the D population was not shown).

Tests of Selection and Competition at Means Level

As mentioned earlier, the observed changes in the overall means of progeny families of S1, S2... Sn generations could have occurred due to the interjection of heterozygosity and/or the effects of selection and competition. The estimates of β_n and C_n values of the various generations of B and D populations that were obtained by Roy (1983) and Bourne (1986) and have been used in the model fitting are given in table3. It is implied that the same models will fit the ancestral as well as the descendent generations when the synthetic population is not subjected to any directional selection and competition. Models which fit satisfactorily to the means of P_1 , P_2 , F_1 , F_2 generations of the $V_1 \times V_5$ cross and the S₀ generations of the B population are summarized in table 4. The additive component ([d]) was detected to be significant for H_6 , H_7 and LL but not for the rest of traits; the dominance component ([h]) was significant for H₆, H₇, LL and FH and the additive x additive interaction ([i]) was non-significant for all traits except LL. Dominance x dominance interaction ([1]) was non-significant throughout. Parameters of these models were then fitted to the overall means of P1, P2, F1, F2,S0 and F2S1 generations for each traits and the difference between the new χ^2 and pervious one obtained. This provided χ^2 with one degree of freedom and its significance determined if the same model failed to fit all generations of the synthetic population. The F_2S_1 mean was then (successively) replaced by the means of F_2S_3 and F_2S_7 and new $\chi^2_{(1)}$ values obtained (the remaining generations were left out because estimates of β_n and C_n were not available for them). The three $\chi^2_{(1)}$ values were then added to obtain a single $\chi^2_{(3)}$ value which is given in table 5 with its significance for various traits.

Table 3. The β_n and C_n Values of Various Generations of B and D Synthetic Populations

Generation	β_n	C_n
(a)	B population	l
S_1	0.04825	0.0023
S_3	0.08270	0.0068
S_7	0.04900	0.0049
(b)	D population	l
S_1	0.0479	0.0023
S_2	0.0735	0.0054
S_3	0.0849	0.0072
S_4	0.0856	0.0073
S_6	0.0772	0.0060

Table 4. Components of the First Degree Statistics Obtained from the P ₁ , P ₂ ,
F_1 , F_2 and S_0 Generations of the $V_1 \times V_5$ Cross by Weighted Least Squares
Analysis

Componen	H ₆	H ₇	LL	FT	HFT	FH
ts						
m	23.63 [±] .69	42.15 [±] .99	17.23 [±] 24	$28.64^{\pm}.66$	62.45 [±] 1.37	$114.07^{\pm}1.56$
[d]	$3.48^{\pm}1.41$	$4.45^{\pm}2.24$	$1.61^{\pm}.61$	_	_	_
[h]	$6.40^{\pm}2.14$	$10.85^{\pm}3.6$	$3.54^{\pm}.87$	_	_	$10.51^{\pm}5.12$
[i]	$5.75^{\pm}1.56$	1	_	-5.49 [±] -	$-12.97^{\pm}2.74$	_
[1]	_	$9.15^{\pm}2.45$	_	1.36	_	2.11 (2)
χ^2 (d.f.)	0.76(1)	_	0.21 (2)	_	3.67 (3)	n.s.
Sig.	n.s.	0.67 (1)	n.s.	3.03 (3)	n.s.	
		n.s.		n.s.		

Character	$\chi^{2}_{(3)}$	Significance
H ₆	0.93	n.s.
H_7	5.80	n.s.
LL	75.22	***
FT	7.35	(p≈0.05)
HFT	15.96	**
FH	36.55	***

Table 5. The $\chi^2_{(3)}$ Values Testing the Effects of Selection in the B Synthetic Population

The results of Table 5 show that $\chi^2_{(3)}$ is significant for LL, FT, HFT and FH but not for H₆ and H₇. This shows that selection/competition has affected the mean of F₂S_n scores significantly for all characters for all characters except H₆ and H₇.

The same procedures were applied to the various generations of D population (results not shown).With the exception of LL where only m and [d] parameters were needed, the best fitting models included a dominance component for H₇, HFT and FH and [i] component for HFT and FH.The $\chi^2_{(5)}$ obtained by including means of F2S1, F2S2, F2S3, F2S4 and F2S6 in each model show that they are significant for H6, H7 and FT and non-significant for LL, HFT and FH (results not shown).

Comparison of $V_{F2S1},\,V_{F2S2}...$ and V_{F2Sn}

Total variances (V_{F2Sn}) of the F_2S_1 , F_2S_2 ... F_2S_n generations were initially compared to determine if they differed from each other. A Bartlett's test to homogeneity was used to test the significance of difference between them. Further the following comparisons were also made to pin-point the level of differences that were displayed by a particular set of generations.

(1) $F_2S_2vs. F_2S_1$ (2) $F_2S_3vs. (F_2S_1 + F_2S_2)$.

 $(n-1)F_2S_1vs. (F_2S_1 + F_2S_2 + ... + F_2S_{n-1})$

Significances of each of these comparisons were determined by 'C' test which was calculated as $\sqrt{2} \chi^2 \sqrt{2} df-1$ following Fisher and Yates (1963). In B population the total variance of various generations differ significantly for FT and HFT (results not shown). $\chi^2_{(5)}$ values are also observed to be significant for H₆,LL and HFT in the D population, indicating that the total variances of various generations also show significances for these traits (results not shown). Orthogonal comparisons of the total variances of various generations revealed that F2S4 and F2S7 generations were largely responsible for the above differences in the B population (table 6). The situation in the D population was, however, much more complex and up to five generations were observed to show significant differences for various traits (results not shown).

Character	Comparison	C-value	Significance
FT	a+	0.08	n.s.
	b	-1.32	n.s.
	с	4.12	***
	d	-1.15	n.s.
	e	-1.13	n.s.
	f	-2.02	*
HFT	a	0.52	n.s.
	b	-1.57	n.s.
	с	2.27	*
	d	-1.21	n.s.
	e	-0.29	n.s.
	f	-5.07	***

 Table 6. C Values Testing the Significance of Differences between Various

 Generations of B Population for FT and HFT Traits

+Here, $a = F_2S_2vs. F_2S_1$ $b = F_2S_3vs. (F_2S_1 + F_2S_2)$ $c = F_2S_4vs. (F_2S_1 + F_2S_2 + F_2S_3)$ $d = F_2S_5vs. (F_2S_1 + F_2S_2 + F_2S_3 + F_2S_4)$ $e = F_2S_6vs. (F_2S_1 + F_2S_2 + ... + F_2S_5)$ $f = F_2S_7vs. (F_2S_1 + F_2S_2 + ... + F_2S_6)$

The results of comparison between the pooled variance of all selfed families of n generations of a population (V_s) and total variance of its S_0 generation show no indication of any clear shift in the variances (results not shown). In the most cases the two variances are very similar to each other and they differ highly significantly only for H_6 in both populations. Further V_{s0} is larger than V_s for this trait in both cases.

Comparison of between Families' Components

Because the S_0 generation of each population consisted of inbred lines which were derived by single seed descent, its genetic component σ_b^2 has an expectation of D (additive genetic variance). In the advancing generations, however, the genetic variance will be equal to D only when there is no selection, competition and out crossing. Introduction of heterozygosity as well as selection and competition will make the genetic variation of the selfed families of the populations differ from D. If there were no selection and competition it would be modified to $(1-\beta_n)D + 1/4\beta_n(1-\beta_n)H$, due solely to the effects of out crossing. Model fitting was employed to compare σ_b^2 's of various generations. The model used to compare the between families components (σ_b^2) of the $F_2S_1 \dots F_2S_n$ generations of a synthetic population and that of S0, $F_2S_1 \dots F_2S_n$ are given in tables 7 and 8, respectively.

Table7. Model used to Compare the between Families' Components (σ_b^2) of the $F_2S_1 \dots F_2S_n$ Generations of a Synthetic Population

Generation	Mean square	σ^2_{w1}	σ^2_{w2}	σ^2_{wj}	σ^2_{wn}	σ^2_{b}	
F_2S_1	Bet. fams.	1	0	0	0	r_1	
	With. fam.	1	0	0	0	0	
F_2S_2	Bet. fams. With. fam.	0 0	1 1	0 0	0 0	$r_2 \\ 0$	

F_2S_i	Bet. fams.	0	0	1	0	r _i
	With. fams.	0	0	1	0	0
F_2S_n	Bet. fams.	0	0	0	1	r _n
	With. fams.	0	0	0	1	0

+r1, r2, etc., stand for the effective family size of each generation

Table 8.	Model use	ed to Com	pare the be	tween Famili	es' Component	ts (σ_b^2) of
	the S ₀ , F ₂	2 S ₁ F ₂ S _r	Generation	ns of a Synthe	etic Population	

Generation	Mean square	σ^2_{w0}	σ^2_{w1}	σ^2_{w2}	σ^{2}_{wj}	$\sigma^2_{wn} \sigma^2$	2 b
S_0	Bet. fams.	1	0	0	0	0	\mathbf{r}_0
	With. fam.	1	0	0	0	0	0
F_2S_1	Bet. fams.	0	1	0	0	0	\mathbf{r}_1
	With. fam.	0	1	0	0	0	0
F_2S_2	Bet. fams.	0	0	1	0	0	\mathbf{r}_2
	With. fams.	0	0	1	0	0	0
	Bet. fams.						
F_2S_i	With. fams.	0	0	01	0	\mathbf{r}_{i}	
		0	0	0	1	0	0
	Bet. fams.						
F_2S_n	With. fams.	0	0	0	0	1	r _n
		0	0	00	1	0	

In the first model (n+1) parameters were fitted to (2n) statistics. So it provided a chisquare of goodness of fit for (n-1) degree of freedom and its significance determined if σ_b^2 differed between $F_2S_1 \dots F_2S_n$ generations. In the second model, there were (n+2) parameters and (2n+2) mean squares. Therefore it provided a χ^2 with n degrees of freedom. While this model tested the adequacy of a common σ_b^2 to all the generations the difference between this and the above χ^2 for (n-1) df provided a $\chi^2_{(1)}$ value whose significance determined if $\sigma_{b(S0)}^2$ differed significantly from the pooled σ_b^2 of the other generations.

Results of the above mentioned model fitting are presented in Table 9 for the B population. It is obvious that differences between σ_b^2 's of various generations are not

significant for any traits in the D population (results not shown) and for all except H₆ in the B population. Further, in no case is $\chi^2_{(1)}$ highly significant suggesting that the average σ^2_{b} of various F₂S_n generations does not differ from the between families component of the S₀ generation.

Character	Comparisons of σ_b^2 's across generation					
	F_2S_1 to F_2S_7	Difference				
	$\chi^{2}_{(6)}$	$\chi^{2}_{(7)}$	$\chi^2_{(1)}$			
H ₆	14.50 *	16.55 *	2.05 n.s.			
H_7	10.66 n.s.	12.10 n.s.	1.44 n.s.			
LL	9.88 n.s.	10.75 n.s.	0.87 n.s.			
FT	10.68 n.s.	11.25 n.s.	0.57 n.s.			
HFT	3.95 n.s.	4.74 n.s.	0.79 n.s.			
FH	4.11 n.s.	4.12 n.s.	0.01n.s.			

Table 9. χ^2 Values Comparing the σ^2_{b} 's of Various Generations of B Population and their Significance

Investigations of the source(s) of differences between the σ^2_{b} 's of various F_2S_n generations for H6 in the B population revealed that $\sigma^2_{b(F2S7)}$ differed significantly from the rest (it is larger than the rest of σ^2_{b} 's).

Comparisons of within Families' Components

Within family variances of various generations were compared by Bartlett's test. Initially, σ_w^2 of F_2S_1 , F_2S_2 ... etc. were compared to determine if they differed significantly from each other. Then their pooled average was compared with the $\sigma_{w(S0)}^2$ to test if there was a significant difference between them. Then $\chi_{(n-1)}^2$ obtained from the comparison of the F_2S_1 , F_2S_2 ... F_2S_n generations was further partitioned into (n-1) chi squares (for one degree of freedom each) with a view to determine the true source of differences. However, these analyses were only when $\chi_{(n-1)}^2$ was observed to be significant.

Table 10. χ^2 Values Comparing the σ^2_{w} 's of Various Generations of B Population

Comparisons	d	H ₆	H ₇	LL	FT	HFT	FH
	f						
$F_2S_1 \dots F_2S_7$	6	7.02 ns	14.05 *	6.47 ns	17.87 **	43.31 ***	16.61 **
(i) $F_2S_7vs.rest$	1	-	8.21 **	-	10.20 **	38.21 ***	7.53 **
(ii) Reminder	5	-	5.84 ns	-	7.67 ns	5.10 ns	9.08 ns
S0 vs. $(F_2S_1$	1	0.35 ns	2.47 ns	0.04 ns	0.21 ns	0.18 ns	0.05 ns
F_2S_7)							

The χ^2 values pertaining to the above described tests are presented for the B synthetic population in table 10. It shows that σ^2_w 's of the F2S1 ... F2Sn generations differ significantly for four characters namely, H₇, FT, HFT and FH. Further, these differences are exclusively attributable to the σ^2_w of F₂S₇ generation which is significantly smaller than the pooled σ^2_w of the remaining (F₂S₁ to F₂S₆) generations. There is however no difference between the pooled σ^2_w of these (F₂S₁, F₂S₂ ... F₂S_n) generations and that of the S₀ generation for any trait. Within family variances of the F₂S₁ ... F₂S₆ generations of D population also differ significantly for all traits except LL (results not shown). In this case, however, F₂S₅ to F₂S₆ generations are the major sources of differences because their $\sigma^2{}_w$'s are much smaller than those of the rest of generations. The situation is, however, much more complex in the case of HFT where $\{\sigma^2{}_{w(F2S3)}\approx\sigma^2{}_{w(F2S4)}\}>\{\sigma^2{}_{w(F2S1)}\approx\sigma^2{}_{w(F2S2)}\}>\{\sigma^2{}_{w(F2S5)}\approx\sigma^2{}_{w(F2S6)}\}$ (results not shown).Within families component of the S_0 generation, on the other hand, is significantly smaller than the pooled $\sigma^2{}_w$ of the F_2S_1 ... F_2S_6 generations for LL and the reverse is true $(\sigma^2{}_{w(S0)}>$ mean $\sigma^2{}_w$) for H_6 (results not shown).

Discussion

Both selection and competition are expected to influence the composition of the advancing generations of the population. Further their effects are normally cumulative such that the latter generations are more influenced than the early ones (relative to S_0). Therefore selfed samples of S_1 , S_2 , and etc. generations of the population are not only expected to differ from the S_0 which is the base population but they may also differ from each other. Because the S_0 generation of each population consisted of inbred lines which were derived by single seed descent, its genetic component $\sigma_{\rm b}^2$ has an expectation of D (additive genetic variance). In the advancing generations, however, the genetic variance will be equal to D only when there is no selection, competition and out crossing. Introduction of heterozygosity as well as selection and competition will make the genetic variation of the selfed families of the populations differ from D. If there were no selection and competition it would be modified to $(1-\beta_n) D + 1/4 \beta_n (1-\beta_n) H$, due solely to the effects of out crossing. Model fitting was employed to compare σ_{b}^{2} 's of various generations. The model used to compare the between families components (σ_b^2) of the $F_2S_1 \dots F_2S_n$ generations of a synthetic population and that of S0, $F_2S_1 \dots F_2S_n$ showed that differences between σ_{b}^{2} 's of various generations are not significant for any traits in the D population (results not shown) and for all except H₆ in the B population. Further, in no case is $\chi^2_{(1)}$ highly significant suggesting that the average σ^2_b of various F_2S_n generations does not differ from the between families component of the S₀ generation.Within family variances of various generations were compared to determine if they differed significantly from each other. There is however no difference between the pooled σ_w^2 of these (F₂S₁, $F_2S_2 \dots F_2S_n$) generations and that of the S₀ generation for any trait. Within family variances of the $F_2S_1 \dots F_2S_6$ generations of D population also differ significantly for all traits except LL (results not shown). In this case, however, F_2S_5 to F_2S_6 generations are the major sources of differences because their σ^2_{w} 's are much smaller than those of the rest of generations. The situation is, however, much more complex in the case of HFT where $\{\sigma^2_{w(F2S3)} \approx \sigma^2_{w(F2S4)}\} > \{\sigma^2_{w(F2S1)} \approx \sigma^2_{w(F2S2)}\} > \{\sigma^2_{w(F2S5)} \approx \sigma^2_{w(F2S6)}\}$ (results not shown). Within families component of the S₀ generation, on the other hand, is significantly smaller than the pooled σ^2_{w} of the F₂S₁... F₂S₆ generations for LL and the reverse is true $(\sigma_{w(S0)}^2 > \text{mean } \sigma_w^2)$ for H₆ (results not shown).

References

- [1] M. K. S. Al-Banna, "Selection for environmental sensitivity and competitive ability in Nicotiana rustica", Ph.D. Thesis. University of Birmingham, (1983).
- [2] S. Anssour, T. Krügel, T. F. Sharbel, H. P. Saluz, G. Bonaventure and I. T. Baldwin, "Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotianaattenuate and Nicotiana obtusifolia", Annals of Botany, (2009).
- [3] H. J. Boughey, "Competitive ability and environmental sensitivity in Nicotiana rustica", Ph.D. Thesis University of Birmingham, (1978).
- [4] I. K. Bourne, "Biometrical analyses of synthetic populations of Nicotiana rustica", Ph.D. Thesis. Submitted to the University of Birmingham, (1986).
- [5] R. A. Fisher and F. Yates, "Statistical Tables", 6th edn. Longman. London and New York. (1963).
- [6] K. Mather and J. L. Jinks, "Biometrical Genetics", 3rd ed. University Press, Cambridge, UK, (1982).
 D. Roy, "Application of Biometrical genetics tosynthetic populations of Nicotiana rustica", Ph.D. Thesis.

University of Birmingham, (1983).